ftrace: replace raw_local_irq_save with local_irq_save
[deliverable/linux.git] / arch / x86 / kernel / ftrace.c
1 /*
2 * Code for replacing ftrace calls with jumps.
3 *
4 * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
5 *
6 * Thanks goes to Ingo Molnar, for suggesting the idea.
7 * Mathieu Desnoyers, for suggesting postponing the modifications.
8 * Arjan van de Ven, for keeping me straight, and explaining to me
9 * the dangers of modifying code on the run.
10 */
11
12 #include <linux/spinlock.h>
13 #include <linux/hardirq.h>
14 #include <linux/uaccess.h>
15 #include <linux/ftrace.h>
16 #include <linux/percpu.h>
17 #include <linux/sched.h>
18 #include <linux/init.h>
19 #include <linux/list.h>
20
21 #include <asm/ftrace.h>
22 #include <linux/ftrace.h>
23 #include <asm/nops.h>
24 #include <asm/nmi.h>
25
26
27
28 #ifdef CONFIG_FUNCTION_RET_TRACER
29
30 /*
31 * These functions are picked from those used on
32 * this page for dynamic ftrace. They have been
33 * simplified to ignore all traces in NMI context.
34 */
35 static atomic_t in_nmi;
36
37 void ftrace_nmi_enter(void)
38 {
39 atomic_inc(&in_nmi);
40 }
41
42 void ftrace_nmi_exit(void)
43 {
44 atomic_dec(&in_nmi);
45 }
46
47 /* Add a function return address to the trace stack on thread info.*/
48 static int push_return_trace(unsigned long ret, unsigned long long time,
49 unsigned long func)
50 {
51 int index;
52 struct thread_info *ti = current_thread_info();
53
54 /* The return trace stack is full */
55 if (ti->curr_ret_stack == FTRACE_RET_STACK_SIZE - 1)
56 return -EBUSY;
57
58 index = ++ti->curr_ret_stack;
59 ti->ret_stack[index].ret = ret;
60 ti->ret_stack[index].func = func;
61 ti->ret_stack[index].calltime = time;
62
63 return 0;
64 }
65
66 /* Retrieve a function return address to the trace stack on thread info.*/
67 static void pop_return_trace(unsigned long *ret, unsigned long long *time,
68 unsigned long *func)
69 {
70 int index;
71
72 struct thread_info *ti = current_thread_info();
73 index = ti->curr_ret_stack;
74 *ret = ti->ret_stack[index].ret;
75 *func = ti->ret_stack[index].func;
76 *time = ti->ret_stack[index].calltime;
77 ti->curr_ret_stack--;
78 }
79
80 /*
81 * Send the trace to the ring-buffer.
82 * @return the original return address.
83 */
84 unsigned long ftrace_return_to_handler(void)
85 {
86 struct ftrace_retfunc trace;
87 pop_return_trace(&trace.ret, &trace.calltime, &trace.func);
88 trace.rettime = cpu_clock(raw_smp_processor_id());
89 ftrace_function_return(&trace);
90
91 return trace.ret;
92 }
93
94 /*
95 * Hook the return address and push it in the stack of return addrs
96 * in current thread info.
97 */
98 void prepare_ftrace_return(unsigned long *parent, unsigned long self_addr)
99 {
100 unsigned long old;
101 unsigned long long calltime;
102 int faulted;
103 unsigned long return_hooker = (unsigned long)
104 &return_to_handler;
105
106 /* Nmi's are currently unsupported */
107 if (atomic_read(&in_nmi))
108 return;
109
110 /*
111 * Protect against fault, even if it shouldn't
112 * happen. This tool is too much intrusive to
113 * ignore such a protection.
114 */
115 asm volatile(
116 "1: movl (%[parent_old]), %[old]\n"
117 "2: movl %[return_hooker], (%[parent_replaced])\n"
118 " movl $0, %[faulted]\n"
119
120 ".section .fixup, \"ax\"\n"
121 "3: movl $1, %[faulted]\n"
122 ".previous\n"
123
124 ".section __ex_table, \"a\"\n"
125 " .long 1b, 3b\n"
126 " .long 2b, 3b\n"
127 ".previous\n"
128
129 : [parent_replaced] "=r" (parent), [old] "=r" (old),
130 [faulted] "=r" (faulted)
131 : [parent_old] "0" (parent), [return_hooker] "r" (return_hooker)
132 : "memory"
133 );
134
135 if (WARN_ON(faulted)) {
136 unregister_ftrace_return();
137 return;
138 }
139
140 if (WARN_ON(!__kernel_text_address(old))) {
141 unregister_ftrace_return();
142 *parent = old;
143 return;
144 }
145
146 calltime = cpu_clock(raw_smp_processor_id());
147
148 if (push_return_trace(old, calltime, self_addr) == -EBUSY)
149 *parent = old;
150 }
151
152 #endif
153
154 #ifdef CONFIG_DYNAMIC_FTRACE
155
156 union ftrace_code_union {
157 char code[MCOUNT_INSN_SIZE];
158 struct {
159 char e8;
160 int offset;
161 } __attribute__((packed));
162 };
163
164 static int ftrace_calc_offset(long ip, long addr)
165 {
166 return (int)(addr - ip);
167 }
168
169 unsigned char *ftrace_call_replace(unsigned long ip, unsigned long addr)
170 {
171 static union ftrace_code_union calc;
172
173 calc.e8 = 0xe8;
174 calc.offset = ftrace_calc_offset(ip + MCOUNT_INSN_SIZE, addr);
175
176 /*
177 * No locking needed, this must be called via kstop_machine
178 * which in essence is like running on a uniprocessor machine.
179 */
180 return calc.code;
181 }
182
183 /*
184 * Modifying code must take extra care. On an SMP machine, if
185 * the code being modified is also being executed on another CPU
186 * that CPU will have undefined results and possibly take a GPF.
187 * We use kstop_machine to stop other CPUS from exectuing code.
188 * But this does not stop NMIs from happening. We still need
189 * to protect against that. We separate out the modification of
190 * the code to take care of this.
191 *
192 * Two buffers are added: An IP buffer and a "code" buffer.
193 *
194 * 1) Put the instruction pointer into the IP buffer
195 * and the new code into the "code" buffer.
196 * 2) Set a flag that says we are modifying code
197 * 3) Wait for any running NMIs to finish.
198 * 4) Write the code
199 * 5) clear the flag.
200 * 6) Wait for any running NMIs to finish.
201 *
202 * If an NMI is executed, the first thing it does is to call
203 * "ftrace_nmi_enter". This will check if the flag is set to write
204 * and if it is, it will write what is in the IP and "code" buffers.
205 *
206 * The trick is, it does not matter if everyone is writing the same
207 * content to the code location. Also, if a CPU is executing code
208 * it is OK to write to that code location if the contents being written
209 * are the same as what exists.
210 */
211
212 static atomic_t in_nmi = ATOMIC_INIT(0);
213 static int mod_code_status; /* holds return value of text write */
214 static int mod_code_write; /* set when NMI should do the write */
215 static void *mod_code_ip; /* holds the IP to write to */
216 static void *mod_code_newcode; /* holds the text to write to the IP */
217
218 static unsigned nmi_wait_count;
219 static atomic_t nmi_update_count = ATOMIC_INIT(0);
220
221 int ftrace_arch_read_dyn_info(char *buf, int size)
222 {
223 int r;
224
225 r = snprintf(buf, size, "%u %u",
226 nmi_wait_count,
227 atomic_read(&nmi_update_count));
228 return r;
229 }
230
231 static void ftrace_mod_code(void)
232 {
233 /*
234 * Yes, more than one CPU process can be writing to mod_code_status.
235 * (and the code itself)
236 * But if one were to fail, then they all should, and if one were
237 * to succeed, then they all should.
238 */
239 mod_code_status = probe_kernel_write(mod_code_ip, mod_code_newcode,
240 MCOUNT_INSN_SIZE);
241
242 }
243
244 void ftrace_nmi_enter(void)
245 {
246 atomic_inc(&in_nmi);
247 /* Must have in_nmi seen before reading write flag */
248 smp_mb();
249 if (mod_code_write) {
250 ftrace_mod_code();
251 atomic_inc(&nmi_update_count);
252 }
253 }
254
255 void ftrace_nmi_exit(void)
256 {
257 /* Finish all executions before clearing in_nmi */
258 smp_wmb();
259 atomic_dec(&in_nmi);
260 }
261
262 static void wait_for_nmi(void)
263 {
264 int waited = 0;
265
266 while (atomic_read(&in_nmi)) {
267 waited = 1;
268 cpu_relax();
269 }
270
271 if (waited)
272 nmi_wait_count++;
273 }
274
275 static int
276 do_ftrace_mod_code(unsigned long ip, void *new_code)
277 {
278 mod_code_ip = (void *)ip;
279 mod_code_newcode = new_code;
280
281 /* The buffers need to be visible before we let NMIs write them */
282 smp_wmb();
283
284 mod_code_write = 1;
285
286 /* Make sure write bit is visible before we wait on NMIs */
287 smp_mb();
288
289 wait_for_nmi();
290
291 /* Make sure all running NMIs have finished before we write the code */
292 smp_mb();
293
294 ftrace_mod_code();
295
296 /* Make sure the write happens before clearing the bit */
297 smp_wmb();
298
299 mod_code_write = 0;
300
301 /* make sure NMIs see the cleared bit */
302 smp_mb();
303
304 wait_for_nmi();
305
306 return mod_code_status;
307 }
308
309
310
311
312 static unsigned char ftrace_nop[MCOUNT_INSN_SIZE];
313
314 unsigned char *ftrace_nop_replace(void)
315 {
316 return ftrace_nop;
317 }
318
319 int
320 ftrace_modify_code(unsigned long ip, unsigned char *old_code,
321 unsigned char *new_code)
322 {
323 unsigned char replaced[MCOUNT_INSN_SIZE];
324
325 /*
326 * Note: Due to modules and __init, code can
327 * disappear and change, we need to protect against faulting
328 * as well as code changing. We do this by using the
329 * probe_kernel_* functions.
330 *
331 * No real locking needed, this code is run through
332 * kstop_machine, or before SMP starts.
333 */
334
335 /* read the text we want to modify */
336 if (probe_kernel_read(replaced, (void *)ip, MCOUNT_INSN_SIZE))
337 return -EFAULT;
338
339 /* Make sure it is what we expect it to be */
340 if (memcmp(replaced, old_code, MCOUNT_INSN_SIZE) != 0)
341 return -EINVAL;
342
343 /* replace the text with the new text */
344 if (do_ftrace_mod_code(ip, new_code))
345 return -EPERM;
346
347 sync_core();
348
349 return 0;
350 }
351
352 int ftrace_update_ftrace_func(ftrace_func_t func)
353 {
354 unsigned long ip = (unsigned long)(&ftrace_call);
355 unsigned char old[MCOUNT_INSN_SIZE], *new;
356 int ret;
357
358 memcpy(old, &ftrace_call, MCOUNT_INSN_SIZE);
359 new = ftrace_call_replace(ip, (unsigned long)func);
360 ret = ftrace_modify_code(ip, old, new);
361
362 return ret;
363 }
364
365 int __init ftrace_dyn_arch_init(void *data)
366 {
367 extern const unsigned char ftrace_test_p6nop[];
368 extern const unsigned char ftrace_test_nop5[];
369 extern const unsigned char ftrace_test_jmp[];
370 int faulted = 0;
371
372 /*
373 * There is no good nop for all x86 archs.
374 * We will default to using the P6_NOP5, but first we
375 * will test to make sure that the nop will actually
376 * work on this CPU. If it faults, we will then
377 * go to a lesser efficient 5 byte nop. If that fails
378 * we then just use a jmp as our nop. This isn't the most
379 * efficient nop, but we can not use a multi part nop
380 * since we would then risk being preempted in the middle
381 * of that nop, and if we enabled tracing then, it might
382 * cause a system crash.
383 *
384 * TODO: check the cpuid to determine the best nop.
385 */
386 asm volatile (
387 "ftrace_test_jmp:"
388 "jmp ftrace_test_p6nop\n"
389 "nop\n"
390 "nop\n"
391 "nop\n" /* 2 byte jmp + 3 bytes */
392 "ftrace_test_p6nop:"
393 P6_NOP5
394 "jmp 1f\n"
395 "ftrace_test_nop5:"
396 ".byte 0x66,0x66,0x66,0x66,0x90\n"
397 "1:"
398 ".section .fixup, \"ax\"\n"
399 "2: movl $1, %0\n"
400 " jmp ftrace_test_nop5\n"
401 "3: movl $2, %0\n"
402 " jmp 1b\n"
403 ".previous\n"
404 _ASM_EXTABLE(ftrace_test_p6nop, 2b)
405 _ASM_EXTABLE(ftrace_test_nop5, 3b)
406 : "=r"(faulted) : "0" (faulted));
407
408 switch (faulted) {
409 case 0:
410 pr_info("ftrace: converting mcount calls to 0f 1f 44 00 00\n");
411 memcpy(ftrace_nop, ftrace_test_p6nop, MCOUNT_INSN_SIZE);
412 break;
413 case 1:
414 pr_info("ftrace: converting mcount calls to 66 66 66 66 90\n");
415 memcpy(ftrace_nop, ftrace_test_nop5, MCOUNT_INSN_SIZE);
416 break;
417 case 2:
418 pr_info("ftrace: converting mcount calls to jmp . + 5\n");
419 memcpy(ftrace_nop, ftrace_test_jmp, MCOUNT_INSN_SIZE);
420 break;
421 }
422
423 /* The return code is retured via data */
424 *(unsigned long *)data = 0;
425
426 return 0;
427 }
428 #endif
This page took 0.041928 seconds and 6 git commands to generate.