a00545fe5cdd1dae730fe18031b631bd1f57d8d5
[deliverable/linux.git] / arch / x86 / kernel / hpet.c
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/sysdev.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/hpet.h>
8 #include <linux/init.h>
9 #include <linux/cpu.h>
10 #include <linux/pm.h>
11 #include <linux/io.h>
12
13 #include <asm/fixmap.h>
14 #include <asm/i8253.h>
15 #include <asm/hpet.h>
16
17 #define HPET_MASK CLOCKSOURCE_MASK(32)
18 #define HPET_SHIFT 22
19
20 /* FSEC = 10^-15
21 NSEC = 10^-9 */
22 #define FSEC_PER_NSEC 1000000L
23
24 #define HPET_DEV_USED_BIT 2
25 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
26 #define HPET_DEV_VALID 0x8
27 #define HPET_DEV_FSB_CAP 0x1000
28 #define HPET_DEV_PERI_CAP 0x2000
29
30 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
31
32 /*
33 * HPET address is set in acpi/boot.c, when an ACPI entry exists
34 */
35 unsigned long hpet_address;
36 #ifdef CONFIG_PCI_MSI
37 static unsigned long hpet_num_timers;
38 #endif
39 static void __iomem *hpet_virt_address;
40
41 struct hpet_dev {
42 struct clock_event_device evt;
43 unsigned int num;
44 int cpu;
45 unsigned int irq;
46 unsigned int flags;
47 char name[10];
48 };
49
50 unsigned long hpet_readl(unsigned long a)
51 {
52 return readl(hpet_virt_address + a);
53 }
54
55 static inline void hpet_writel(unsigned long d, unsigned long a)
56 {
57 writel(d, hpet_virt_address + a);
58 }
59
60 #ifdef CONFIG_X86_64
61 #include <asm/pgtable.h>
62 #endif
63
64 static inline void hpet_set_mapping(void)
65 {
66 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
67 #ifdef CONFIG_X86_64
68 __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
69 #endif
70 }
71
72 static inline void hpet_clear_mapping(void)
73 {
74 iounmap(hpet_virt_address);
75 hpet_virt_address = NULL;
76 }
77
78 /*
79 * HPET command line enable / disable
80 */
81 static int boot_hpet_disable;
82 int hpet_force_user;
83
84 static int __init hpet_setup(char *str)
85 {
86 if (str) {
87 if (!strncmp("disable", str, 7))
88 boot_hpet_disable = 1;
89 if (!strncmp("force", str, 5))
90 hpet_force_user = 1;
91 }
92 return 1;
93 }
94 __setup("hpet=", hpet_setup);
95
96 static int __init disable_hpet(char *str)
97 {
98 boot_hpet_disable = 1;
99 return 1;
100 }
101 __setup("nohpet", disable_hpet);
102
103 static inline int is_hpet_capable(void)
104 {
105 return !boot_hpet_disable && hpet_address;
106 }
107
108 /*
109 * HPET timer interrupt enable / disable
110 */
111 static int hpet_legacy_int_enabled;
112
113 /**
114 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
115 */
116 int is_hpet_enabled(void)
117 {
118 return is_hpet_capable() && hpet_legacy_int_enabled;
119 }
120 EXPORT_SYMBOL_GPL(is_hpet_enabled);
121
122 /*
123 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
124 * timer 0 and timer 1 in case of RTC emulation.
125 */
126 #ifdef CONFIG_HPET
127
128 static void hpet_reserve_msi_timers(struct hpet_data *hd);
129
130 static void hpet_reserve_platform_timers(unsigned long id)
131 {
132 struct hpet __iomem *hpet = hpet_virt_address;
133 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
134 unsigned int nrtimers, i;
135 struct hpet_data hd;
136
137 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
138
139 memset(&hd, 0, sizeof(hd));
140 hd.hd_phys_address = hpet_address;
141 hd.hd_address = hpet;
142 hd.hd_nirqs = nrtimers;
143 hpet_reserve_timer(&hd, 0);
144
145 #ifdef CONFIG_HPET_EMULATE_RTC
146 hpet_reserve_timer(&hd, 1);
147 #endif
148
149 /*
150 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
151 * is wrong for i8259!) not the output IRQ. Many BIOS writers
152 * don't bother configuring *any* comparator interrupts.
153 */
154 hd.hd_irq[0] = HPET_LEGACY_8254;
155 hd.hd_irq[1] = HPET_LEGACY_RTC;
156
157 for (i = 2; i < nrtimers; timer++, i++) {
158 hd.hd_irq[i] = (readl(&timer->hpet_config) &
159 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
160 }
161
162 hpet_reserve_msi_timers(&hd);
163
164 hpet_alloc(&hd);
165
166 }
167 #else
168 static void hpet_reserve_platform_timers(unsigned long id) { }
169 #endif
170
171 /*
172 * Common hpet info
173 */
174 static unsigned long hpet_period;
175
176 static void hpet_legacy_set_mode(enum clock_event_mode mode,
177 struct clock_event_device *evt);
178 static int hpet_legacy_next_event(unsigned long delta,
179 struct clock_event_device *evt);
180
181 /*
182 * The hpet clock event device
183 */
184 static struct clock_event_device hpet_clockevent = {
185 .name = "hpet",
186 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
187 .set_mode = hpet_legacy_set_mode,
188 .set_next_event = hpet_legacy_next_event,
189 .shift = 32,
190 .irq = 0,
191 .rating = 50,
192 };
193
194 static void hpet_start_counter(void)
195 {
196 unsigned long cfg = hpet_readl(HPET_CFG);
197
198 cfg &= ~HPET_CFG_ENABLE;
199 hpet_writel(cfg, HPET_CFG);
200 hpet_writel(0, HPET_COUNTER);
201 hpet_writel(0, HPET_COUNTER + 4);
202 cfg |= HPET_CFG_ENABLE;
203 hpet_writel(cfg, HPET_CFG);
204 }
205
206 static void hpet_resume_device(void)
207 {
208 force_hpet_resume();
209 }
210
211 static void hpet_restart_counter(void)
212 {
213 hpet_resume_device();
214 hpet_start_counter();
215 }
216
217 static void hpet_enable_legacy_int(void)
218 {
219 unsigned long cfg = hpet_readl(HPET_CFG);
220
221 cfg |= HPET_CFG_LEGACY;
222 hpet_writel(cfg, HPET_CFG);
223 hpet_legacy_int_enabled = 1;
224 }
225
226 static void hpet_legacy_clockevent_register(void)
227 {
228 /* Start HPET legacy interrupts */
229 hpet_enable_legacy_int();
230
231 /*
232 * The mult factor is defined as (include/linux/clockchips.h)
233 * mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
234 * hpet_period is in units of femtoseconds (per cycle), so
235 * mult/2^shift = cyc/ns = 10^6/hpet_period
236 * mult = (10^6 * 2^shift)/hpet_period
237 * mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
238 */
239 hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
240 hpet_period, hpet_clockevent.shift);
241 /* Calculate the min / max delta */
242 hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
243 &hpet_clockevent);
244 /* 5 usec minimum reprogramming delta. */
245 hpet_clockevent.min_delta_ns = 5000;
246
247 /*
248 * Start hpet with the boot cpu mask and make it
249 * global after the IO_APIC has been initialized.
250 */
251 hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
252 clockevents_register_device(&hpet_clockevent);
253 global_clock_event = &hpet_clockevent;
254 printk(KERN_DEBUG "hpet clockevent registered\n");
255 }
256
257 static int hpet_setup_msi_irq(unsigned int irq);
258
259 static void hpet_set_mode(enum clock_event_mode mode,
260 struct clock_event_device *evt, int timer)
261 {
262 unsigned long cfg, cmp, now;
263 uint64_t delta;
264
265 switch (mode) {
266 case CLOCK_EVT_MODE_PERIODIC:
267 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
268 delta >>= evt->shift;
269 now = hpet_readl(HPET_COUNTER);
270 cmp = now + (unsigned long) delta;
271 cfg = hpet_readl(HPET_Tn_CFG(timer));
272 /* Make sure we use edge triggered interrupts */
273 cfg &= ~HPET_TN_LEVEL;
274 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
275 HPET_TN_SETVAL | HPET_TN_32BIT;
276 hpet_writel(cfg, HPET_Tn_CFG(timer));
277 /*
278 * The first write after writing TN_SETVAL to the
279 * config register sets the counter value, the second
280 * write sets the period.
281 */
282 hpet_writel(cmp, HPET_Tn_CMP(timer));
283 udelay(1);
284 hpet_writel((unsigned long) delta, HPET_Tn_CMP(timer));
285 break;
286
287 case CLOCK_EVT_MODE_ONESHOT:
288 cfg = hpet_readl(HPET_Tn_CFG(timer));
289 cfg &= ~HPET_TN_PERIODIC;
290 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
291 hpet_writel(cfg, HPET_Tn_CFG(timer));
292 break;
293
294 case CLOCK_EVT_MODE_UNUSED:
295 case CLOCK_EVT_MODE_SHUTDOWN:
296 cfg = hpet_readl(HPET_Tn_CFG(timer));
297 cfg &= ~HPET_TN_ENABLE;
298 hpet_writel(cfg, HPET_Tn_CFG(timer));
299 break;
300
301 case CLOCK_EVT_MODE_RESUME:
302 if (timer == 0) {
303 hpet_enable_legacy_int();
304 } else {
305 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
306 hpet_setup_msi_irq(hdev->irq);
307 disable_irq(hdev->irq);
308 irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
309 enable_irq(hdev->irq);
310 }
311 break;
312 }
313 }
314
315 static int hpet_next_event(unsigned long delta,
316 struct clock_event_device *evt, int timer)
317 {
318 u32 cnt;
319
320 cnt = hpet_readl(HPET_COUNTER);
321 cnt += (u32) delta;
322 hpet_writel(cnt, HPET_Tn_CMP(timer));
323
324 /*
325 * We need to read back the CMP register to make sure that
326 * what we wrote hit the chip before we compare it to the
327 * counter.
328 */
329 WARN_ON_ONCE((u32)hpet_readl(HPET_Tn_CMP(timer)) != cnt);
330
331 return (s32)((u32)hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0;
332 }
333
334 static void hpet_legacy_set_mode(enum clock_event_mode mode,
335 struct clock_event_device *evt)
336 {
337 hpet_set_mode(mode, evt, 0);
338 }
339
340 static int hpet_legacy_next_event(unsigned long delta,
341 struct clock_event_device *evt)
342 {
343 return hpet_next_event(delta, evt, 0);
344 }
345
346 /*
347 * HPET MSI Support
348 */
349 #ifdef CONFIG_PCI_MSI
350
351 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
352 static struct hpet_dev *hpet_devs;
353
354 void hpet_msi_unmask(unsigned int irq)
355 {
356 struct hpet_dev *hdev = get_irq_data(irq);
357 unsigned long cfg;
358
359 /* unmask it */
360 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
361 cfg |= HPET_TN_FSB;
362 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
363 }
364
365 void hpet_msi_mask(unsigned int irq)
366 {
367 unsigned long cfg;
368 struct hpet_dev *hdev = get_irq_data(irq);
369
370 /* mask it */
371 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
372 cfg &= ~HPET_TN_FSB;
373 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
374 }
375
376 void hpet_msi_write(unsigned int irq, struct msi_msg *msg)
377 {
378 struct hpet_dev *hdev = get_irq_data(irq);
379
380 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
381 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
382 }
383
384 void hpet_msi_read(unsigned int irq, struct msi_msg *msg)
385 {
386 struct hpet_dev *hdev = get_irq_data(irq);
387
388 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
389 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
390 msg->address_hi = 0;
391 }
392
393 static void hpet_msi_set_mode(enum clock_event_mode mode,
394 struct clock_event_device *evt)
395 {
396 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
397 hpet_set_mode(mode, evt, hdev->num);
398 }
399
400 static int hpet_msi_next_event(unsigned long delta,
401 struct clock_event_device *evt)
402 {
403 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
404 return hpet_next_event(delta, evt, hdev->num);
405 }
406
407 static int hpet_setup_msi_irq(unsigned int irq)
408 {
409 if (arch_setup_hpet_msi(irq)) {
410 destroy_irq(irq);
411 return -EINVAL;
412 }
413 return 0;
414 }
415
416 static int hpet_assign_irq(struct hpet_dev *dev)
417 {
418 unsigned int irq;
419
420 irq = create_irq();
421 if (!irq)
422 return -EINVAL;
423
424 set_irq_data(irq, dev);
425
426 if (hpet_setup_msi_irq(irq))
427 return -EINVAL;
428
429 dev->irq = irq;
430 return 0;
431 }
432
433 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
434 {
435 struct hpet_dev *dev = (struct hpet_dev *)data;
436 struct clock_event_device *hevt = &dev->evt;
437
438 if (!hevt->event_handler) {
439 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
440 dev->num);
441 return IRQ_HANDLED;
442 }
443
444 hevt->event_handler(hevt);
445 return IRQ_HANDLED;
446 }
447
448 static int hpet_setup_irq(struct hpet_dev *dev)
449 {
450
451 if (request_irq(dev->irq, hpet_interrupt_handler,
452 IRQF_DISABLED|IRQF_NOBALANCING, dev->name, dev))
453 return -1;
454
455 disable_irq(dev->irq);
456 irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
457 enable_irq(dev->irq);
458
459 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
460 dev->name, dev->irq);
461
462 return 0;
463 }
464
465 /* This should be called in specific @cpu */
466 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
467 {
468 struct clock_event_device *evt = &hdev->evt;
469 uint64_t hpet_freq;
470
471 WARN_ON(cpu != smp_processor_id());
472 if (!(hdev->flags & HPET_DEV_VALID))
473 return;
474
475 if (hpet_setup_msi_irq(hdev->irq))
476 return;
477
478 hdev->cpu = cpu;
479 per_cpu(cpu_hpet_dev, cpu) = hdev;
480 evt->name = hdev->name;
481 hpet_setup_irq(hdev);
482 evt->irq = hdev->irq;
483
484 evt->rating = 110;
485 evt->features = CLOCK_EVT_FEAT_ONESHOT;
486 if (hdev->flags & HPET_DEV_PERI_CAP)
487 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
488
489 evt->set_mode = hpet_msi_set_mode;
490 evt->set_next_event = hpet_msi_next_event;
491 evt->shift = 32;
492
493 /*
494 * The period is a femto seconds value. We need to calculate the
495 * scaled math multiplication factor for nanosecond to hpet tick
496 * conversion.
497 */
498 hpet_freq = 1000000000000000ULL;
499 do_div(hpet_freq, hpet_period);
500 evt->mult = div_sc((unsigned long) hpet_freq,
501 NSEC_PER_SEC, evt->shift);
502 /* Calculate the max delta */
503 evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
504 /* 5 usec minimum reprogramming delta. */
505 evt->min_delta_ns = 5000;
506
507 evt->cpumask = cpumask_of(hdev->cpu);
508 clockevents_register_device(evt);
509 }
510
511 #ifdef CONFIG_HPET
512 /* Reserve at least one timer for userspace (/dev/hpet) */
513 #define RESERVE_TIMERS 1
514 #else
515 #define RESERVE_TIMERS 0
516 #endif
517
518 static void hpet_msi_capability_lookup(unsigned int start_timer)
519 {
520 unsigned int id;
521 unsigned int num_timers;
522 unsigned int num_timers_used = 0;
523 int i;
524
525 id = hpet_readl(HPET_ID);
526
527 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
528 num_timers++; /* Value read out starts from 0 */
529
530 hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
531 if (!hpet_devs)
532 return;
533
534 hpet_num_timers = num_timers;
535
536 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
537 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
538 unsigned long cfg = hpet_readl(HPET_Tn_CFG(i));
539
540 /* Only consider HPET timer with MSI support */
541 if (!(cfg & HPET_TN_FSB_CAP))
542 continue;
543
544 hdev->flags = 0;
545 if (cfg & HPET_TN_PERIODIC_CAP)
546 hdev->flags |= HPET_DEV_PERI_CAP;
547 hdev->num = i;
548
549 sprintf(hdev->name, "hpet%d", i);
550 if (hpet_assign_irq(hdev))
551 continue;
552
553 hdev->flags |= HPET_DEV_FSB_CAP;
554 hdev->flags |= HPET_DEV_VALID;
555 num_timers_used++;
556 if (num_timers_used == num_possible_cpus())
557 break;
558 }
559
560 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
561 num_timers, num_timers_used);
562 }
563
564 #ifdef CONFIG_HPET
565 static void hpet_reserve_msi_timers(struct hpet_data *hd)
566 {
567 int i;
568
569 if (!hpet_devs)
570 return;
571
572 for (i = 0; i < hpet_num_timers; i++) {
573 struct hpet_dev *hdev = &hpet_devs[i];
574
575 if (!(hdev->flags & HPET_DEV_VALID))
576 continue;
577
578 hd->hd_irq[hdev->num] = hdev->irq;
579 hpet_reserve_timer(hd, hdev->num);
580 }
581 }
582 #endif
583
584 static struct hpet_dev *hpet_get_unused_timer(void)
585 {
586 int i;
587
588 if (!hpet_devs)
589 return NULL;
590
591 for (i = 0; i < hpet_num_timers; i++) {
592 struct hpet_dev *hdev = &hpet_devs[i];
593
594 if (!(hdev->flags & HPET_DEV_VALID))
595 continue;
596 if (test_and_set_bit(HPET_DEV_USED_BIT,
597 (unsigned long *)&hdev->flags))
598 continue;
599 return hdev;
600 }
601 return NULL;
602 }
603
604 struct hpet_work_struct {
605 struct delayed_work work;
606 struct completion complete;
607 };
608
609 static void hpet_work(struct work_struct *w)
610 {
611 struct hpet_dev *hdev;
612 int cpu = smp_processor_id();
613 struct hpet_work_struct *hpet_work;
614
615 hpet_work = container_of(w, struct hpet_work_struct, work.work);
616
617 hdev = hpet_get_unused_timer();
618 if (hdev)
619 init_one_hpet_msi_clockevent(hdev, cpu);
620
621 complete(&hpet_work->complete);
622 }
623
624 static int hpet_cpuhp_notify(struct notifier_block *n,
625 unsigned long action, void *hcpu)
626 {
627 unsigned long cpu = (unsigned long)hcpu;
628 struct hpet_work_struct work;
629 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
630
631 switch (action & 0xf) {
632 case CPU_ONLINE:
633 INIT_DELAYED_WORK_ON_STACK(&work.work, hpet_work);
634 init_completion(&work.complete);
635 /* FIXME: add schedule_work_on() */
636 schedule_delayed_work_on(cpu, &work.work, 0);
637 wait_for_completion(&work.complete);
638 destroy_timer_on_stack(&work.work.timer);
639 break;
640 case CPU_DEAD:
641 if (hdev) {
642 free_irq(hdev->irq, hdev);
643 hdev->flags &= ~HPET_DEV_USED;
644 per_cpu(cpu_hpet_dev, cpu) = NULL;
645 }
646 break;
647 }
648 return NOTIFY_OK;
649 }
650 #else
651
652 static int hpet_setup_msi_irq(unsigned int irq)
653 {
654 return 0;
655 }
656 static void hpet_msi_capability_lookup(unsigned int start_timer)
657 {
658 return;
659 }
660
661 #ifdef CONFIG_HPET
662 static void hpet_reserve_msi_timers(struct hpet_data *hd)
663 {
664 return;
665 }
666 #endif
667
668 static int hpet_cpuhp_notify(struct notifier_block *n,
669 unsigned long action, void *hcpu)
670 {
671 return NOTIFY_OK;
672 }
673
674 #endif
675
676 /*
677 * Clock source related code
678 */
679 static cycle_t read_hpet(void)
680 {
681 return (cycle_t)hpet_readl(HPET_COUNTER);
682 }
683
684 #ifdef CONFIG_X86_64
685 static cycle_t __vsyscall_fn vread_hpet(void)
686 {
687 return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
688 }
689 #endif
690
691 static struct clocksource clocksource_hpet = {
692 .name = "hpet",
693 .rating = 250,
694 .read = read_hpet,
695 .mask = HPET_MASK,
696 .shift = HPET_SHIFT,
697 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
698 .resume = hpet_restart_counter,
699 #ifdef CONFIG_X86_64
700 .vread = vread_hpet,
701 #endif
702 };
703
704 static int hpet_clocksource_register(void)
705 {
706 u64 start, now;
707 cycle_t t1;
708
709 /* Start the counter */
710 hpet_start_counter();
711
712 /* Verify whether hpet counter works */
713 t1 = read_hpet();
714 rdtscll(start);
715
716 /*
717 * We don't know the TSC frequency yet, but waiting for
718 * 200000 TSC cycles is safe:
719 * 4 GHz == 50us
720 * 1 GHz == 200us
721 */
722 do {
723 rep_nop();
724 rdtscll(now);
725 } while ((now - start) < 200000UL);
726
727 if (t1 == read_hpet()) {
728 printk(KERN_WARNING
729 "HPET counter not counting. HPET disabled\n");
730 return -ENODEV;
731 }
732
733 /*
734 * The definition of mult is (include/linux/clocksource.h)
735 * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
736 * so we first need to convert hpet_period to ns/cyc units:
737 * mult/2^shift = ns/cyc = hpet_period/10^6
738 * mult = (hpet_period * 2^shift)/10^6
739 * mult = (hpet_period << shift)/FSEC_PER_NSEC
740 */
741 clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
742
743 clocksource_register(&clocksource_hpet);
744
745 return 0;
746 }
747
748 /**
749 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
750 */
751 int __init hpet_enable(void)
752 {
753 unsigned long id;
754 int i;
755
756 if (!is_hpet_capable())
757 return 0;
758
759 hpet_set_mapping();
760
761 /*
762 * Read the period and check for a sane value:
763 */
764 hpet_period = hpet_readl(HPET_PERIOD);
765
766 /*
767 * AMD SB700 based systems with spread spectrum enabled use a
768 * SMM based HPET emulation to provide proper frequency
769 * setting. The SMM code is initialized with the first HPET
770 * register access and takes some time to complete. During
771 * this time the config register reads 0xffffffff. We check
772 * for max. 1000 loops whether the config register reads a non
773 * 0xffffffff value to make sure that HPET is up and running
774 * before we go further. A counting loop is safe, as the HPET
775 * access takes thousands of CPU cycles. On non SB700 based
776 * machines this check is only done once and has no side
777 * effects.
778 */
779 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
780 if (i == 1000) {
781 printk(KERN_WARNING
782 "HPET config register value = 0xFFFFFFFF. "
783 "Disabling HPET\n");
784 goto out_nohpet;
785 }
786 }
787
788 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
789 goto out_nohpet;
790
791 /*
792 * Read the HPET ID register to retrieve the IRQ routing
793 * information and the number of channels
794 */
795 id = hpet_readl(HPET_ID);
796
797 #ifdef CONFIG_HPET_EMULATE_RTC
798 /*
799 * The legacy routing mode needs at least two channels, tick timer
800 * and the rtc emulation channel.
801 */
802 if (!(id & HPET_ID_NUMBER))
803 goto out_nohpet;
804 #endif
805
806 if (hpet_clocksource_register())
807 goto out_nohpet;
808
809 if (id & HPET_ID_LEGSUP) {
810 hpet_legacy_clockevent_register();
811 hpet_msi_capability_lookup(2);
812 return 1;
813 }
814 hpet_msi_capability_lookup(0);
815 return 0;
816
817 out_nohpet:
818 hpet_clear_mapping();
819 hpet_address = 0;
820 return 0;
821 }
822
823 /*
824 * Needs to be late, as the reserve_timer code calls kalloc !
825 *
826 * Not a problem on i386 as hpet_enable is called from late_time_init,
827 * but on x86_64 it is necessary !
828 */
829 static __init int hpet_late_init(void)
830 {
831 int cpu;
832
833 if (boot_hpet_disable)
834 return -ENODEV;
835
836 if (!hpet_address) {
837 if (!force_hpet_address)
838 return -ENODEV;
839
840 hpet_address = force_hpet_address;
841 hpet_enable();
842 }
843
844 if (!hpet_virt_address)
845 return -ENODEV;
846
847 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
848
849 for_each_online_cpu(cpu) {
850 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
851 }
852
853 /* This notifier should be called after workqueue is ready */
854 hotcpu_notifier(hpet_cpuhp_notify, -20);
855
856 return 0;
857 }
858 fs_initcall(hpet_late_init);
859
860 void hpet_disable(void)
861 {
862 if (is_hpet_capable()) {
863 unsigned long cfg = hpet_readl(HPET_CFG);
864
865 if (hpet_legacy_int_enabled) {
866 cfg &= ~HPET_CFG_LEGACY;
867 hpet_legacy_int_enabled = 0;
868 }
869 cfg &= ~HPET_CFG_ENABLE;
870 hpet_writel(cfg, HPET_CFG);
871 }
872 }
873
874 #ifdef CONFIG_HPET_EMULATE_RTC
875
876 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
877 * is enabled, we support RTC interrupt functionality in software.
878 * RTC has 3 kinds of interrupts:
879 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
880 * is updated
881 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
882 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
883 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
884 * (1) and (2) above are implemented using polling at a frequency of
885 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
886 * overhead. (DEFAULT_RTC_INT_FREQ)
887 * For (3), we use interrupts at 64Hz or user specified periodic
888 * frequency, whichever is higher.
889 */
890 #include <linux/mc146818rtc.h>
891 #include <linux/rtc.h>
892 #include <asm/rtc.h>
893
894 #define DEFAULT_RTC_INT_FREQ 64
895 #define DEFAULT_RTC_SHIFT 6
896 #define RTC_NUM_INTS 1
897
898 static unsigned long hpet_rtc_flags;
899 static int hpet_prev_update_sec;
900 static struct rtc_time hpet_alarm_time;
901 static unsigned long hpet_pie_count;
902 static u32 hpet_t1_cmp;
903 static unsigned long hpet_default_delta;
904 static unsigned long hpet_pie_delta;
905 static unsigned long hpet_pie_limit;
906
907 static rtc_irq_handler irq_handler;
908
909 /*
910 * Check that the hpet counter c1 is ahead of the c2
911 */
912 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
913 {
914 return (s32)(c2 - c1) < 0;
915 }
916
917 /*
918 * Registers a IRQ handler.
919 */
920 int hpet_register_irq_handler(rtc_irq_handler handler)
921 {
922 if (!is_hpet_enabled())
923 return -ENODEV;
924 if (irq_handler)
925 return -EBUSY;
926
927 irq_handler = handler;
928
929 return 0;
930 }
931 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
932
933 /*
934 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
935 * and does cleanup.
936 */
937 void hpet_unregister_irq_handler(rtc_irq_handler handler)
938 {
939 if (!is_hpet_enabled())
940 return;
941
942 irq_handler = NULL;
943 hpet_rtc_flags = 0;
944 }
945 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
946
947 /*
948 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
949 * is not supported by all HPET implementations for timer 1.
950 *
951 * hpet_rtc_timer_init() is called when the rtc is initialized.
952 */
953 int hpet_rtc_timer_init(void)
954 {
955 unsigned long cfg, cnt, delta, flags;
956
957 if (!is_hpet_enabled())
958 return 0;
959
960 if (!hpet_default_delta) {
961 uint64_t clc;
962
963 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
964 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
965 hpet_default_delta = (unsigned long) clc;
966 }
967
968 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
969 delta = hpet_default_delta;
970 else
971 delta = hpet_pie_delta;
972
973 local_irq_save(flags);
974
975 cnt = delta + hpet_readl(HPET_COUNTER);
976 hpet_writel(cnt, HPET_T1_CMP);
977 hpet_t1_cmp = cnt;
978
979 cfg = hpet_readl(HPET_T1_CFG);
980 cfg &= ~HPET_TN_PERIODIC;
981 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
982 hpet_writel(cfg, HPET_T1_CFG);
983
984 local_irq_restore(flags);
985
986 return 1;
987 }
988 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
989
990 /*
991 * The functions below are called from rtc driver.
992 * Return 0 if HPET is not being used.
993 * Otherwise do the necessary changes and return 1.
994 */
995 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
996 {
997 if (!is_hpet_enabled())
998 return 0;
999
1000 hpet_rtc_flags &= ~bit_mask;
1001 return 1;
1002 }
1003 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1004
1005 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1006 {
1007 unsigned long oldbits = hpet_rtc_flags;
1008
1009 if (!is_hpet_enabled())
1010 return 0;
1011
1012 hpet_rtc_flags |= bit_mask;
1013
1014 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1015 hpet_prev_update_sec = -1;
1016
1017 if (!oldbits)
1018 hpet_rtc_timer_init();
1019
1020 return 1;
1021 }
1022 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1023
1024 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1025 unsigned char sec)
1026 {
1027 if (!is_hpet_enabled())
1028 return 0;
1029
1030 hpet_alarm_time.tm_hour = hrs;
1031 hpet_alarm_time.tm_min = min;
1032 hpet_alarm_time.tm_sec = sec;
1033
1034 return 1;
1035 }
1036 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1037
1038 int hpet_set_periodic_freq(unsigned long freq)
1039 {
1040 uint64_t clc;
1041
1042 if (!is_hpet_enabled())
1043 return 0;
1044
1045 if (freq <= DEFAULT_RTC_INT_FREQ)
1046 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1047 else {
1048 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1049 do_div(clc, freq);
1050 clc >>= hpet_clockevent.shift;
1051 hpet_pie_delta = (unsigned long) clc;
1052 }
1053 return 1;
1054 }
1055 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1056
1057 int hpet_rtc_dropped_irq(void)
1058 {
1059 return is_hpet_enabled();
1060 }
1061 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1062
1063 static void hpet_rtc_timer_reinit(void)
1064 {
1065 unsigned long cfg, delta;
1066 int lost_ints = -1;
1067
1068 if (unlikely(!hpet_rtc_flags)) {
1069 cfg = hpet_readl(HPET_T1_CFG);
1070 cfg &= ~HPET_TN_ENABLE;
1071 hpet_writel(cfg, HPET_T1_CFG);
1072 return;
1073 }
1074
1075 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1076 delta = hpet_default_delta;
1077 else
1078 delta = hpet_pie_delta;
1079
1080 /*
1081 * Increment the comparator value until we are ahead of the
1082 * current count.
1083 */
1084 do {
1085 hpet_t1_cmp += delta;
1086 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1087 lost_ints++;
1088 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1089
1090 if (lost_ints) {
1091 if (hpet_rtc_flags & RTC_PIE)
1092 hpet_pie_count += lost_ints;
1093 if (printk_ratelimit())
1094 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1095 lost_ints);
1096 }
1097 }
1098
1099 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1100 {
1101 struct rtc_time curr_time;
1102 unsigned long rtc_int_flag = 0;
1103
1104 hpet_rtc_timer_reinit();
1105 memset(&curr_time, 0, sizeof(struct rtc_time));
1106
1107 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1108 get_rtc_time(&curr_time);
1109
1110 if (hpet_rtc_flags & RTC_UIE &&
1111 curr_time.tm_sec != hpet_prev_update_sec) {
1112 if (hpet_prev_update_sec >= 0)
1113 rtc_int_flag = RTC_UF;
1114 hpet_prev_update_sec = curr_time.tm_sec;
1115 }
1116
1117 if (hpet_rtc_flags & RTC_PIE &&
1118 ++hpet_pie_count >= hpet_pie_limit) {
1119 rtc_int_flag |= RTC_PF;
1120 hpet_pie_count = 0;
1121 }
1122
1123 if (hpet_rtc_flags & RTC_AIE &&
1124 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1125 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1126 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1127 rtc_int_flag |= RTC_AF;
1128
1129 if (rtc_int_flag) {
1130 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1131 if (irq_handler)
1132 irq_handler(rtc_int_flag, dev_id);
1133 }
1134 return IRQ_HANDLED;
1135 }
1136 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1137 #endif
This page took 0.070254 seconds and 5 git commands to generate.