x86: remove irqbalance in kernel for 32 bit
[deliverable/linux.git] / arch / x86 / kernel / hpet.c
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/delay.h>
4 #include <linux/errno.h>
5 #include <linux/hpet.h>
6 #include <linux/init.h>
7 #include <linux/sysdev.h>
8 #include <linux/pm.h>
9
10 #include <asm/fixmap.h>
11 #include <asm/hpet.h>
12 #include <asm/i8253.h>
13 #include <asm/io.h>
14
15 #define HPET_MASK CLOCKSOURCE_MASK(32)
16 #define HPET_SHIFT 22
17
18 /* FSEC = 10^-15
19 NSEC = 10^-9 */
20 #define FSEC_PER_NSEC 1000000L
21
22 /*
23 * HPET address is set in acpi/boot.c, when an ACPI entry exists
24 */
25 unsigned long hpet_address;
26 static void __iomem *hpet_virt_address;
27
28 unsigned long hpet_readl(unsigned long a)
29 {
30 return readl(hpet_virt_address + a);
31 }
32
33 static inline void hpet_writel(unsigned long d, unsigned long a)
34 {
35 writel(d, hpet_virt_address + a);
36 }
37
38 #ifdef CONFIG_X86_64
39 #include <asm/pgtable.h>
40 #endif
41
42 static inline void hpet_set_mapping(void)
43 {
44 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
45 #ifdef CONFIG_X86_64
46 __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
47 #endif
48 }
49
50 static inline void hpet_clear_mapping(void)
51 {
52 iounmap(hpet_virt_address);
53 hpet_virt_address = NULL;
54 }
55
56 /*
57 * HPET command line enable / disable
58 */
59 static int boot_hpet_disable;
60 int hpet_force_user;
61
62 static int __init hpet_setup(char* str)
63 {
64 if (str) {
65 if (!strncmp("disable", str, 7))
66 boot_hpet_disable = 1;
67 if (!strncmp("force", str, 5))
68 hpet_force_user = 1;
69 }
70 return 1;
71 }
72 __setup("hpet=", hpet_setup);
73
74 static int __init disable_hpet(char *str)
75 {
76 boot_hpet_disable = 1;
77 return 1;
78 }
79 __setup("nohpet", disable_hpet);
80
81 static inline int is_hpet_capable(void)
82 {
83 return (!boot_hpet_disable && hpet_address);
84 }
85
86 /*
87 * HPET timer interrupt enable / disable
88 */
89 static int hpet_legacy_int_enabled;
90
91 /**
92 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
93 */
94 int is_hpet_enabled(void)
95 {
96 return is_hpet_capable() && hpet_legacy_int_enabled;
97 }
98 EXPORT_SYMBOL_GPL(is_hpet_enabled);
99
100 /*
101 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
102 * timer 0 and timer 1 in case of RTC emulation.
103 */
104 #ifdef CONFIG_HPET
105 static void hpet_reserve_platform_timers(unsigned long id)
106 {
107 struct hpet __iomem *hpet = hpet_virt_address;
108 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
109 unsigned int nrtimers, i;
110 struct hpet_data hd;
111
112 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
113
114 memset(&hd, 0, sizeof (hd));
115 hd.hd_phys_address = hpet_address;
116 hd.hd_address = hpet;
117 hd.hd_nirqs = nrtimers;
118 hpet_reserve_timer(&hd, 0);
119
120 #ifdef CONFIG_HPET_EMULATE_RTC
121 hpet_reserve_timer(&hd, 1);
122 #endif
123
124 /*
125 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
126 * is wrong for i8259!) not the output IRQ. Many BIOS writers
127 * don't bother configuring *any* comparator interrupts.
128 */
129 hd.hd_irq[0] = HPET_LEGACY_8254;
130 hd.hd_irq[1] = HPET_LEGACY_RTC;
131
132 for (i = 2; i < nrtimers; timer++, i++) {
133 hd.hd_irq[i] = (readl(&timer->hpet_config) & Tn_INT_ROUTE_CNF_MASK) >>
134 Tn_INT_ROUTE_CNF_SHIFT;
135 }
136
137 hpet_alloc(&hd);
138
139 }
140 #else
141 static void hpet_reserve_platform_timers(unsigned long id) { }
142 #endif
143
144 /*
145 * Common hpet info
146 */
147 static unsigned long hpet_period;
148
149 static void hpet_legacy_set_mode(enum clock_event_mode mode,
150 struct clock_event_device *evt);
151 static int hpet_legacy_next_event(unsigned long delta,
152 struct clock_event_device *evt);
153
154 /*
155 * The hpet clock event device
156 */
157 static struct clock_event_device hpet_clockevent = {
158 .name = "hpet",
159 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
160 .set_mode = hpet_legacy_set_mode,
161 .set_next_event = hpet_legacy_next_event,
162 .shift = 32,
163 .irq = 0,
164 .rating = 50,
165 };
166
167 static void hpet_start_counter(void)
168 {
169 unsigned long cfg = hpet_readl(HPET_CFG);
170
171 cfg &= ~HPET_CFG_ENABLE;
172 hpet_writel(cfg, HPET_CFG);
173 hpet_writel(0, HPET_COUNTER);
174 hpet_writel(0, HPET_COUNTER + 4);
175 cfg |= HPET_CFG_ENABLE;
176 hpet_writel(cfg, HPET_CFG);
177 }
178
179 static void hpet_resume_device(void)
180 {
181 force_hpet_resume();
182 }
183
184 static void hpet_restart_counter(void)
185 {
186 hpet_resume_device();
187 hpet_start_counter();
188 }
189
190 static void hpet_enable_legacy_int(void)
191 {
192 unsigned long cfg = hpet_readl(HPET_CFG);
193
194 cfg |= HPET_CFG_LEGACY;
195 hpet_writel(cfg, HPET_CFG);
196 hpet_legacy_int_enabled = 1;
197 }
198
199 static void hpet_legacy_clockevent_register(void)
200 {
201 /* Start HPET legacy interrupts */
202 hpet_enable_legacy_int();
203
204 /*
205 * The mult factor is defined as (include/linux/clockchips.h)
206 * mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
207 * hpet_period is in units of femtoseconds (per cycle), so
208 * mult/2^shift = cyc/ns = 10^6/hpet_period
209 * mult = (10^6 * 2^shift)/hpet_period
210 * mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
211 */
212 hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
213 hpet_period, hpet_clockevent.shift);
214 /* Calculate the min / max delta */
215 hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
216 &hpet_clockevent);
217 /* 5 usec minimum reprogramming delta. */
218 hpet_clockevent.min_delta_ns = 5000;
219
220 /*
221 * Start hpet with the boot cpu mask and make it
222 * global after the IO_APIC has been initialized.
223 */
224 hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
225 clockevents_register_device(&hpet_clockevent);
226 global_clock_event = &hpet_clockevent;
227 printk(KERN_DEBUG "hpet clockevent registered\n");
228 }
229
230 static void hpet_legacy_set_mode(enum clock_event_mode mode,
231 struct clock_event_device *evt)
232 {
233 unsigned long cfg, cmp, now;
234 uint64_t delta;
235
236 switch(mode) {
237 case CLOCK_EVT_MODE_PERIODIC:
238 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult;
239 delta >>= hpet_clockevent.shift;
240 now = hpet_readl(HPET_COUNTER);
241 cmp = now + (unsigned long) delta;
242 cfg = hpet_readl(HPET_T0_CFG);
243 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
244 HPET_TN_SETVAL | HPET_TN_32BIT;
245 hpet_writel(cfg, HPET_T0_CFG);
246 /*
247 * The first write after writing TN_SETVAL to the
248 * config register sets the counter value, the second
249 * write sets the period.
250 */
251 hpet_writel(cmp, HPET_T0_CMP);
252 udelay(1);
253 hpet_writel((unsigned long) delta, HPET_T0_CMP);
254 break;
255
256 case CLOCK_EVT_MODE_ONESHOT:
257 cfg = hpet_readl(HPET_T0_CFG);
258 cfg &= ~HPET_TN_PERIODIC;
259 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
260 hpet_writel(cfg, HPET_T0_CFG);
261 break;
262
263 case CLOCK_EVT_MODE_UNUSED:
264 case CLOCK_EVT_MODE_SHUTDOWN:
265 cfg = hpet_readl(HPET_T0_CFG);
266 cfg &= ~HPET_TN_ENABLE;
267 hpet_writel(cfg, HPET_T0_CFG);
268 break;
269
270 case CLOCK_EVT_MODE_RESUME:
271 hpet_enable_legacy_int();
272 break;
273 }
274 }
275
276 static int hpet_legacy_next_event(unsigned long delta,
277 struct clock_event_device *evt)
278 {
279 u32 cnt;
280
281 cnt = hpet_readl(HPET_COUNTER);
282 cnt += (u32) delta;
283 hpet_writel(cnt, HPET_T0_CMP);
284
285 /*
286 * We need to read back the CMP register to make sure that
287 * what we wrote hit the chip before we compare it to the
288 * counter.
289 */
290 WARN_ON((u32)hpet_readl(HPET_T0_CMP) != cnt);
291
292 return (s32)((u32)hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0;
293 }
294
295 /*
296 * Clock source related code
297 */
298 static cycle_t read_hpet(void)
299 {
300 return (cycle_t)hpet_readl(HPET_COUNTER);
301 }
302
303 #ifdef CONFIG_X86_64
304 static cycle_t __vsyscall_fn vread_hpet(void)
305 {
306 return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
307 }
308 #endif
309
310 static struct clocksource clocksource_hpet = {
311 .name = "hpet",
312 .rating = 250,
313 .read = read_hpet,
314 .mask = HPET_MASK,
315 .shift = HPET_SHIFT,
316 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
317 .resume = hpet_restart_counter,
318 #ifdef CONFIG_X86_64
319 .vread = vread_hpet,
320 #endif
321 };
322
323 static int hpet_clocksource_register(void)
324 {
325 u64 start, now;
326 cycle_t t1;
327
328 /* Start the counter */
329 hpet_start_counter();
330
331 /* Verify whether hpet counter works */
332 t1 = read_hpet();
333 rdtscll(start);
334
335 /*
336 * We don't know the TSC frequency yet, but waiting for
337 * 200000 TSC cycles is safe:
338 * 4 GHz == 50us
339 * 1 GHz == 200us
340 */
341 do {
342 rep_nop();
343 rdtscll(now);
344 } while ((now - start) < 200000UL);
345
346 if (t1 == read_hpet()) {
347 printk(KERN_WARNING
348 "HPET counter not counting. HPET disabled\n");
349 return -ENODEV;
350 }
351
352 /*
353 * The definition of mult is (include/linux/clocksource.h)
354 * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
355 * so we first need to convert hpet_period to ns/cyc units:
356 * mult/2^shift = ns/cyc = hpet_period/10^6
357 * mult = (hpet_period * 2^shift)/10^6
358 * mult = (hpet_period << shift)/FSEC_PER_NSEC
359 */
360 clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
361
362 clocksource_register(&clocksource_hpet);
363
364 return 0;
365 }
366
367 /**
368 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
369 */
370 int __init hpet_enable(void)
371 {
372 unsigned long id;
373 int i;
374
375 if (!is_hpet_capable())
376 return 0;
377
378 hpet_set_mapping();
379
380 /*
381 * Read the period and check for a sane value:
382 */
383 hpet_period = hpet_readl(HPET_PERIOD);
384
385 /*
386 * AMD SB700 based systems with spread spectrum enabled use a
387 * SMM based HPET emulation to provide proper frequency
388 * setting. The SMM code is initialized with the first HPET
389 * register access and takes some time to complete. During
390 * this time the config register reads 0xffffffff. We check
391 * for max. 1000 loops whether the config register reads a non
392 * 0xffffffff value to make sure that HPET is up and running
393 * before we go further. A counting loop is safe, as the HPET
394 * access takes thousands of CPU cycles. On non SB700 based
395 * machines this check is only done once and has no side
396 * effects.
397 */
398 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
399 if (i == 1000) {
400 printk(KERN_WARNING
401 "HPET config register value = 0xFFFFFFFF. "
402 "Disabling HPET\n");
403 goto out_nohpet;
404 }
405 }
406
407 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
408 goto out_nohpet;
409
410 /*
411 * Read the HPET ID register to retrieve the IRQ routing
412 * information and the number of channels
413 */
414 id = hpet_readl(HPET_ID);
415
416 #ifdef CONFIG_HPET_EMULATE_RTC
417 /*
418 * The legacy routing mode needs at least two channels, tick timer
419 * and the rtc emulation channel.
420 */
421 if (!(id & HPET_ID_NUMBER))
422 goto out_nohpet;
423 #endif
424
425 if (hpet_clocksource_register())
426 goto out_nohpet;
427
428 if (id & HPET_ID_LEGSUP) {
429 hpet_legacy_clockevent_register();
430 return 1;
431 }
432 return 0;
433
434 out_nohpet:
435 hpet_clear_mapping();
436 boot_hpet_disable = 1;
437 return 0;
438 }
439
440 /*
441 * Needs to be late, as the reserve_timer code calls kalloc !
442 *
443 * Not a problem on i386 as hpet_enable is called from late_time_init,
444 * but on x86_64 it is necessary !
445 */
446 static __init int hpet_late_init(void)
447 {
448 if (boot_hpet_disable)
449 return -ENODEV;
450
451 if (!hpet_address) {
452 if (!force_hpet_address)
453 return -ENODEV;
454
455 hpet_address = force_hpet_address;
456 hpet_enable();
457 if (!hpet_virt_address)
458 return -ENODEV;
459 }
460
461 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
462
463 return 0;
464 }
465 fs_initcall(hpet_late_init);
466
467 void hpet_disable(void)
468 {
469 if (is_hpet_capable()) {
470 unsigned long cfg = hpet_readl(HPET_CFG);
471
472 if (hpet_legacy_int_enabled) {
473 cfg &= ~HPET_CFG_LEGACY;
474 hpet_legacy_int_enabled = 0;
475 }
476 cfg &= ~HPET_CFG_ENABLE;
477 hpet_writel(cfg, HPET_CFG);
478 }
479 }
480
481 #ifdef CONFIG_HPET_EMULATE_RTC
482
483 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
484 * is enabled, we support RTC interrupt functionality in software.
485 * RTC has 3 kinds of interrupts:
486 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
487 * is updated
488 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
489 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
490 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
491 * (1) and (2) above are implemented using polling at a frequency of
492 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
493 * overhead. (DEFAULT_RTC_INT_FREQ)
494 * For (3), we use interrupts at 64Hz or user specified periodic
495 * frequency, whichever is higher.
496 */
497 #include <linux/mc146818rtc.h>
498 #include <linux/rtc.h>
499 #include <asm/rtc.h>
500
501 #define DEFAULT_RTC_INT_FREQ 64
502 #define DEFAULT_RTC_SHIFT 6
503 #define RTC_NUM_INTS 1
504
505 static unsigned long hpet_rtc_flags;
506 static int hpet_prev_update_sec;
507 static struct rtc_time hpet_alarm_time;
508 static unsigned long hpet_pie_count;
509 static unsigned long hpet_t1_cmp;
510 static unsigned long hpet_default_delta;
511 static unsigned long hpet_pie_delta;
512 static unsigned long hpet_pie_limit;
513
514 static rtc_irq_handler irq_handler;
515
516 /*
517 * Registers a IRQ handler.
518 */
519 int hpet_register_irq_handler(rtc_irq_handler handler)
520 {
521 if (!is_hpet_enabled())
522 return -ENODEV;
523 if (irq_handler)
524 return -EBUSY;
525
526 irq_handler = handler;
527
528 return 0;
529 }
530 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
531
532 /*
533 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
534 * and does cleanup.
535 */
536 void hpet_unregister_irq_handler(rtc_irq_handler handler)
537 {
538 if (!is_hpet_enabled())
539 return;
540
541 irq_handler = NULL;
542 hpet_rtc_flags = 0;
543 }
544 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
545
546 /*
547 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
548 * is not supported by all HPET implementations for timer 1.
549 *
550 * hpet_rtc_timer_init() is called when the rtc is initialized.
551 */
552 int hpet_rtc_timer_init(void)
553 {
554 unsigned long cfg, cnt, delta, flags;
555
556 if (!is_hpet_enabled())
557 return 0;
558
559 if (!hpet_default_delta) {
560 uint64_t clc;
561
562 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
563 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
564 hpet_default_delta = (unsigned long) clc;
565 }
566
567 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
568 delta = hpet_default_delta;
569 else
570 delta = hpet_pie_delta;
571
572 local_irq_save(flags);
573
574 cnt = delta + hpet_readl(HPET_COUNTER);
575 hpet_writel(cnt, HPET_T1_CMP);
576 hpet_t1_cmp = cnt;
577
578 cfg = hpet_readl(HPET_T1_CFG);
579 cfg &= ~HPET_TN_PERIODIC;
580 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
581 hpet_writel(cfg, HPET_T1_CFG);
582
583 local_irq_restore(flags);
584
585 return 1;
586 }
587 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
588
589 /*
590 * The functions below are called from rtc driver.
591 * Return 0 if HPET is not being used.
592 * Otherwise do the necessary changes and return 1.
593 */
594 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
595 {
596 if (!is_hpet_enabled())
597 return 0;
598
599 hpet_rtc_flags &= ~bit_mask;
600 return 1;
601 }
602 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
603
604 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
605 {
606 unsigned long oldbits = hpet_rtc_flags;
607
608 if (!is_hpet_enabled())
609 return 0;
610
611 hpet_rtc_flags |= bit_mask;
612
613 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
614 hpet_prev_update_sec = -1;
615
616 if (!oldbits)
617 hpet_rtc_timer_init();
618
619 return 1;
620 }
621 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
622
623 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
624 unsigned char sec)
625 {
626 if (!is_hpet_enabled())
627 return 0;
628
629 hpet_alarm_time.tm_hour = hrs;
630 hpet_alarm_time.tm_min = min;
631 hpet_alarm_time.tm_sec = sec;
632
633 return 1;
634 }
635 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
636
637 int hpet_set_periodic_freq(unsigned long freq)
638 {
639 uint64_t clc;
640
641 if (!is_hpet_enabled())
642 return 0;
643
644 if (freq <= DEFAULT_RTC_INT_FREQ)
645 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
646 else {
647 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
648 do_div(clc, freq);
649 clc >>= hpet_clockevent.shift;
650 hpet_pie_delta = (unsigned long) clc;
651 }
652 return 1;
653 }
654 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
655
656 int hpet_rtc_dropped_irq(void)
657 {
658 return is_hpet_enabled();
659 }
660 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
661
662 static void hpet_rtc_timer_reinit(void)
663 {
664 unsigned long cfg, delta;
665 int lost_ints = -1;
666
667 if (unlikely(!hpet_rtc_flags)) {
668 cfg = hpet_readl(HPET_T1_CFG);
669 cfg &= ~HPET_TN_ENABLE;
670 hpet_writel(cfg, HPET_T1_CFG);
671 return;
672 }
673
674 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
675 delta = hpet_default_delta;
676 else
677 delta = hpet_pie_delta;
678
679 /*
680 * Increment the comparator value until we are ahead of the
681 * current count.
682 */
683 do {
684 hpet_t1_cmp += delta;
685 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
686 lost_ints++;
687 } while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
688
689 if (lost_ints) {
690 if (hpet_rtc_flags & RTC_PIE)
691 hpet_pie_count += lost_ints;
692 if (printk_ratelimit())
693 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
694 lost_ints);
695 }
696 }
697
698 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
699 {
700 struct rtc_time curr_time;
701 unsigned long rtc_int_flag = 0;
702
703 hpet_rtc_timer_reinit();
704 memset(&curr_time, 0, sizeof(struct rtc_time));
705
706 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
707 get_rtc_time(&curr_time);
708
709 if (hpet_rtc_flags & RTC_UIE &&
710 curr_time.tm_sec != hpet_prev_update_sec) {
711 if (hpet_prev_update_sec >= 0)
712 rtc_int_flag = RTC_UF;
713 hpet_prev_update_sec = curr_time.tm_sec;
714 }
715
716 if (hpet_rtc_flags & RTC_PIE &&
717 ++hpet_pie_count >= hpet_pie_limit) {
718 rtc_int_flag |= RTC_PF;
719 hpet_pie_count = 0;
720 }
721
722 if (hpet_rtc_flags & RTC_AIE &&
723 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
724 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
725 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
726 rtc_int_flag |= RTC_AF;
727
728 if (rtc_int_flag) {
729 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
730 if (irq_handler)
731 irq_handler(rtc_int_flag, dev_id);
732 }
733 return IRQ_HANDLED;
734 }
735 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
736 #endif
This page took 0.045865 seconds and 5 git commands to generate.