Merge branch 'fix/hda' into for-linus
[deliverable/linux.git] / arch / x86 / kernel / hpet.c
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/sysdev.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/hpet.h>
8 #include <linux/init.h>
9 #include <linux/cpu.h>
10 #include <linux/pm.h>
11 #include <linux/io.h>
12
13 #include <asm/fixmap.h>
14 #include <asm/i8253.h>
15 #include <asm/hpet.h>
16
17 #define HPET_MASK CLOCKSOURCE_MASK(32)
18 #define HPET_SHIFT 22
19
20 /* FSEC = 10^-15
21 NSEC = 10^-9 */
22 #define FSEC_PER_NSEC 1000000L
23
24 #define HPET_DEV_USED_BIT 2
25 #define HPET_DEV_USED (1 << HPET_DEV_USED_BIT)
26 #define HPET_DEV_VALID 0x8
27 #define HPET_DEV_FSB_CAP 0x1000
28 #define HPET_DEV_PERI_CAP 0x2000
29
30 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
31
32 /*
33 * HPET address is set in acpi/boot.c, when an ACPI entry exists
34 */
35 unsigned long hpet_address;
36 #ifdef CONFIG_PCI_MSI
37 static unsigned long hpet_num_timers;
38 #endif
39 static void __iomem *hpet_virt_address;
40
41 struct hpet_dev {
42 struct clock_event_device evt;
43 unsigned int num;
44 int cpu;
45 unsigned int irq;
46 unsigned int flags;
47 char name[10];
48 };
49
50 unsigned long hpet_readl(unsigned long a)
51 {
52 return readl(hpet_virt_address + a);
53 }
54
55 static inline void hpet_writel(unsigned long d, unsigned long a)
56 {
57 writel(d, hpet_virt_address + a);
58 }
59
60 #ifdef CONFIG_X86_64
61 #include <asm/pgtable.h>
62 #endif
63
64 static inline void hpet_set_mapping(void)
65 {
66 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
67 #ifdef CONFIG_X86_64
68 __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
69 #endif
70 }
71
72 static inline void hpet_clear_mapping(void)
73 {
74 iounmap(hpet_virt_address);
75 hpet_virt_address = NULL;
76 }
77
78 /*
79 * HPET command line enable / disable
80 */
81 static int boot_hpet_disable;
82 int hpet_force_user;
83
84 static int __init hpet_setup(char *str)
85 {
86 if (str) {
87 if (!strncmp("disable", str, 7))
88 boot_hpet_disable = 1;
89 if (!strncmp("force", str, 5))
90 hpet_force_user = 1;
91 }
92 return 1;
93 }
94 __setup("hpet=", hpet_setup);
95
96 static int __init disable_hpet(char *str)
97 {
98 boot_hpet_disable = 1;
99 return 1;
100 }
101 __setup("nohpet", disable_hpet);
102
103 static inline int is_hpet_capable(void)
104 {
105 return !boot_hpet_disable && hpet_address;
106 }
107
108 /*
109 * HPET timer interrupt enable / disable
110 */
111 static int hpet_legacy_int_enabled;
112
113 /**
114 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
115 */
116 int is_hpet_enabled(void)
117 {
118 return is_hpet_capable() && hpet_legacy_int_enabled;
119 }
120 EXPORT_SYMBOL_GPL(is_hpet_enabled);
121
122 /*
123 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
124 * timer 0 and timer 1 in case of RTC emulation.
125 */
126 #ifdef CONFIG_HPET
127
128 static void hpet_reserve_msi_timers(struct hpet_data *hd);
129
130 static void hpet_reserve_platform_timers(unsigned long id)
131 {
132 struct hpet __iomem *hpet = hpet_virt_address;
133 struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
134 unsigned int nrtimers, i;
135 struct hpet_data hd;
136
137 nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
138
139 memset(&hd, 0, sizeof(hd));
140 hd.hd_phys_address = hpet_address;
141 hd.hd_address = hpet;
142 hd.hd_nirqs = nrtimers;
143 hpet_reserve_timer(&hd, 0);
144
145 #ifdef CONFIG_HPET_EMULATE_RTC
146 hpet_reserve_timer(&hd, 1);
147 #endif
148
149 /*
150 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
151 * is wrong for i8259!) not the output IRQ. Many BIOS writers
152 * don't bother configuring *any* comparator interrupts.
153 */
154 hd.hd_irq[0] = HPET_LEGACY_8254;
155 hd.hd_irq[1] = HPET_LEGACY_RTC;
156
157 for (i = 2; i < nrtimers; timer++, i++) {
158 hd.hd_irq[i] = (readl(&timer->hpet_config) &
159 Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
160 }
161
162 hpet_reserve_msi_timers(&hd);
163
164 hpet_alloc(&hd);
165
166 }
167 #else
168 static void hpet_reserve_platform_timers(unsigned long id) { }
169 #endif
170
171 /*
172 * Common hpet info
173 */
174 static unsigned long hpet_period;
175
176 static void hpet_legacy_set_mode(enum clock_event_mode mode,
177 struct clock_event_device *evt);
178 static int hpet_legacy_next_event(unsigned long delta,
179 struct clock_event_device *evt);
180
181 /*
182 * The hpet clock event device
183 */
184 static struct clock_event_device hpet_clockevent = {
185 .name = "hpet",
186 .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
187 .set_mode = hpet_legacy_set_mode,
188 .set_next_event = hpet_legacy_next_event,
189 .shift = 32,
190 .irq = 0,
191 .rating = 50,
192 };
193
194 static void hpet_start_counter(void)
195 {
196 unsigned long cfg = hpet_readl(HPET_CFG);
197
198 cfg &= ~HPET_CFG_ENABLE;
199 hpet_writel(cfg, HPET_CFG);
200 hpet_writel(0, HPET_COUNTER);
201 hpet_writel(0, HPET_COUNTER + 4);
202 cfg |= HPET_CFG_ENABLE;
203 hpet_writel(cfg, HPET_CFG);
204 }
205
206 static void hpet_resume_device(void)
207 {
208 force_hpet_resume();
209 }
210
211 static void hpet_restart_counter(void)
212 {
213 hpet_resume_device();
214 hpet_start_counter();
215 }
216
217 static void hpet_enable_legacy_int(void)
218 {
219 unsigned long cfg = hpet_readl(HPET_CFG);
220
221 cfg |= HPET_CFG_LEGACY;
222 hpet_writel(cfg, HPET_CFG);
223 hpet_legacy_int_enabled = 1;
224 }
225
226 static void hpet_legacy_clockevent_register(void)
227 {
228 /* Start HPET legacy interrupts */
229 hpet_enable_legacy_int();
230
231 /*
232 * The mult factor is defined as (include/linux/clockchips.h)
233 * mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
234 * hpet_period is in units of femtoseconds (per cycle), so
235 * mult/2^shift = cyc/ns = 10^6/hpet_period
236 * mult = (10^6 * 2^shift)/hpet_period
237 * mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
238 */
239 hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
240 hpet_period, hpet_clockevent.shift);
241 /* Calculate the min / max delta */
242 hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
243 &hpet_clockevent);
244 /* 5 usec minimum reprogramming delta. */
245 hpet_clockevent.min_delta_ns = 5000;
246
247 /*
248 * Start hpet with the boot cpu mask and make it
249 * global after the IO_APIC has been initialized.
250 */
251 hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
252 clockevents_register_device(&hpet_clockevent);
253 global_clock_event = &hpet_clockevent;
254 printk(KERN_DEBUG "hpet clockevent registered\n");
255 }
256
257 static int hpet_setup_msi_irq(unsigned int irq);
258
259 static void hpet_set_mode(enum clock_event_mode mode,
260 struct clock_event_device *evt, int timer)
261 {
262 unsigned long cfg, cmp, now;
263 uint64_t delta;
264
265 switch (mode) {
266 case CLOCK_EVT_MODE_PERIODIC:
267 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
268 delta >>= evt->shift;
269 now = hpet_readl(HPET_COUNTER);
270 cmp = now + (unsigned long) delta;
271 cfg = hpet_readl(HPET_Tn_CFG(timer));
272 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
273 HPET_TN_SETVAL | HPET_TN_32BIT;
274 hpet_writel(cfg, HPET_Tn_CFG(timer));
275 /*
276 * The first write after writing TN_SETVAL to the
277 * config register sets the counter value, the second
278 * write sets the period.
279 */
280 hpet_writel(cmp, HPET_Tn_CMP(timer));
281 udelay(1);
282 hpet_writel((unsigned long) delta, HPET_Tn_CMP(timer));
283 break;
284
285 case CLOCK_EVT_MODE_ONESHOT:
286 cfg = hpet_readl(HPET_Tn_CFG(timer));
287 cfg &= ~HPET_TN_PERIODIC;
288 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
289 hpet_writel(cfg, HPET_Tn_CFG(timer));
290 break;
291
292 case CLOCK_EVT_MODE_UNUSED:
293 case CLOCK_EVT_MODE_SHUTDOWN:
294 cfg = hpet_readl(HPET_Tn_CFG(timer));
295 cfg &= ~HPET_TN_ENABLE;
296 hpet_writel(cfg, HPET_Tn_CFG(timer));
297 break;
298
299 case CLOCK_EVT_MODE_RESUME:
300 if (timer == 0) {
301 hpet_enable_legacy_int();
302 } else {
303 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
304 hpet_setup_msi_irq(hdev->irq);
305 disable_irq(hdev->irq);
306 irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
307 enable_irq(hdev->irq);
308 }
309 break;
310 }
311 }
312
313 static int hpet_next_event(unsigned long delta,
314 struct clock_event_device *evt, int timer)
315 {
316 u32 cnt;
317
318 cnt = hpet_readl(HPET_COUNTER);
319 cnt += (u32) delta;
320 hpet_writel(cnt, HPET_Tn_CMP(timer));
321
322 /*
323 * We need to read back the CMP register to make sure that
324 * what we wrote hit the chip before we compare it to the
325 * counter.
326 */
327 WARN_ON_ONCE((u32)hpet_readl(HPET_Tn_CMP(timer)) != cnt);
328
329 return (s32)((u32)hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0;
330 }
331
332 static void hpet_legacy_set_mode(enum clock_event_mode mode,
333 struct clock_event_device *evt)
334 {
335 hpet_set_mode(mode, evt, 0);
336 }
337
338 static int hpet_legacy_next_event(unsigned long delta,
339 struct clock_event_device *evt)
340 {
341 return hpet_next_event(delta, evt, 0);
342 }
343
344 /*
345 * HPET MSI Support
346 */
347 #ifdef CONFIG_PCI_MSI
348
349 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
350 static struct hpet_dev *hpet_devs;
351
352 void hpet_msi_unmask(unsigned int irq)
353 {
354 struct hpet_dev *hdev = get_irq_data(irq);
355 unsigned long cfg;
356
357 /* unmask it */
358 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
359 cfg |= HPET_TN_FSB;
360 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
361 }
362
363 void hpet_msi_mask(unsigned int irq)
364 {
365 unsigned long cfg;
366 struct hpet_dev *hdev = get_irq_data(irq);
367
368 /* mask it */
369 cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
370 cfg &= ~HPET_TN_FSB;
371 hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
372 }
373
374 void hpet_msi_write(unsigned int irq, struct msi_msg *msg)
375 {
376 struct hpet_dev *hdev = get_irq_data(irq);
377
378 hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
379 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
380 }
381
382 void hpet_msi_read(unsigned int irq, struct msi_msg *msg)
383 {
384 struct hpet_dev *hdev = get_irq_data(irq);
385
386 msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
387 msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
388 msg->address_hi = 0;
389 }
390
391 static void hpet_msi_set_mode(enum clock_event_mode mode,
392 struct clock_event_device *evt)
393 {
394 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
395 hpet_set_mode(mode, evt, hdev->num);
396 }
397
398 static int hpet_msi_next_event(unsigned long delta,
399 struct clock_event_device *evt)
400 {
401 struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
402 return hpet_next_event(delta, evt, hdev->num);
403 }
404
405 static int hpet_setup_msi_irq(unsigned int irq)
406 {
407 if (arch_setup_hpet_msi(irq)) {
408 destroy_irq(irq);
409 return -EINVAL;
410 }
411 return 0;
412 }
413
414 static int hpet_assign_irq(struct hpet_dev *dev)
415 {
416 unsigned int irq;
417
418 irq = create_irq();
419 if (!irq)
420 return -EINVAL;
421
422 set_irq_data(irq, dev);
423
424 if (hpet_setup_msi_irq(irq))
425 return -EINVAL;
426
427 dev->irq = irq;
428 return 0;
429 }
430
431 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
432 {
433 struct hpet_dev *dev = (struct hpet_dev *)data;
434 struct clock_event_device *hevt = &dev->evt;
435
436 if (!hevt->event_handler) {
437 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
438 dev->num);
439 return IRQ_HANDLED;
440 }
441
442 hevt->event_handler(hevt);
443 return IRQ_HANDLED;
444 }
445
446 static int hpet_setup_irq(struct hpet_dev *dev)
447 {
448
449 if (request_irq(dev->irq, hpet_interrupt_handler,
450 IRQF_DISABLED|IRQF_NOBALANCING, dev->name, dev))
451 return -1;
452
453 disable_irq(dev->irq);
454 irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
455 enable_irq(dev->irq);
456
457 printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
458 dev->name, dev->irq);
459
460 return 0;
461 }
462
463 /* This should be called in specific @cpu */
464 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
465 {
466 struct clock_event_device *evt = &hdev->evt;
467 uint64_t hpet_freq;
468
469 WARN_ON(cpu != smp_processor_id());
470 if (!(hdev->flags & HPET_DEV_VALID))
471 return;
472
473 if (hpet_setup_msi_irq(hdev->irq))
474 return;
475
476 hdev->cpu = cpu;
477 per_cpu(cpu_hpet_dev, cpu) = hdev;
478 evt->name = hdev->name;
479 hpet_setup_irq(hdev);
480 evt->irq = hdev->irq;
481
482 evt->rating = 110;
483 evt->features = CLOCK_EVT_FEAT_ONESHOT;
484 if (hdev->flags & HPET_DEV_PERI_CAP)
485 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
486
487 evt->set_mode = hpet_msi_set_mode;
488 evt->set_next_event = hpet_msi_next_event;
489 evt->shift = 32;
490
491 /*
492 * The period is a femto seconds value. We need to calculate the
493 * scaled math multiplication factor for nanosecond to hpet tick
494 * conversion.
495 */
496 hpet_freq = 1000000000000000ULL;
497 do_div(hpet_freq, hpet_period);
498 evt->mult = div_sc((unsigned long) hpet_freq,
499 NSEC_PER_SEC, evt->shift);
500 /* Calculate the max delta */
501 evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
502 /* 5 usec minimum reprogramming delta. */
503 evt->min_delta_ns = 5000;
504
505 evt->cpumask = cpumask_of(hdev->cpu);
506 clockevents_register_device(evt);
507 }
508
509 #ifdef CONFIG_HPET
510 /* Reserve at least one timer for userspace (/dev/hpet) */
511 #define RESERVE_TIMERS 1
512 #else
513 #define RESERVE_TIMERS 0
514 #endif
515
516 static void hpet_msi_capability_lookup(unsigned int start_timer)
517 {
518 unsigned int id;
519 unsigned int num_timers;
520 unsigned int num_timers_used = 0;
521 int i;
522
523 id = hpet_readl(HPET_ID);
524
525 num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
526 num_timers++; /* Value read out starts from 0 */
527
528 hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
529 if (!hpet_devs)
530 return;
531
532 hpet_num_timers = num_timers;
533
534 for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
535 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
536 unsigned long cfg = hpet_readl(HPET_Tn_CFG(i));
537
538 /* Only consider HPET timer with MSI support */
539 if (!(cfg & HPET_TN_FSB_CAP))
540 continue;
541
542 hdev->flags = 0;
543 if (cfg & HPET_TN_PERIODIC_CAP)
544 hdev->flags |= HPET_DEV_PERI_CAP;
545 hdev->num = i;
546
547 sprintf(hdev->name, "hpet%d", i);
548 if (hpet_assign_irq(hdev))
549 continue;
550
551 hdev->flags |= HPET_DEV_FSB_CAP;
552 hdev->flags |= HPET_DEV_VALID;
553 num_timers_used++;
554 if (num_timers_used == num_possible_cpus())
555 break;
556 }
557
558 printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
559 num_timers, num_timers_used);
560 }
561
562 #ifdef CONFIG_HPET
563 static void hpet_reserve_msi_timers(struct hpet_data *hd)
564 {
565 int i;
566
567 if (!hpet_devs)
568 return;
569
570 for (i = 0; i < hpet_num_timers; i++) {
571 struct hpet_dev *hdev = &hpet_devs[i];
572
573 if (!(hdev->flags & HPET_DEV_VALID))
574 continue;
575
576 hd->hd_irq[hdev->num] = hdev->irq;
577 hpet_reserve_timer(hd, hdev->num);
578 }
579 }
580 #endif
581
582 static struct hpet_dev *hpet_get_unused_timer(void)
583 {
584 int i;
585
586 if (!hpet_devs)
587 return NULL;
588
589 for (i = 0; i < hpet_num_timers; i++) {
590 struct hpet_dev *hdev = &hpet_devs[i];
591
592 if (!(hdev->flags & HPET_DEV_VALID))
593 continue;
594 if (test_and_set_bit(HPET_DEV_USED_BIT,
595 (unsigned long *)&hdev->flags))
596 continue;
597 return hdev;
598 }
599 return NULL;
600 }
601
602 struct hpet_work_struct {
603 struct delayed_work work;
604 struct completion complete;
605 };
606
607 static void hpet_work(struct work_struct *w)
608 {
609 struct hpet_dev *hdev;
610 int cpu = smp_processor_id();
611 struct hpet_work_struct *hpet_work;
612
613 hpet_work = container_of(w, struct hpet_work_struct, work.work);
614
615 hdev = hpet_get_unused_timer();
616 if (hdev)
617 init_one_hpet_msi_clockevent(hdev, cpu);
618
619 complete(&hpet_work->complete);
620 }
621
622 static int hpet_cpuhp_notify(struct notifier_block *n,
623 unsigned long action, void *hcpu)
624 {
625 unsigned long cpu = (unsigned long)hcpu;
626 struct hpet_work_struct work;
627 struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
628
629 switch (action & 0xf) {
630 case CPU_ONLINE:
631 INIT_DELAYED_WORK_ON_STACK(&work.work, hpet_work);
632 init_completion(&work.complete);
633 /* FIXME: add schedule_work_on() */
634 schedule_delayed_work_on(cpu, &work.work, 0);
635 wait_for_completion(&work.complete);
636 destroy_timer_on_stack(&work.work.timer);
637 break;
638 case CPU_DEAD:
639 if (hdev) {
640 free_irq(hdev->irq, hdev);
641 hdev->flags &= ~HPET_DEV_USED;
642 per_cpu(cpu_hpet_dev, cpu) = NULL;
643 }
644 break;
645 }
646 return NOTIFY_OK;
647 }
648 #else
649
650 static int hpet_setup_msi_irq(unsigned int irq)
651 {
652 return 0;
653 }
654 static void hpet_msi_capability_lookup(unsigned int start_timer)
655 {
656 return;
657 }
658
659 #ifdef CONFIG_HPET
660 static void hpet_reserve_msi_timers(struct hpet_data *hd)
661 {
662 return;
663 }
664 #endif
665
666 static int hpet_cpuhp_notify(struct notifier_block *n,
667 unsigned long action, void *hcpu)
668 {
669 return NOTIFY_OK;
670 }
671
672 #endif
673
674 /*
675 * Clock source related code
676 */
677 static cycle_t read_hpet(void)
678 {
679 return (cycle_t)hpet_readl(HPET_COUNTER);
680 }
681
682 #ifdef CONFIG_X86_64
683 static cycle_t __vsyscall_fn vread_hpet(void)
684 {
685 return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
686 }
687 #endif
688
689 static struct clocksource clocksource_hpet = {
690 .name = "hpet",
691 .rating = 250,
692 .read = read_hpet,
693 .mask = HPET_MASK,
694 .shift = HPET_SHIFT,
695 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
696 .resume = hpet_restart_counter,
697 #ifdef CONFIG_X86_64
698 .vread = vread_hpet,
699 #endif
700 };
701
702 static int hpet_clocksource_register(void)
703 {
704 u64 start, now;
705 cycle_t t1;
706
707 /* Start the counter */
708 hpet_start_counter();
709
710 /* Verify whether hpet counter works */
711 t1 = read_hpet();
712 rdtscll(start);
713
714 /*
715 * We don't know the TSC frequency yet, but waiting for
716 * 200000 TSC cycles is safe:
717 * 4 GHz == 50us
718 * 1 GHz == 200us
719 */
720 do {
721 rep_nop();
722 rdtscll(now);
723 } while ((now - start) < 200000UL);
724
725 if (t1 == read_hpet()) {
726 printk(KERN_WARNING
727 "HPET counter not counting. HPET disabled\n");
728 return -ENODEV;
729 }
730
731 /*
732 * The definition of mult is (include/linux/clocksource.h)
733 * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
734 * so we first need to convert hpet_period to ns/cyc units:
735 * mult/2^shift = ns/cyc = hpet_period/10^6
736 * mult = (hpet_period * 2^shift)/10^6
737 * mult = (hpet_period << shift)/FSEC_PER_NSEC
738 */
739 clocksource_hpet.mult = div_sc(hpet_period, FSEC_PER_NSEC, HPET_SHIFT);
740
741 clocksource_register(&clocksource_hpet);
742
743 return 0;
744 }
745
746 /**
747 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
748 */
749 int __init hpet_enable(void)
750 {
751 unsigned long id;
752 int i;
753
754 if (!is_hpet_capable())
755 return 0;
756
757 hpet_set_mapping();
758
759 /*
760 * Read the period and check for a sane value:
761 */
762 hpet_period = hpet_readl(HPET_PERIOD);
763
764 /*
765 * AMD SB700 based systems with spread spectrum enabled use a
766 * SMM based HPET emulation to provide proper frequency
767 * setting. The SMM code is initialized with the first HPET
768 * register access and takes some time to complete. During
769 * this time the config register reads 0xffffffff. We check
770 * for max. 1000 loops whether the config register reads a non
771 * 0xffffffff value to make sure that HPET is up and running
772 * before we go further. A counting loop is safe, as the HPET
773 * access takes thousands of CPU cycles. On non SB700 based
774 * machines this check is only done once and has no side
775 * effects.
776 */
777 for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
778 if (i == 1000) {
779 printk(KERN_WARNING
780 "HPET config register value = 0xFFFFFFFF. "
781 "Disabling HPET\n");
782 goto out_nohpet;
783 }
784 }
785
786 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
787 goto out_nohpet;
788
789 /*
790 * Read the HPET ID register to retrieve the IRQ routing
791 * information and the number of channels
792 */
793 id = hpet_readl(HPET_ID);
794
795 #ifdef CONFIG_HPET_EMULATE_RTC
796 /*
797 * The legacy routing mode needs at least two channels, tick timer
798 * and the rtc emulation channel.
799 */
800 if (!(id & HPET_ID_NUMBER))
801 goto out_nohpet;
802 #endif
803
804 if (hpet_clocksource_register())
805 goto out_nohpet;
806
807 if (id & HPET_ID_LEGSUP) {
808 hpet_legacy_clockevent_register();
809 hpet_msi_capability_lookup(2);
810 return 1;
811 }
812 hpet_msi_capability_lookup(0);
813 return 0;
814
815 out_nohpet:
816 hpet_clear_mapping();
817 hpet_address = 0;
818 return 0;
819 }
820
821 /*
822 * Needs to be late, as the reserve_timer code calls kalloc !
823 *
824 * Not a problem on i386 as hpet_enable is called from late_time_init,
825 * but on x86_64 it is necessary !
826 */
827 static __init int hpet_late_init(void)
828 {
829 int cpu;
830
831 if (boot_hpet_disable)
832 return -ENODEV;
833
834 if (!hpet_address) {
835 if (!force_hpet_address)
836 return -ENODEV;
837
838 hpet_address = force_hpet_address;
839 hpet_enable();
840 }
841
842 if (!hpet_virt_address)
843 return -ENODEV;
844
845 hpet_reserve_platform_timers(hpet_readl(HPET_ID));
846
847 for_each_online_cpu(cpu) {
848 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
849 }
850
851 /* This notifier should be called after workqueue is ready */
852 hotcpu_notifier(hpet_cpuhp_notify, -20);
853
854 return 0;
855 }
856 fs_initcall(hpet_late_init);
857
858 void hpet_disable(void)
859 {
860 if (is_hpet_capable()) {
861 unsigned long cfg = hpet_readl(HPET_CFG);
862
863 if (hpet_legacy_int_enabled) {
864 cfg &= ~HPET_CFG_LEGACY;
865 hpet_legacy_int_enabled = 0;
866 }
867 cfg &= ~HPET_CFG_ENABLE;
868 hpet_writel(cfg, HPET_CFG);
869 }
870 }
871
872 #ifdef CONFIG_HPET_EMULATE_RTC
873
874 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
875 * is enabled, we support RTC interrupt functionality in software.
876 * RTC has 3 kinds of interrupts:
877 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
878 * is updated
879 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
880 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
881 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
882 * (1) and (2) above are implemented using polling at a frequency of
883 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
884 * overhead. (DEFAULT_RTC_INT_FREQ)
885 * For (3), we use interrupts at 64Hz or user specified periodic
886 * frequency, whichever is higher.
887 */
888 #include <linux/mc146818rtc.h>
889 #include <linux/rtc.h>
890 #include <asm/rtc.h>
891
892 #define DEFAULT_RTC_INT_FREQ 64
893 #define DEFAULT_RTC_SHIFT 6
894 #define RTC_NUM_INTS 1
895
896 static unsigned long hpet_rtc_flags;
897 static int hpet_prev_update_sec;
898 static struct rtc_time hpet_alarm_time;
899 static unsigned long hpet_pie_count;
900 static unsigned long hpet_t1_cmp;
901 static unsigned long hpet_default_delta;
902 static unsigned long hpet_pie_delta;
903 static unsigned long hpet_pie_limit;
904
905 static rtc_irq_handler irq_handler;
906
907 /*
908 * Registers a IRQ handler.
909 */
910 int hpet_register_irq_handler(rtc_irq_handler handler)
911 {
912 if (!is_hpet_enabled())
913 return -ENODEV;
914 if (irq_handler)
915 return -EBUSY;
916
917 irq_handler = handler;
918
919 return 0;
920 }
921 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
922
923 /*
924 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
925 * and does cleanup.
926 */
927 void hpet_unregister_irq_handler(rtc_irq_handler handler)
928 {
929 if (!is_hpet_enabled())
930 return;
931
932 irq_handler = NULL;
933 hpet_rtc_flags = 0;
934 }
935 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
936
937 /*
938 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
939 * is not supported by all HPET implementations for timer 1.
940 *
941 * hpet_rtc_timer_init() is called when the rtc is initialized.
942 */
943 int hpet_rtc_timer_init(void)
944 {
945 unsigned long cfg, cnt, delta, flags;
946
947 if (!is_hpet_enabled())
948 return 0;
949
950 if (!hpet_default_delta) {
951 uint64_t clc;
952
953 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
954 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
955 hpet_default_delta = (unsigned long) clc;
956 }
957
958 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
959 delta = hpet_default_delta;
960 else
961 delta = hpet_pie_delta;
962
963 local_irq_save(flags);
964
965 cnt = delta + hpet_readl(HPET_COUNTER);
966 hpet_writel(cnt, HPET_T1_CMP);
967 hpet_t1_cmp = cnt;
968
969 cfg = hpet_readl(HPET_T1_CFG);
970 cfg &= ~HPET_TN_PERIODIC;
971 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
972 hpet_writel(cfg, HPET_T1_CFG);
973
974 local_irq_restore(flags);
975
976 return 1;
977 }
978 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
979
980 /*
981 * The functions below are called from rtc driver.
982 * Return 0 if HPET is not being used.
983 * Otherwise do the necessary changes and return 1.
984 */
985 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
986 {
987 if (!is_hpet_enabled())
988 return 0;
989
990 hpet_rtc_flags &= ~bit_mask;
991 return 1;
992 }
993 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
994
995 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
996 {
997 unsigned long oldbits = hpet_rtc_flags;
998
999 if (!is_hpet_enabled())
1000 return 0;
1001
1002 hpet_rtc_flags |= bit_mask;
1003
1004 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1005 hpet_prev_update_sec = -1;
1006
1007 if (!oldbits)
1008 hpet_rtc_timer_init();
1009
1010 return 1;
1011 }
1012 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1013
1014 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1015 unsigned char sec)
1016 {
1017 if (!is_hpet_enabled())
1018 return 0;
1019
1020 hpet_alarm_time.tm_hour = hrs;
1021 hpet_alarm_time.tm_min = min;
1022 hpet_alarm_time.tm_sec = sec;
1023
1024 return 1;
1025 }
1026 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1027
1028 int hpet_set_periodic_freq(unsigned long freq)
1029 {
1030 uint64_t clc;
1031
1032 if (!is_hpet_enabled())
1033 return 0;
1034
1035 if (freq <= DEFAULT_RTC_INT_FREQ)
1036 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1037 else {
1038 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1039 do_div(clc, freq);
1040 clc >>= hpet_clockevent.shift;
1041 hpet_pie_delta = (unsigned long) clc;
1042 }
1043 return 1;
1044 }
1045 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1046
1047 int hpet_rtc_dropped_irq(void)
1048 {
1049 return is_hpet_enabled();
1050 }
1051 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1052
1053 static void hpet_rtc_timer_reinit(void)
1054 {
1055 unsigned long cfg, delta;
1056 int lost_ints = -1;
1057
1058 if (unlikely(!hpet_rtc_flags)) {
1059 cfg = hpet_readl(HPET_T1_CFG);
1060 cfg &= ~HPET_TN_ENABLE;
1061 hpet_writel(cfg, HPET_T1_CFG);
1062 return;
1063 }
1064
1065 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1066 delta = hpet_default_delta;
1067 else
1068 delta = hpet_pie_delta;
1069
1070 /*
1071 * Increment the comparator value until we are ahead of the
1072 * current count.
1073 */
1074 do {
1075 hpet_t1_cmp += delta;
1076 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1077 lost_ints++;
1078 } while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
1079
1080 if (lost_ints) {
1081 if (hpet_rtc_flags & RTC_PIE)
1082 hpet_pie_count += lost_ints;
1083 if (printk_ratelimit())
1084 printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1085 lost_ints);
1086 }
1087 }
1088
1089 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1090 {
1091 struct rtc_time curr_time;
1092 unsigned long rtc_int_flag = 0;
1093
1094 hpet_rtc_timer_reinit();
1095 memset(&curr_time, 0, sizeof(struct rtc_time));
1096
1097 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1098 get_rtc_time(&curr_time);
1099
1100 if (hpet_rtc_flags & RTC_UIE &&
1101 curr_time.tm_sec != hpet_prev_update_sec) {
1102 if (hpet_prev_update_sec >= 0)
1103 rtc_int_flag = RTC_UF;
1104 hpet_prev_update_sec = curr_time.tm_sec;
1105 }
1106
1107 if (hpet_rtc_flags & RTC_PIE &&
1108 ++hpet_pie_count >= hpet_pie_limit) {
1109 rtc_int_flag |= RTC_PF;
1110 hpet_pie_count = 0;
1111 }
1112
1113 if (hpet_rtc_flags & RTC_AIE &&
1114 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1115 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1116 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1117 rtc_int_flag |= RTC_AF;
1118
1119 if (rtc_int_flag) {
1120 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1121 if (irq_handler)
1122 irq_handler(rtc_int_flag, dev_id);
1123 }
1124 return IRQ_HANDLED;
1125 }
1126 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1127 #endif
This page took 0.0532 seconds and 6 git commands to generate.