5de2d38812aaf363e257e37e35647667149ada81
[deliverable/linux.git] / arch / x86 / kernel / io_apic.c
1 /*
2 * Intel IO-APIC support for multi-Pentium hosts.
3 *
4 * Copyright (C) 1997, 1998, 1999, 2000 Ingo Molnar, Hajnalka Szabo
5 *
6 * Many thanks to Stig Venaas for trying out countless experimental
7 * patches and reporting/debugging problems patiently!
8 *
9 * (c) 1999, Multiple IO-APIC support, developed by
10 * Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and
11 * Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>,
12 * further tested and cleaned up by Zach Brown <zab@redhat.com>
13 * and Ingo Molnar <mingo@redhat.com>
14 *
15 * Fixes
16 * Maciej W. Rozycki : Bits for genuine 82489DX APICs;
17 * thanks to Eric Gilmore
18 * and Rolf G. Tews
19 * for testing these extensively
20 * Paul Diefenbaugh : Added full ACPI support
21 */
22
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/sched.h>
28 #include <linux/pci.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/compiler.h>
31 #include <linux/acpi.h>
32 #include <linux/module.h>
33 #include <linux/sysdev.h>
34 #include <linux/msi.h>
35 #include <linux/htirq.h>
36 #include <linux/freezer.h>
37 #include <linux/kthread.h>
38 #include <linux/jiffies.h> /* time_after() */
39 #ifdef CONFIG_ACPI
40 #include <acpi/acpi_bus.h>
41 #endif
42 #include <linux/bootmem.h>
43 #include <linux/dmar.h>
44
45 #include <asm/idle.h>
46 #include <asm/io.h>
47 #include <asm/smp.h>
48 #include <asm/desc.h>
49 #include <asm/proto.h>
50 #include <asm/acpi.h>
51 #include <asm/dma.h>
52 #include <asm/timer.h>
53 #include <asm/i8259.h>
54 #include <asm/nmi.h>
55 #include <asm/msidef.h>
56 #include <asm/hypertransport.h>
57 #include <asm/setup.h>
58 #include <asm/irq_remapping.h>
59
60 #include <mach_ipi.h>
61 #include <mach_apic.h>
62 #include <mach_apicdef.h>
63
64 #define __apicdebuginit(type) static type __init
65
66 /*
67 * Is the SiS APIC rmw bug present ?
68 * -1 = don't know, 0 = no, 1 = yes
69 */
70 int sis_apic_bug = -1;
71
72 static DEFINE_SPINLOCK(ioapic_lock);
73 static DEFINE_SPINLOCK(vector_lock);
74
75 /*
76 * # of IRQ routing registers
77 */
78 int nr_ioapic_registers[MAX_IO_APICS];
79
80 /* I/O APIC entries */
81 struct mp_config_ioapic mp_ioapics[MAX_IO_APICS];
82 int nr_ioapics;
83
84 /* MP IRQ source entries */
85 struct mp_config_intsrc mp_irqs[MAX_IRQ_SOURCES];
86
87 /* # of MP IRQ source entries */
88 int mp_irq_entries;
89
90 #if defined (CONFIG_MCA) || defined (CONFIG_EISA)
91 int mp_bus_id_to_type[MAX_MP_BUSSES];
92 #endif
93
94 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES);
95
96 int skip_ioapic_setup;
97
98 static int __init parse_noapic(char *str)
99 {
100 /* disable IO-APIC */
101 disable_ioapic_setup();
102 return 0;
103 }
104 early_param("noapic", parse_noapic);
105
106 struct irq_cfg;
107 struct irq_pin_list;
108 struct irq_cfg {
109 unsigned int irq;
110 struct irq_cfg *next;
111 struct irq_pin_list *irq_2_pin;
112 cpumask_t domain;
113 cpumask_t old_domain;
114 unsigned move_cleanup_count;
115 u8 vector;
116 u8 move_in_progress : 1;
117 };
118
119 /* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */
120 static struct irq_cfg irq_cfg_legacy[] __initdata = {
121 [0] = { .irq = 0, .domain = CPU_MASK_ALL, .vector = IRQ0_VECTOR, },
122 [1] = { .irq = 1, .domain = CPU_MASK_ALL, .vector = IRQ1_VECTOR, },
123 [2] = { .irq = 2, .domain = CPU_MASK_ALL, .vector = IRQ2_VECTOR, },
124 [3] = { .irq = 3, .domain = CPU_MASK_ALL, .vector = IRQ3_VECTOR, },
125 [4] = { .irq = 4, .domain = CPU_MASK_ALL, .vector = IRQ4_VECTOR, },
126 [5] = { .irq = 5, .domain = CPU_MASK_ALL, .vector = IRQ5_VECTOR, },
127 [6] = { .irq = 6, .domain = CPU_MASK_ALL, .vector = IRQ6_VECTOR, },
128 [7] = { .irq = 7, .domain = CPU_MASK_ALL, .vector = IRQ7_VECTOR, },
129 [8] = { .irq = 8, .domain = CPU_MASK_ALL, .vector = IRQ8_VECTOR, },
130 [9] = { .irq = 9, .domain = CPU_MASK_ALL, .vector = IRQ9_VECTOR, },
131 [10] = { .irq = 10, .domain = CPU_MASK_ALL, .vector = IRQ10_VECTOR, },
132 [11] = { .irq = 11, .domain = CPU_MASK_ALL, .vector = IRQ11_VECTOR, },
133 [12] = { .irq = 12, .domain = CPU_MASK_ALL, .vector = IRQ12_VECTOR, },
134 [13] = { .irq = 13, .domain = CPU_MASK_ALL, .vector = IRQ13_VECTOR, },
135 [14] = { .irq = 14, .domain = CPU_MASK_ALL, .vector = IRQ14_VECTOR, },
136 [15] = { .irq = 15, .domain = CPU_MASK_ALL, .vector = IRQ15_VECTOR, },
137 };
138
139 static struct irq_cfg irq_cfg_init = { .irq = -1U, };
140 /* need to be biger than size of irq_cfg_legacy */
141 static int nr_irq_cfg = 32;
142
143 static int __init parse_nr_irq_cfg(char *arg)
144 {
145 if (arg) {
146 nr_irq_cfg = simple_strtoul(arg, NULL, 0);
147 if (nr_irq_cfg < 32)
148 nr_irq_cfg = 32;
149 }
150 return 0;
151 }
152
153 early_param("nr_irq_cfg", parse_nr_irq_cfg);
154
155 static void init_one_irq_cfg(struct irq_cfg *cfg)
156 {
157 memcpy(cfg, &irq_cfg_init, sizeof(struct irq_cfg));
158 }
159
160 static struct irq_cfg *irq_cfgx;
161 static struct irq_cfg *irq_cfgx_free;
162 static void __init init_work(void *data)
163 {
164 struct dyn_array *da = data;
165 struct irq_cfg *cfg;
166 int legacy_count;
167 int i;
168
169 cfg = *da->name;
170
171 memcpy(cfg, irq_cfg_legacy, sizeof(irq_cfg_legacy));
172
173 legacy_count = sizeof(irq_cfg_legacy)/sizeof(irq_cfg_legacy[0]);
174 for (i = legacy_count; i < *da->nr; i++)
175 init_one_irq_cfg(&cfg[i]);
176
177 for (i = 1; i < *da->nr; i++)
178 cfg[i-1].next = &cfg[i];
179
180 irq_cfgx_free = &irq_cfgx[legacy_count];
181 irq_cfgx[legacy_count - 1].next = NULL;
182 }
183
184 #define for_each_irq_cfg(cfg) \
185 for (cfg = irq_cfgx; cfg; cfg = cfg->next)
186
187 DEFINE_DYN_ARRAY(irq_cfgx, sizeof(struct irq_cfg), nr_irq_cfg, PAGE_SIZE, init_work);
188
189 static struct irq_cfg *irq_cfg(unsigned int irq)
190 {
191 struct irq_cfg *cfg;
192
193 cfg = irq_cfgx;
194 while (cfg) {
195 if (cfg->irq == irq)
196 return cfg;
197
198 cfg = cfg->next;
199 }
200
201 return NULL;
202 }
203
204 static struct irq_cfg *irq_cfg_alloc(unsigned int irq)
205 {
206 struct irq_cfg *cfg, *cfg_pri;
207 int i;
208 int count = 0;
209
210 cfg_pri = cfg = irq_cfgx;
211 while (cfg) {
212 if (cfg->irq == irq)
213 return cfg;
214
215 cfg_pri = cfg;
216 cfg = cfg->next;
217 count++;
218 }
219
220 if (!irq_cfgx_free) {
221 unsigned long phys;
222 unsigned long total_bytes;
223 /*
224 * we run out of pre-allocate ones, allocate more
225 */
226 printk(KERN_DEBUG "try to get more irq_cfg %d\n", nr_irq_cfg);
227
228 total_bytes = sizeof(struct irq_cfg) * nr_irq_cfg;
229 if (after_bootmem)
230 cfg = kzalloc(total_bytes, GFP_ATOMIC);
231 else
232 cfg = __alloc_bootmem_nopanic(total_bytes, PAGE_SIZE, 0);
233
234 if (!cfg)
235 panic("please boot with nr_irq_cfg= %d\n", count * 2);
236
237 phys = __pa(cfg);
238 printk(KERN_DEBUG "irq_irq ==> [%#lx - %#lx]\n", phys, phys + total_bytes);
239
240 for (i = 0; i < nr_irq_cfg; i++)
241 init_one_irq_cfg(&cfg[i]);
242
243 for (i = 1; i < nr_irq_cfg; i++)
244 cfg[i-1].next = &cfg[i];
245
246 irq_cfgx_free = cfg;
247 }
248
249 cfg = irq_cfgx_free;
250 irq_cfgx_free = irq_cfgx_free->next;
251 cfg->next = NULL;
252 if (cfg_pri)
253 cfg_pri->next = cfg;
254 else
255 irq_cfgx = cfg;
256 cfg->irq = irq;
257 printk(KERN_DEBUG "found new irq_cfg for irq %d\n", cfg->irq);
258 #ifdef CONFIG_HAVE_SPARSE_IRQ_DEBUG
259 {
260 /* dump the results */
261 struct irq_cfg *cfg;
262 unsigned long phys;
263 unsigned long bytes = sizeof(struct irq_cfg);
264
265 printk(KERN_DEBUG "=========================== %d\n", irq);
266 printk(KERN_DEBUG "irq_cfg dump after get that for %d\n", irq);
267 for_each_irq_cfg(cfg) {
268 phys = __pa(cfg);
269 printk(KERN_DEBUG "irq_cfg %d ==> [%#lx - %#lx]\n", cfg->irq, phys, phys + bytes);
270 }
271 printk(KERN_DEBUG "===========================\n");
272 }
273 #endif
274 return cfg;
275 }
276
277 /*
278 * This is performance-critical, we want to do it O(1)
279 *
280 * the indexing order of this array favors 1:1 mappings
281 * between pins and IRQs.
282 */
283
284 struct irq_pin_list {
285 int apic, pin;
286 struct irq_pin_list *next;
287 };
288
289 static struct irq_pin_list *irq_2_pin_head;
290 /* fill one page ? */
291 static int nr_irq_2_pin = 0x100;
292 static struct irq_pin_list *irq_2_pin_ptr;
293 static void __init irq_2_pin_init_work(void *data)
294 {
295 struct dyn_array *da = data;
296 struct irq_pin_list *pin;
297 int i;
298
299 pin = *da->name;
300
301 for (i = 1; i < *da->nr; i++)
302 pin[i-1].next = &pin[i];
303
304 irq_2_pin_ptr = &pin[0];
305 }
306 DEFINE_DYN_ARRAY(irq_2_pin_head, sizeof(struct irq_pin_list), nr_irq_2_pin, PAGE_SIZE, irq_2_pin_init_work);
307
308 static struct irq_pin_list *get_one_free_irq_2_pin(void)
309 {
310 struct irq_pin_list *pin;
311 int i;
312
313 pin = irq_2_pin_ptr;
314
315 if (pin) {
316 irq_2_pin_ptr = pin->next;
317 pin->next = NULL;
318 return pin;
319 }
320
321 /*
322 * we run out of pre-allocate ones, allocate more
323 */
324 printk(KERN_DEBUG "try to get more irq_2_pin %d\n", nr_irq_2_pin);
325
326 if (after_bootmem)
327 pin = kzalloc(sizeof(struct irq_pin_list)*nr_irq_2_pin,
328 GFP_ATOMIC);
329 else
330 pin = __alloc_bootmem_nopanic(sizeof(struct irq_pin_list) *
331 nr_irq_2_pin, PAGE_SIZE, 0);
332
333 if (!pin)
334 panic("can not get more irq_2_pin\n");
335
336 for (i = 1; i < nr_irq_2_pin; i++)
337 pin[i-1].next = &pin[i];
338
339 irq_2_pin_ptr = pin->next;
340 pin->next = NULL;
341
342 return pin;
343 }
344
345 struct io_apic {
346 unsigned int index;
347 unsigned int unused[3];
348 unsigned int data;
349 };
350
351 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx)
352 {
353 return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx)
354 + (mp_ioapics[idx].mp_apicaddr & ~PAGE_MASK);
355 }
356
357 static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg)
358 {
359 struct io_apic __iomem *io_apic = io_apic_base(apic);
360 writel(reg, &io_apic->index);
361 return readl(&io_apic->data);
362 }
363
364 static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value)
365 {
366 struct io_apic __iomem *io_apic = io_apic_base(apic);
367 writel(reg, &io_apic->index);
368 writel(value, &io_apic->data);
369 }
370
371 /*
372 * Re-write a value: to be used for read-modify-write
373 * cycles where the read already set up the index register.
374 *
375 * Older SiS APIC requires we rewrite the index register
376 */
377 static inline void io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value)
378 {
379 struct io_apic __iomem *io_apic = io_apic_base(apic);
380 if (sis_apic_bug)
381 writel(reg, &io_apic->index);
382 writel(value, &io_apic->data);
383 }
384
385 static bool io_apic_level_ack_pending(unsigned int irq)
386 {
387 struct irq_pin_list *entry;
388 unsigned long flags;
389 struct irq_cfg *cfg = irq_cfg(irq);
390
391 spin_lock_irqsave(&ioapic_lock, flags);
392 entry = cfg->irq_2_pin;
393 for (;;) {
394 unsigned int reg;
395 int pin;
396
397 if (!entry)
398 break;
399 pin = entry->pin;
400 reg = io_apic_read(entry->apic, 0x10 + pin*2);
401 /* Is the remote IRR bit set? */
402 if (reg & IO_APIC_REDIR_REMOTE_IRR) {
403 spin_unlock_irqrestore(&ioapic_lock, flags);
404 return true;
405 }
406 if (!entry->next)
407 break;
408 entry = entry->next;
409 }
410 spin_unlock_irqrestore(&ioapic_lock, flags);
411
412 return false;
413 }
414
415 union entry_union {
416 struct { u32 w1, w2; };
417 struct IO_APIC_route_entry entry;
418 };
419
420 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin)
421 {
422 union entry_union eu;
423 unsigned long flags;
424 spin_lock_irqsave(&ioapic_lock, flags);
425 eu.w1 = io_apic_read(apic, 0x10 + 2 * pin);
426 eu.w2 = io_apic_read(apic, 0x11 + 2 * pin);
427 spin_unlock_irqrestore(&ioapic_lock, flags);
428 return eu.entry;
429 }
430
431 /*
432 * When we write a new IO APIC routing entry, we need to write the high
433 * word first! If the mask bit in the low word is clear, we will enable
434 * the interrupt, and we need to make sure the entry is fully populated
435 * before that happens.
436 */
437 static void
438 __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
439 {
440 union entry_union eu;
441 eu.entry = e;
442 io_apic_write(apic, 0x11 + 2*pin, eu.w2);
443 io_apic_write(apic, 0x10 + 2*pin, eu.w1);
444 }
445
446 static void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
447 {
448 unsigned long flags;
449 spin_lock_irqsave(&ioapic_lock, flags);
450 __ioapic_write_entry(apic, pin, e);
451 spin_unlock_irqrestore(&ioapic_lock, flags);
452 }
453
454 /*
455 * When we mask an IO APIC routing entry, we need to write the low
456 * word first, in order to set the mask bit before we change the
457 * high bits!
458 */
459 static void ioapic_mask_entry(int apic, int pin)
460 {
461 unsigned long flags;
462 union entry_union eu = { .entry.mask = 1 };
463
464 spin_lock_irqsave(&ioapic_lock, flags);
465 io_apic_write(apic, 0x10 + 2*pin, eu.w1);
466 io_apic_write(apic, 0x11 + 2*pin, eu.w2);
467 spin_unlock_irqrestore(&ioapic_lock, flags);
468 }
469
470 #ifdef CONFIG_SMP
471 static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, u8 vector)
472 {
473 int apic, pin;
474 struct irq_cfg *cfg;
475 struct irq_pin_list *entry;
476
477 cfg = irq_cfg(irq);
478 entry = cfg->irq_2_pin;
479 for (;;) {
480 unsigned int reg;
481
482 if (!entry)
483 break;
484
485 apic = entry->apic;
486 pin = entry->pin;
487 #ifdef CONFIG_INTR_REMAP
488 /*
489 * With interrupt-remapping, destination information comes
490 * from interrupt-remapping table entry.
491 */
492 if (!irq_remapped(irq))
493 io_apic_write(apic, 0x11 + pin*2, dest);
494 #else
495 io_apic_write(apic, 0x11 + pin*2, dest);
496 #endif
497 reg = io_apic_read(apic, 0x10 + pin*2);
498 reg &= ~IO_APIC_REDIR_VECTOR_MASK;
499 reg |= vector;
500 io_apic_modify(apic, 0x10 + pin*2, reg);
501 if (!entry->next)
502 break;
503 entry = entry->next;
504 }
505 }
506
507 static int assign_irq_vector(int irq, cpumask_t mask);
508
509 static void set_ioapic_affinity_irq(unsigned int irq, cpumask_t mask)
510 {
511 struct irq_cfg *cfg;
512 unsigned long flags;
513 unsigned int dest;
514 cpumask_t tmp;
515 struct irq_desc *desc;
516
517 cpus_and(tmp, mask, cpu_online_map);
518 if (cpus_empty(tmp))
519 return;
520
521 cfg = irq_cfg(irq);
522 if (assign_irq_vector(irq, mask))
523 return;
524
525 cpus_and(tmp, cfg->domain, mask);
526 dest = cpu_mask_to_apicid(tmp);
527 /*
528 * Only the high 8 bits are valid.
529 */
530 dest = SET_APIC_LOGICAL_ID(dest);
531
532 desc = irq_to_desc(irq);
533 spin_lock_irqsave(&ioapic_lock, flags);
534 __target_IO_APIC_irq(irq, dest, cfg->vector);
535 desc->affinity = mask;
536 spin_unlock_irqrestore(&ioapic_lock, flags);
537 }
538 #endif /* CONFIG_SMP */
539
540 /*
541 * The common case is 1:1 IRQ<->pin mappings. Sometimes there are
542 * shared ISA-space IRQs, so we have to support them. We are super
543 * fast in the common case, and fast for shared ISA-space IRQs.
544 */
545 static void add_pin_to_irq(unsigned int irq, int apic, int pin)
546 {
547 struct irq_cfg *cfg;
548 struct irq_pin_list *entry;
549
550 /* first time to refer irq_cfg, so with new */
551 cfg = irq_cfg_alloc(irq);
552 entry = cfg->irq_2_pin;
553 if (!entry) {
554 entry = get_one_free_irq_2_pin();
555 cfg->irq_2_pin = entry;
556 entry->apic = apic;
557 entry->pin = pin;
558 printk(KERN_DEBUG " 0 add_pin_to_irq: irq %d --> apic %d pin %d\n", irq, apic, pin);
559 return;
560 }
561
562 while (entry->next) {
563 /* not again, please */
564 if (entry->apic == apic && entry->pin == pin)
565 return;
566
567 entry = entry->next;
568 }
569
570 entry->next = get_one_free_irq_2_pin();
571 entry = entry->next;
572 entry->apic = apic;
573 entry->pin = pin;
574 printk(KERN_DEBUG " x add_pin_to_irq: irq %d --> apic %d pin %d\n", irq, apic, pin);
575 }
576
577 /*
578 * Reroute an IRQ to a different pin.
579 */
580 static void __init replace_pin_at_irq(unsigned int irq,
581 int oldapic, int oldpin,
582 int newapic, int newpin)
583 {
584 struct irq_cfg *cfg = irq_cfg(irq);
585 struct irq_pin_list *entry = cfg->irq_2_pin;
586 int replaced = 0;
587
588 while (entry) {
589 if (entry->apic == oldapic && entry->pin == oldpin) {
590 entry->apic = newapic;
591 entry->pin = newpin;
592 replaced = 1;
593 /* every one is different, right? */
594 break;
595 }
596 entry = entry->next;
597 }
598
599 /* why? call replace before add? */
600 if (!replaced)
601 add_pin_to_irq(irq, newapic, newpin);
602 }
603
604 #define __DO_ACTION(R, ACTION_ENABLE, ACTION_DISABLE, FINAL) \
605 \
606 { \
607 int pin; \
608 struct irq_cfg *cfg; \
609 struct irq_pin_list *entry; \
610 \
611 cfg = irq_cfg(irq); \
612 entry = cfg->irq_2_pin; \
613 for (;;) { \
614 unsigned int reg; \
615 if (!entry) \
616 break; \
617 pin = entry->pin; \
618 reg = io_apic_read(entry->apic, 0x10 + R + pin*2); \
619 reg ACTION_DISABLE; \
620 reg ACTION_ENABLE; \
621 io_apic_modify(entry->apic, 0x10 + R + pin*2, reg); \
622 FINAL; \
623 if (!entry->next) \
624 break; \
625 entry = entry->next; \
626 } \
627 }
628
629 #define DO_ACTION(name,R, ACTION_ENABLE, ACTION_DISABLE, FINAL) \
630 \
631 static void name##_IO_APIC_irq (unsigned int irq) \
632 __DO_ACTION(R, ACTION_ENABLE, ACTION_DISABLE, FINAL)
633
634 /* mask = 0 */
635 DO_ACTION(__unmask, 0, |= 0, &= ~IO_APIC_REDIR_MASKED, )
636
637 #ifdef CONFIG_X86_64
638 /*
639 * Synchronize the IO-APIC and the CPU by doing
640 * a dummy read from the IO-APIC
641 */
642 static inline void io_apic_sync(unsigned int apic)
643 {
644 struct io_apic __iomem *io_apic = io_apic_base(apic);
645 readl(&io_apic->data);
646 }
647
648 /* mask = 1 */
649 DO_ACTION(__mask, 0, |= IO_APIC_REDIR_MASKED, &= ~0, io_apic_sync(entry->apic))
650
651 #else
652
653 /* mask = 1 */
654 DO_ACTION(__mask, 0, |= IO_APIC_REDIR_MASKED, &= ~0, )
655
656 /* mask = 1, trigger = 0 */
657 DO_ACTION(__mask_and_edge, 0, |= IO_APIC_REDIR_MASKED, &= ~IO_APIC_REDIR_LEVEL_TRIGGER, )
658
659 /* mask = 0, trigger = 1 */
660 DO_ACTION(__unmask_and_level, 0, |= IO_APIC_REDIR_LEVEL_TRIGGER, &= ~IO_APIC_REDIR_MASKED, )
661
662 #endif
663
664 static void mask_IO_APIC_irq (unsigned int irq)
665 {
666 unsigned long flags;
667
668 spin_lock_irqsave(&ioapic_lock, flags);
669 __mask_IO_APIC_irq(irq);
670 spin_unlock_irqrestore(&ioapic_lock, flags);
671 }
672
673 static void unmask_IO_APIC_irq (unsigned int irq)
674 {
675 unsigned long flags;
676
677 spin_lock_irqsave(&ioapic_lock, flags);
678 __unmask_IO_APIC_irq(irq);
679 spin_unlock_irqrestore(&ioapic_lock, flags);
680 }
681
682 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin)
683 {
684 struct IO_APIC_route_entry entry;
685
686 /* Check delivery_mode to be sure we're not clearing an SMI pin */
687 entry = ioapic_read_entry(apic, pin);
688 if (entry.delivery_mode == dest_SMI)
689 return;
690 /*
691 * Disable it in the IO-APIC irq-routing table:
692 */
693 ioapic_mask_entry(apic, pin);
694 }
695
696 static void clear_IO_APIC (void)
697 {
698 int apic, pin;
699
700 for (apic = 0; apic < nr_ioapics; apic++)
701 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
702 clear_IO_APIC_pin(apic, pin);
703 }
704
705 #if !defined(CONFIG_SMP) && defined(CONFIG_X86_32)
706 void send_IPI_self(int vector)
707 {
708 unsigned int cfg;
709
710 /*
711 * Wait for idle.
712 */
713 apic_wait_icr_idle();
714 cfg = APIC_DM_FIXED | APIC_DEST_SELF | vector | APIC_DEST_LOGICAL;
715 /*
716 * Send the IPI. The write to APIC_ICR fires this off.
717 */
718 apic_write(APIC_ICR, cfg);
719 }
720 #endif /* !CONFIG_SMP && CONFIG_X86_32*/
721
722 #ifdef CONFIG_X86_32
723 /*
724 * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to
725 * specific CPU-side IRQs.
726 */
727
728 #define MAX_PIRQS 8
729 static int pirq_entries [MAX_PIRQS];
730 static int pirqs_enabled;
731
732 static int __init ioapic_pirq_setup(char *str)
733 {
734 int i, max;
735 int ints[MAX_PIRQS+1];
736
737 get_options(str, ARRAY_SIZE(ints), ints);
738
739 for (i = 0; i < MAX_PIRQS; i++)
740 pirq_entries[i] = -1;
741
742 pirqs_enabled = 1;
743 apic_printk(APIC_VERBOSE, KERN_INFO
744 "PIRQ redirection, working around broken MP-BIOS.\n");
745 max = MAX_PIRQS;
746 if (ints[0] < MAX_PIRQS)
747 max = ints[0];
748
749 for (i = 0; i < max; i++) {
750 apic_printk(APIC_VERBOSE, KERN_DEBUG
751 "... PIRQ%d -> IRQ %d\n", i, ints[i+1]);
752 /*
753 * PIRQs are mapped upside down, usually.
754 */
755 pirq_entries[MAX_PIRQS-i-1] = ints[i+1];
756 }
757 return 1;
758 }
759
760 __setup("pirq=", ioapic_pirq_setup);
761 #endif /* CONFIG_X86_32 */
762
763 #ifdef CONFIG_INTR_REMAP
764 /* I/O APIC RTE contents at the OS boot up */
765 static struct IO_APIC_route_entry *early_ioapic_entries[MAX_IO_APICS];
766
767 /*
768 * Saves and masks all the unmasked IO-APIC RTE's
769 */
770 int save_mask_IO_APIC_setup(void)
771 {
772 union IO_APIC_reg_01 reg_01;
773 unsigned long flags;
774 int apic, pin;
775
776 /*
777 * The number of IO-APIC IRQ registers (== #pins):
778 */
779 for (apic = 0; apic < nr_ioapics; apic++) {
780 spin_lock_irqsave(&ioapic_lock, flags);
781 reg_01.raw = io_apic_read(apic, 1);
782 spin_unlock_irqrestore(&ioapic_lock, flags);
783 nr_ioapic_registers[apic] = reg_01.bits.entries+1;
784 }
785
786 for (apic = 0; apic < nr_ioapics; apic++) {
787 early_ioapic_entries[apic] =
788 kzalloc(sizeof(struct IO_APIC_route_entry) *
789 nr_ioapic_registers[apic], GFP_KERNEL);
790 if (!early_ioapic_entries[apic])
791 return -ENOMEM;
792 }
793
794 for (apic = 0; apic < nr_ioapics; apic++)
795 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
796 struct IO_APIC_route_entry entry;
797
798 entry = early_ioapic_entries[apic][pin] =
799 ioapic_read_entry(apic, pin);
800 if (!entry.mask) {
801 entry.mask = 1;
802 ioapic_write_entry(apic, pin, entry);
803 }
804 }
805 return 0;
806 }
807
808 void restore_IO_APIC_setup(void)
809 {
810 int apic, pin;
811
812 for (apic = 0; apic < nr_ioapics; apic++)
813 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
814 ioapic_write_entry(apic, pin,
815 early_ioapic_entries[apic][pin]);
816 }
817
818 void reinit_intr_remapped_IO_APIC(int intr_remapping)
819 {
820 /*
821 * for now plain restore of previous settings.
822 * TBD: In the case of OS enabling interrupt-remapping,
823 * IO-APIC RTE's need to be setup to point to interrupt-remapping
824 * table entries. for now, do a plain restore, and wait for
825 * the setup_IO_APIC_irqs() to do proper initialization.
826 */
827 restore_IO_APIC_setup();
828 }
829 #endif
830
831 /*
832 * Find the IRQ entry number of a certain pin.
833 */
834 static int find_irq_entry(int apic, int pin, int type)
835 {
836 int i;
837
838 for (i = 0; i < mp_irq_entries; i++)
839 if (mp_irqs[i].mp_irqtype == type &&
840 (mp_irqs[i].mp_dstapic == mp_ioapics[apic].mp_apicid ||
841 mp_irqs[i].mp_dstapic == MP_APIC_ALL) &&
842 mp_irqs[i].mp_dstirq == pin)
843 return i;
844
845 return -1;
846 }
847
848 /*
849 * Find the pin to which IRQ[irq] (ISA) is connected
850 */
851 static int __init find_isa_irq_pin(int irq, int type)
852 {
853 int i;
854
855 for (i = 0; i < mp_irq_entries; i++) {
856 int lbus = mp_irqs[i].mp_srcbus;
857
858 if (test_bit(lbus, mp_bus_not_pci) &&
859 (mp_irqs[i].mp_irqtype == type) &&
860 (mp_irqs[i].mp_srcbusirq == irq))
861
862 return mp_irqs[i].mp_dstirq;
863 }
864 return -1;
865 }
866
867 static int __init find_isa_irq_apic(int irq, int type)
868 {
869 int i;
870
871 for (i = 0; i < mp_irq_entries; i++) {
872 int lbus = mp_irqs[i].mp_srcbus;
873
874 if (test_bit(lbus, mp_bus_not_pci) &&
875 (mp_irqs[i].mp_irqtype == type) &&
876 (mp_irqs[i].mp_srcbusirq == irq))
877 break;
878 }
879 if (i < mp_irq_entries) {
880 int apic;
881 for(apic = 0; apic < nr_ioapics; apic++) {
882 if (mp_ioapics[apic].mp_apicid == mp_irqs[i].mp_dstapic)
883 return apic;
884 }
885 }
886
887 return -1;
888 }
889
890 /*
891 * Find a specific PCI IRQ entry.
892 * Not an __init, possibly needed by modules
893 */
894 static int pin_2_irq(int idx, int apic, int pin);
895
896 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin)
897 {
898 int apic, i, best_guess = -1;
899
900 apic_printk(APIC_DEBUG, "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n",
901 bus, slot, pin);
902 if (test_bit(bus, mp_bus_not_pci)) {
903 apic_printk(APIC_VERBOSE, "PCI BIOS passed nonexistent PCI bus %d!\n", bus);
904 return -1;
905 }
906 for (i = 0; i < mp_irq_entries; i++) {
907 int lbus = mp_irqs[i].mp_srcbus;
908
909 for (apic = 0; apic < nr_ioapics; apic++)
910 if (mp_ioapics[apic].mp_apicid == mp_irqs[i].mp_dstapic ||
911 mp_irqs[i].mp_dstapic == MP_APIC_ALL)
912 break;
913
914 if (!test_bit(lbus, mp_bus_not_pci) &&
915 !mp_irqs[i].mp_irqtype &&
916 (bus == lbus) &&
917 (slot == ((mp_irqs[i].mp_srcbusirq >> 2) & 0x1f))) {
918 int irq = pin_2_irq(i,apic,mp_irqs[i].mp_dstirq);
919
920 if (!(apic || IO_APIC_IRQ(irq)))
921 continue;
922
923 if (pin == (mp_irqs[i].mp_srcbusirq & 3))
924 return irq;
925 /*
926 * Use the first all-but-pin matching entry as a
927 * best-guess fuzzy result for broken mptables.
928 */
929 if (best_guess < 0)
930 best_guess = irq;
931 }
932 }
933 return best_guess;
934 }
935
936 EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector);
937
938 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
939 /*
940 * EISA Edge/Level control register, ELCR
941 */
942 static int EISA_ELCR(unsigned int irq)
943 {
944 if (irq < 16) {
945 unsigned int port = 0x4d0 + (irq >> 3);
946 return (inb(port) >> (irq & 7)) & 1;
947 }
948 apic_printk(APIC_VERBOSE, KERN_INFO
949 "Broken MPtable reports ISA irq %d\n", irq);
950 return 0;
951 }
952
953 #endif
954
955 /* ISA interrupts are always polarity zero edge triggered,
956 * when listed as conforming in the MP table. */
957
958 #define default_ISA_trigger(idx) (0)
959 #define default_ISA_polarity(idx) (0)
960
961 /* EISA interrupts are always polarity zero and can be edge or level
962 * trigger depending on the ELCR value. If an interrupt is listed as
963 * EISA conforming in the MP table, that means its trigger type must
964 * be read in from the ELCR */
965
966 #define default_EISA_trigger(idx) (EISA_ELCR(mp_irqs[idx].mp_srcbusirq))
967 #define default_EISA_polarity(idx) default_ISA_polarity(idx)
968
969 /* PCI interrupts are always polarity one level triggered,
970 * when listed as conforming in the MP table. */
971
972 #define default_PCI_trigger(idx) (1)
973 #define default_PCI_polarity(idx) (1)
974
975 /* MCA interrupts are always polarity zero level triggered,
976 * when listed as conforming in the MP table. */
977
978 #define default_MCA_trigger(idx) (1)
979 #define default_MCA_polarity(idx) default_ISA_polarity(idx)
980
981 static int MPBIOS_polarity(int idx)
982 {
983 int bus = mp_irqs[idx].mp_srcbus;
984 int polarity;
985
986 /*
987 * Determine IRQ line polarity (high active or low active):
988 */
989 switch (mp_irqs[idx].mp_irqflag & 3)
990 {
991 case 0: /* conforms, ie. bus-type dependent polarity */
992 if (test_bit(bus, mp_bus_not_pci))
993 polarity = default_ISA_polarity(idx);
994 else
995 polarity = default_PCI_polarity(idx);
996 break;
997 case 1: /* high active */
998 {
999 polarity = 0;
1000 break;
1001 }
1002 case 2: /* reserved */
1003 {
1004 printk(KERN_WARNING "broken BIOS!!\n");
1005 polarity = 1;
1006 break;
1007 }
1008 case 3: /* low active */
1009 {
1010 polarity = 1;
1011 break;
1012 }
1013 default: /* invalid */
1014 {
1015 printk(KERN_WARNING "broken BIOS!!\n");
1016 polarity = 1;
1017 break;
1018 }
1019 }
1020 return polarity;
1021 }
1022
1023 static int MPBIOS_trigger(int idx)
1024 {
1025 int bus = mp_irqs[idx].mp_srcbus;
1026 int trigger;
1027
1028 /*
1029 * Determine IRQ trigger mode (edge or level sensitive):
1030 */
1031 switch ((mp_irqs[idx].mp_irqflag>>2) & 3)
1032 {
1033 case 0: /* conforms, ie. bus-type dependent */
1034 if (test_bit(bus, mp_bus_not_pci))
1035 trigger = default_ISA_trigger(idx);
1036 else
1037 trigger = default_PCI_trigger(idx);
1038 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
1039 switch (mp_bus_id_to_type[bus]) {
1040 case MP_BUS_ISA: /* ISA pin */
1041 {
1042 /* set before the switch */
1043 break;
1044 }
1045 case MP_BUS_EISA: /* EISA pin */
1046 {
1047 trigger = default_EISA_trigger(idx);
1048 break;
1049 }
1050 case MP_BUS_PCI: /* PCI pin */
1051 {
1052 /* set before the switch */
1053 break;
1054 }
1055 case MP_BUS_MCA: /* MCA pin */
1056 {
1057 trigger = default_MCA_trigger(idx);
1058 break;
1059 }
1060 default:
1061 {
1062 printk(KERN_WARNING "broken BIOS!!\n");
1063 trigger = 1;
1064 break;
1065 }
1066 }
1067 #endif
1068 break;
1069 case 1: /* edge */
1070 {
1071 trigger = 0;
1072 break;
1073 }
1074 case 2: /* reserved */
1075 {
1076 printk(KERN_WARNING "broken BIOS!!\n");
1077 trigger = 1;
1078 break;
1079 }
1080 case 3: /* level */
1081 {
1082 trigger = 1;
1083 break;
1084 }
1085 default: /* invalid */
1086 {
1087 printk(KERN_WARNING "broken BIOS!!\n");
1088 trigger = 0;
1089 break;
1090 }
1091 }
1092 return trigger;
1093 }
1094
1095 static inline int irq_polarity(int idx)
1096 {
1097 return MPBIOS_polarity(idx);
1098 }
1099
1100 static inline int irq_trigger(int idx)
1101 {
1102 return MPBIOS_trigger(idx);
1103 }
1104
1105 int (*ioapic_renumber_irq)(int ioapic, int irq);
1106 static int pin_2_irq(int idx, int apic, int pin)
1107 {
1108 int irq, i;
1109 int bus = mp_irqs[idx].mp_srcbus;
1110
1111 /*
1112 * Debugging check, we are in big trouble if this message pops up!
1113 */
1114 if (mp_irqs[idx].mp_dstirq != pin)
1115 printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n");
1116
1117 if (test_bit(bus, mp_bus_not_pci)) {
1118 irq = mp_irqs[idx].mp_srcbusirq;
1119 } else {
1120 /*
1121 * PCI IRQs are mapped in order
1122 */
1123 i = irq = 0;
1124 while (i < apic)
1125 irq += nr_ioapic_registers[i++];
1126 irq += pin;
1127 /*
1128 * For MPS mode, so far only needed by ES7000 platform
1129 */
1130 if (ioapic_renumber_irq)
1131 irq = ioapic_renumber_irq(apic, irq);
1132 }
1133
1134 #ifdef CONFIG_X86_32
1135 /*
1136 * PCI IRQ command line redirection. Yes, limits are hardcoded.
1137 */
1138 if ((pin >= 16) && (pin <= 23)) {
1139 if (pirq_entries[pin-16] != -1) {
1140 if (!pirq_entries[pin-16]) {
1141 apic_printk(APIC_VERBOSE, KERN_DEBUG
1142 "disabling PIRQ%d\n", pin-16);
1143 } else {
1144 irq = pirq_entries[pin-16];
1145 apic_printk(APIC_VERBOSE, KERN_DEBUG
1146 "using PIRQ%d -> IRQ %d\n",
1147 pin-16, irq);
1148 }
1149 }
1150 }
1151 #endif
1152
1153 return irq;
1154 }
1155
1156 void lock_vector_lock(void)
1157 {
1158 /* Used to the online set of cpus does not change
1159 * during assign_irq_vector.
1160 */
1161 spin_lock(&vector_lock);
1162 }
1163
1164 void unlock_vector_lock(void)
1165 {
1166 spin_unlock(&vector_lock);
1167 }
1168
1169 static int __assign_irq_vector(int irq, cpumask_t mask)
1170 {
1171 /*
1172 * NOTE! The local APIC isn't very good at handling
1173 * multiple interrupts at the same interrupt level.
1174 * As the interrupt level is determined by taking the
1175 * vector number and shifting that right by 4, we
1176 * want to spread these out a bit so that they don't
1177 * all fall in the same interrupt level.
1178 *
1179 * Also, we've got to be careful not to trash gate
1180 * 0x80, because int 0x80 is hm, kind of importantish. ;)
1181 */
1182 static int current_vector = FIRST_DEVICE_VECTOR, current_offset = 0;
1183 unsigned int old_vector;
1184 int cpu;
1185 struct irq_cfg *cfg;
1186
1187 cfg = irq_cfg(irq);
1188
1189 /* Only try and allocate irqs on cpus that are present */
1190 cpus_and(mask, mask, cpu_online_map);
1191
1192 if ((cfg->move_in_progress) || cfg->move_cleanup_count)
1193 return -EBUSY;
1194
1195 old_vector = cfg->vector;
1196 if (old_vector) {
1197 cpumask_t tmp;
1198 cpus_and(tmp, cfg->domain, mask);
1199 if (!cpus_empty(tmp))
1200 return 0;
1201 }
1202
1203 for_each_cpu_mask_nr(cpu, mask) {
1204 cpumask_t domain, new_mask;
1205 int new_cpu;
1206 int vector, offset;
1207
1208 domain = vector_allocation_domain(cpu);
1209 cpus_and(new_mask, domain, cpu_online_map);
1210
1211 vector = current_vector;
1212 offset = current_offset;
1213 next:
1214 vector += 8;
1215 if (vector >= first_system_vector) {
1216 /* If we run out of vectors on large boxen, must share them. */
1217 offset = (offset + 1) % 8;
1218 vector = FIRST_DEVICE_VECTOR + offset;
1219 }
1220 if (unlikely(current_vector == vector))
1221 continue;
1222 #ifdef CONFIG_X86_64
1223 if (vector == IA32_SYSCALL_VECTOR)
1224 goto next;
1225 #else
1226 if (vector == SYSCALL_VECTOR)
1227 goto next;
1228 #endif
1229 for_each_cpu_mask_nr(new_cpu, new_mask)
1230 if (per_cpu(vector_irq, new_cpu)[vector] != -1)
1231 goto next;
1232 /* Found one! */
1233 current_vector = vector;
1234 current_offset = offset;
1235 if (old_vector) {
1236 cfg->move_in_progress = 1;
1237 cfg->old_domain = cfg->domain;
1238 }
1239 for_each_cpu_mask_nr(new_cpu, new_mask)
1240 per_cpu(vector_irq, new_cpu)[vector] = irq;
1241 cfg->vector = vector;
1242 cfg->domain = domain;
1243 return 0;
1244 }
1245 return -ENOSPC;
1246 }
1247
1248 static int assign_irq_vector(int irq, cpumask_t mask)
1249 {
1250 int err;
1251 unsigned long flags;
1252
1253 spin_lock_irqsave(&vector_lock, flags);
1254 err = __assign_irq_vector(irq, mask);
1255 spin_unlock_irqrestore(&vector_lock, flags);
1256 return err;
1257 }
1258
1259 static void __clear_irq_vector(int irq)
1260 {
1261 struct irq_cfg *cfg;
1262 cpumask_t mask;
1263 int cpu, vector;
1264
1265 cfg = irq_cfg(irq);
1266 BUG_ON(!cfg->vector);
1267
1268 vector = cfg->vector;
1269 cpus_and(mask, cfg->domain, cpu_online_map);
1270 for_each_cpu_mask_nr(cpu, mask)
1271 per_cpu(vector_irq, cpu)[vector] = -1;
1272
1273 cfg->vector = 0;
1274 cpus_clear(cfg->domain);
1275 }
1276
1277 void __setup_vector_irq(int cpu)
1278 {
1279 /* Initialize vector_irq on a new cpu */
1280 /* This function must be called with vector_lock held */
1281 int irq, vector;
1282 struct irq_cfg *cfg;
1283
1284 /* Mark the inuse vectors */
1285 for_each_irq_cfg(cfg) {
1286 if (!cpu_isset(cpu, cfg->domain))
1287 continue;
1288 vector = cfg->vector;
1289 irq = cfg->irq;
1290 per_cpu(vector_irq, cpu)[vector] = irq;
1291 }
1292 /* Mark the free vectors */
1293 for (vector = 0; vector < NR_VECTORS; ++vector) {
1294 irq = per_cpu(vector_irq, cpu)[vector];
1295 if (irq < 0)
1296 continue;
1297
1298 cfg = irq_cfg(irq);
1299 if (!cpu_isset(cpu, cfg->domain))
1300 per_cpu(vector_irq, cpu)[vector] = -1;
1301 }
1302 }
1303
1304 static struct irq_chip ioapic_chip;
1305 #ifdef CONFIG_INTR_REMAP
1306 static struct irq_chip ir_ioapic_chip;
1307 #endif
1308
1309 #define IOAPIC_AUTO -1
1310 #define IOAPIC_EDGE 0
1311 #define IOAPIC_LEVEL 1
1312
1313 #ifdef CONFIG_X86_32
1314 static inline int IO_APIC_irq_trigger(int irq)
1315 {
1316 int apic, idx, pin;
1317
1318 for (apic = 0; apic < nr_ioapics; apic++) {
1319 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1320 idx = find_irq_entry(apic, pin, mp_INT);
1321 if ((idx != -1) && (irq == pin_2_irq(idx, apic, pin)))
1322 return irq_trigger(idx);
1323 }
1324 }
1325 /*
1326 * nonexistent IRQs are edge default
1327 */
1328 return 0;
1329 }
1330 #else
1331 static inline int IO_APIC_irq_trigger(int irq)
1332 {
1333 return 1;
1334 }
1335 #endif
1336
1337 static void ioapic_register_intr(int irq, unsigned long trigger)
1338 {
1339 struct irq_desc *desc;
1340
1341 /* first time to use this irq_desc */
1342 if (irq < 16)
1343 desc = irq_to_desc(irq);
1344 else
1345 desc = irq_to_desc_alloc(irq);
1346
1347 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1348 trigger == IOAPIC_LEVEL)
1349 desc->status |= IRQ_LEVEL;
1350 else
1351 desc->status &= ~IRQ_LEVEL;
1352
1353 #ifdef CONFIG_INTR_REMAP
1354 if (irq_remapped(irq)) {
1355 desc->status |= IRQ_MOVE_PCNTXT;
1356 if (trigger)
1357 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1358 handle_fasteoi_irq,
1359 "fasteoi");
1360 else
1361 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1362 handle_edge_irq, "edge");
1363 return;
1364 }
1365 #endif
1366 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1367 trigger == IOAPIC_LEVEL)
1368 set_irq_chip_and_handler_name(irq, &ioapic_chip,
1369 handle_fasteoi_irq,
1370 "fasteoi");
1371 else
1372 set_irq_chip_and_handler_name(irq, &ioapic_chip,
1373 handle_edge_irq, "edge");
1374 }
1375
1376 static int setup_ioapic_entry(int apic, int irq,
1377 struct IO_APIC_route_entry *entry,
1378 unsigned int destination, int trigger,
1379 int polarity, int vector)
1380 {
1381 /*
1382 * add it to the IO-APIC irq-routing table:
1383 */
1384 memset(entry,0,sizeof(*entry));
1385
1386 #ifdef CONFIG_INTR_REMAP
1387 if (intr_remapping_enabled) {
1388 struct intel_iommu *iommu = map_ioapic_to_ir(apic);
1389 struct irte irte;
1390 struct IR_IO_APIC_route_entry *ir_entry =
1391 (struct IR_IO_APIC_route_entry *) entry;
1392 int index;
1393
1394 if (!iommu)
1395 panic("No mapping iommu for ioapic %d\n", apic);
1396
1397 index = alloc_irte(iommu, irq, 1);
1398 if (index < 0)
1399 panic("Failed to allocate IRTE for ioapic %d\n", apic);
1400
1401 memset(&irte, 0, sizeof(irte));
1402
1403 irte.present = 1;
1404 irte.dst_mode = INT_DEST_MODE;
1405 irte.trigger_mode = trigger;
1406 irte.dlvry_mode = INT_DELIVERY_MODE;
1407 irte.vector = vector;
1408 irte.dest_id = IRTE_DEST(destination);
1409
1410 modify_irte(irq, &irte);
1411
1412 ir_entry->index2 = (index >> 15) & 0x1;
1413 ir_entry->zero = 0;
1414 ir_entry->format = 1;
1415 ir_entry->index = (index & 0x7fff);
1416 } else
1417 #endif
1418 {
1419 entry->delivery_mode = INT_DELIVERY_MODE;
1420 entry->dest_mode = INT_DEST_MODE;
1421 entry->dest = destination;
1422 }
1423
1424 entry->mask = 0; /* enable IRQ */
1425 entry->trigger = trigger;
1426 entry->polarity = polarity;
1427 entry->vector = vector;
1428
1429 /* Mask level triggered irqs.
1430 * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
1431 */
1432 if (trigger)
1433 entry->mask = 1;
1434 return 0;
1435 }
1436
1437 static void setup_IO_APIC_irq(int apic, int pin, unsigned int irq,
1438 int trigger, int polarity)
1439 {
1440 struct irq_cfg *cfg;
1441 struct IO_APIC_route_entry entry;
1442 cpumask_t mask;
1443
1444 if (!IO_APIC_IRQ(irq))
1445 return;
1446
1447 cfg = irq_cfg(irq);
1448
1449 mask = TARGET_CPUS;
1450 if (assign_irq_vector(irq, mask))
1451 return;
1452
1453 cpus_and(mask, cfg->domain, mask);
1454
1455 apic_printk(APIC_VERBOSE,KERN_DEBUG
1456 "IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> "
1457 "IRQ %d Mode:%i Active:%i)\n",
1458 apic, mp_ioapics[apic].mp_apicid, pin, cfg->vector,
1459 irq, trigger, polarity);
1460
1461
1462 if (setup_ioapic_entry(mp_ioapics[apic].mp_apicid, irq, &entry,
1463 cpu_mask_to_apicid(mask), trigger, polarity,
1464 cfg->vector)) {
1465 printk("Failed to setup ioapic entry for ioapic %d, pin %d\n",
1466 mp_ioapics[apic].mp_apicid, pin);
1467 __clear_irq_vector(irq);
1468 return;
1469 }
1470
1471 ioapic_register_intr(irq, trigger);
1472 if (irq < 16)
1473 disable_8259A_irq(irq);
1474
1475 ioapic_write_entry(apic, pin, entry);
1476 }
1477
1478 static void __init setup_IO_APIC_irqs(void)
1479 {
1480 int apic, pin, idx, irq, first_notcon = 1;
1481
1482 apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n");
1483
1484 for (apic = 0; apic < nr_ioapics; apic++) {
1485 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1486
1487 idx = find_irq_entry(apic,pin,mp_INT);
1488 if (idx == -1) {
1489 if (first_notcon) {
1490 apic_printk(APIC_VERBOSE, KERN_DEBUG " IO-APIC (apicid-pin) %d-%d", mp_ioapics[apic].mp_apicid, pin);
1491 first_notcon = 0;
1492 } else
1493 apic_printk(APIC_VERBOSE, ", %d-%d", mp_ioapics[apic].mp_apicid, pin);
1494 continue;
1495 }
1496 if (!first_notcon) {
1497 apic_printk(APIC_VERBOSE, " not connected.\n");
1498 first_notcon = 1;
1499 }
1500
1501 irq = pin_2_irq(idx, apic, pin);
1502 #ifdef CONFIG_X86_32
1503 if (multi_timer_check(apic, irq))
1504 continue;
1505 #endif
1506 add_pin_to_irq(irq, apic, pin);
1507
1508 setup_IO_APIC_irq(apic, pin, irq,
1509 irq_trigger(idx), irq_polarity(idx));
1510 }
1511 }
1512
1513 if (!first_notcon)
1514 apic_printk(APIC_VERBOSE, " not connected.\n");
1515 }
1516
1517 /*
1518 * Set up the timer pin, possibly with the 8259A-master behind.
1519 */
1520 static void __init setup_timer_IRQ0_pin(unsigned int apic, unsigned int pin,
1521 int vector)
1522 {
1523 struct IO_APIC_route_entry entry;
1524
1525 #ifdef CONFIG_INTR_REMAP
1526 if (intr_remapping_enabled)
1527 return;
1528 #endif
1529
1530 memset(&entry, 0, sizeof(entry));
1531
1532 /*
1533 * We use logical delivery to get the timer IRQ
1534 * to the first CPU.
1535 */
1536 entry.dest_mode = INT_DEST_MODE;
1537 entry.mask = 1; /* mask IRQ now */
1538 entry.dest = cpu_mask_to_apicid(TARGET_CPUS);
1539 entry.delivery_mode = INT_DELIVERY_MODE;
1540 entry.polarity = 0;
1541 entry.trigger = 0;
1542 entry.vector = vector;
1543
1544 /*
1545 * The timer IRQ doesn't have to know that behind the
1546 * scene we may have a 8259A-master in AEOI mode ...
1547 */
1548 set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge");
1549
1550 /*
1551 * Add it to the IO-APIC irq-routing table:
1552 */
1553 ioapic_write_entry(apic, pin, entry);
1554 }
1555
1556
1557 __apicdebuginit(void) print_IO_APIC(void)
1558 {
1559 int apic, i;
1560 union IO_APIC_reg_00 reg_00;
1561 union IO_APIC_reg_01 reg_01;
1562 union IO_APIC_reg_02 reg_02;
1563 union IO_APIC_reg_03 reg_03;
1564 unsigned long flags;
1565 struct irq_cfg *cfg;
1566
1567 if (apic_verbosity == APIC_QUIET)
1568 return;
1569
1570 printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries);
1571 for (i = 0; i < nr_ioapics; i++)
1572 printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n",
1573 mp_ioapics[i].mp_apicid, nr_ioapic_registers[i]);
1574
1575 /*
1576 * We are a bit conservative about what we expect. We have to
1577 * know about every hardware change ASAP.
1578 */
1579 printk(KERN_INFO "testing the IO APIC.......................\n");
1580
1581 for (apic = 0; apic < nr_ioapics; apic++) {
1582
1583 spin_lock_irqsave(&ioapic_lock, flags);
1584 reg_00.raw = io_apic_read(apic, 0);
1585 reg_01.raw = io_apic_read(apic, 1);
1586 if (reg_01.bits.version >= 0x10)
1587 reg_02.raw = io_apic_read(apic, 2);
1588 if (reg_01.bits.version >= 0x20)
1589 reg_03.raw = io_apic_read(apic, 3);
1590 spin_unlock_irqrestore(&ioapic_lock, flags);
1591
1592 printk("\n");
1593 printk(KERN_DEBUG "IO APIC #%d......\n", mp_ioapics[apic].mp_apicid);
1594 printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw);
1595 printk(KERN_DEBUG "....... : physical APIC id: %02X\n", reg_00.bits.ID);
1596 printk(KERN_DEBUG "....... : Delivery Type: %X\n", reg_00.bits.delivery_type);
1597 printk(KERN_DEBUG "....... : LTS : %X\n", reg_00.bits.LTS);
1598
1599 printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)&reg_01);
1600 printk(KERN_DEBUG "....... : max redirection entries: %04X\n", reg_01.bits.entries);
1601
1602 printk(KERN_DEBUG "....... : PRQ implemented: %X\n", reg_01.bits.PRQ);
1603 printk(KERN_DEBUG "....... : IO APIC version: %04X\n", reg_01.bits.version);
1604
1605 /*
1606 * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02,
1607 * but the value of reg_02 is read as the previous read register
1608 * value, so ignore it if reg_02 == reg_01.
1609 */
1610 if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) {
1611 printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw);
1612 printk(KERN_DEBUG "....... : arbitration: %02X\n", reg_02.bits.arbitration);
1613 }
1614
1615 /*
1616 * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02
1617 * or reg_03, but the value of reg_0[23] is read as the previous read
1618 * register value, so ignore it if reg_03 == reg_0[12].
1619 */
1620 if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw &&
1621 reg_03.raw != reg_01.raw) {
1622 printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw);
1623 printk(KERN_DEBUG "....... : Boot DT : %X\n", reg_03.bits.boot_DT);
1624 }
1625
1626 printk(KERN_DEBUG ".... IRQ redirection table:\n");
1627
1628 printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol"
1629 " Stat Dmod Deli Vect: \n");
1630
1631 for (i = 0; i <= reg_01.bits.entries; i++) {
1632 struct IO_APIC_route_entry entry;
1633
1634 entry = ioapic_read_entry(apic, i);
1635
1636 printk(KERN_DEBUG " %02x %03X ",
1637 i,
1638 entry.dest
1639 );
1640
1641 printk("%1d %1d %1d %1d %1d %1d %1d %02X\n",
1642 entry.mask,
1643 entry.trigger,
1644 entry.irr,
1645 entry.polarity,
1646 entry.delivery_status,
1647 entry.dest_mode,
1648 entry.delivery_mode,
1649 entry.vector
1650 );
1651 }
1652 }
1653 printk(KERN_DEBUG "IRQ to pin mappings:\n");
1654 for_each_irq_cfg(cfg) {
1655 struct irq_pin_list *entry = cfg->irq_2_pin;
1656 if (!entry)
1657 continue;
1658 printk(KERN_DEBUG "IRQ%d ", cfg->irq);
1659 for (;;) {
1660 printk("-> %d:%d", entry->apic, entry->pin);
1661 if (!entry->next)
1662 break;
1663 entry = entry->next;
1664 }
1665 printk("\n");
1666 }
1667
1668 printk(KERN_INFO ".................................... done.\n");
1669
1670 return;
1671 }
1672
1673 __apicdebuginit(void) print_APIC_bitfield(int base)
1674 {
1675 unsigned int v;
1676 int i, j;
1677
1678 if (apic_verbosity == APIC_QUIET)
1679 return;
1680
1681 printk(KERN_DEBUG "0123456789abcdef0123456789abcdef\n" KERN_DEBUG);
1682 for (i = 0; i < 8; i++) {
1683 v = apic_read(base + i*0x10);
1684 for (j = 0; j < 32; j++) {
1685 if (v & (1<<j))
1686 printk("1");
1687 else
1688 printk("0");
1689 }
1690 printk("\n");
1691 }
1692 }
1693
1694 __apicdebuginit(void) print_local_APIC(void *dummy)
1695 {
1696 unsigned int v, ver, maxlvt;
1697 u64 icr;
1698
1699 if (apic_verbosity == APIC_QUIET)
1700 return;
1701
1702 printk("\n" KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n",
1703 smp_processor_id(), hard_smp_processor_id());
1704 v = apic_read(APIC_ID);
1705 printk(KERN_INFO "... APIC ID: %08x (%01x)\n", v, read_apic_id());
1706 v = apic_read(APIC_LVR);
1707 printk(KERN_INFO "... APIC VERSION: %08x\n", v);
1708 ver = GET_APIC_VERSION(v);
1709 maxlvt = lapic_get_maxlvt();
1710
1711 v = apic_read(APIC_TASKPRI);
1712 printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1713
1714 if (APIC_INTEGRATED(ver)) { /* !82489DX */
1715 v = apic_read(APIC_ARBPRI);
1716 printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v,
1717 v & APIC_ARBPRI_MASK);
1718 v = apic_read(APIC_PROCPRI);
1719 printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v);
1720 }
1721
1722 v = apic_read(APIC_EOI);
1723 printk(KERN_DEBUG "... APIC EOI: %08x\n", v);
1724 v = apic_read(APIC_RRR);
1725 printk(KERN_DEBUG "... APIC RRR: %08x\n", v);
1726 v = apic_read(APIC_LDR);
1727 printk(KERN_DEBUG "... APIC LDR: %08x\n", v);
1728 v = apic_read(APIC_DFR);
1729 printk(KERN_DEBUG "... APIC DFR: %08x\n", v);
1730 v = apic_read(APIC_SPIV);
1731 printk(KERN_DEBUG "... APIC SPIV: %08x\n", v);
1732
1733 printk(KERN_DEBUG "... APIC ISR field:\n");
1734 print_APIC_bitfield(APIC_ISR);
1735 printk(KERN_DEBUG "... APIC TMR field:\n");
1736 print_APIC_bitfield(APIC_TMR);
1737 printk(KERN_DEBUG "... APIC IRR field:\n");
1738 print_APIC_bitfield(APIC_IRR);
1739
1740 if (APIC_INTEGRATED(ver)) { /* !82489DX */
1741 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
1742 apic_write(APIC_ESR, 0);
1743
1744 v = apic_read(APIC_ESR);
1745 printk(KERN_DEBUG "... APIC ESR: %08x\n", v);
1746 }
1747
1748 icr = apic_icr_read();
1749 printk(KERN_DEBUG "... APIC ICR: %08x\n", icr);
1750 printk(KERN_DEBUG "... APIC ICR2: %08x\n", icr >> 32);
1751
1752 v = apic_read(APIC_LVTT);
1753 printk(KERN_DEBUG "... APIC LVTT: %08x\n", v);
1754
1755 if (maxlvt > 3) { /* PC is LVT#4. */
1756 v = apic_read(APIC_LVTPC);
1757 printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v);
1758 }
1759 v = apic_read(APIC_LVT0);
1760 printk(KERN_DEBUG "... APIC LVT0: %08x\n", v);
1761 v = apic_read(APIC_LVT1);
1762 printk(KERN_DEBUG "... APIC LVT1: %08x\n", v);
1763
1764 if (maxlvt > 2) { /* ERR is LVT#3. */
1765 v = apic_read(APIC_LVTERR);
1766 printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v);
1767 }
1768
1769 v = apic_read(APIC_TMICT);
1770 printk(KERN_DEBUG "... APIC TMICT: %08x\n", v);
1771 v = apic_read(APIC_TMCCT);
1772 printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v);
1773 v = apic_read(APIC_TDCR);
1774 printk(KERN_DEBUG "... APIC TDCR: %08x\n", v);
1775 printk("\n");
1776 }
1777
1778 __apicdebuginit(void) print_all_local_APICs(void)
1779 {
1780 on_each_cpu(print_local_APIC, NULL, 1);
1781 }
1782
1783 __apicdebuginit(void) print_PIC(void)
1784 {
1785 unsigned int v;
1786 unsigned long flags;
1787
1788 if (apic_verbosity == APIC_QUIET)
1789 return;
1790
1791 printk(KERN_DEBUG "\nprinting PIC contents\n");
1792
1793 spin_lock_irqsave(&i8259A_lock, flags);
1794
1795 v = inb(0xa1) << 8 | inb(0x21);
1796 printk(KERN_DEBUG "... PIC IMR: %04x\n", v);
1797
1798 v = inb(0xa0) << 8 | inb(0x20);
1799 printk(KERN_DEBUG "... PIC IRR: %04x\n", v);
1800
1801 outb(0x0b,0xa0);
1802 outb(0x0b,0x20);
1803 v = inb(0xa0) << 8 | inb(0x20);
1804 outb(0x0a,0xa0);
1805 outb(0x0a,0x20);
1806
1807 spin_unlock_irqrestore(&i8259A_lock, flags);
1808
1809 printk(KERN_DEBUG "... PIC ISR: %04x\n", v);
1810
1811 v = inb(0x4d1) << 8 | inb(0x4d0);
1812 printk(KERN_DEBUG "... PIC ELCR: %04x\n", v);
1813 }
1814
1815 __apicdebuginit(int) print_all_ICs(void)
1816 {
1817 print_PIC();
1818 print_all_local_APICs();
1819 print_IO_APIC();
1820
1821 return 0;
1822 }
1823
1824 fs_initcall(print_all_ICs);
1825
1826
1827 /* Where if anywhere is the i8259 connect in external int mode */
1828 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 };
1829
1830 void __init enable_IO_APIC(void)
1831 {
1832 union IO_APIC_reg_01 reg_01;
1833 int i8259_apic, i8259_pin;
1834 int apic;
1835 unsigned long flags;
1836
1837 #ifdef CONFIG_X86_32
1838 int i;
1839 if (!pirqs_enabled)
1840 for (i = 0; i < MAX_PIRQS; i++)
1841 pirq_entries[i] = -1;
1842 #endif
1843
1844 /*
1845 * The number of IO-APIC IRQ registers (== #pins):
1846 */
1847 for (apic = 0; apic < nr_ioapics; apic++) {
1848 spin_lock_irqsave(&ioapic_lock, flags);
1849 reg_01.raw = io_apic_read(apic, 1);
1850 spin_unlock_irqrestore(&ioapic_lock, flags);
1851 nr_ioapic_registers[apic] = reg_01.bits.entries+1;
1852 }
1853 for(apic = 0; apic < nr_ioapics; apic++) {
1854 int pin;
1855 /* See if any of the pins is in ExtINT mode */
1856 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1857 struct IO_APIC_route_entry entry;
1858 entry = ioapic_read_entry(apic, pin);
1859
1860 /* If the interrupt line is enabled and in ExtInt mode
1861 * I have found the pin where the i8259 is connected.
1862 */
1863 if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) {
1864 ioapic_i8259.apic = apic;
1865 ioapic_i8259.pin = pin;
1866 goto found_i8259;
1867 }
1868 }
1869 }
1870 found_i8259:
1871 /* Look to see what if the MP table has reported the ExtINT */
1872 /* If we could not find the appropriate pin by looking at the ioapic
1873 * the i8259 probably is not connected the ioapic but give the
1874 * mptable a chance anyway.
1875 */
1876 i8259_pin = find_isa_irq_pin(0, mp_ExtINT);
1877 i8259_apic = find_isa_irq_apic(0, mp_ExtINT);
1878 /* Trust the MP table if nothing is setup in the hardware */
1879 if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) {
1880 printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n");
1881 ioapic_i8259.pin = i8259_pin;
1882 ioapic_i8259.apic = i8259_apic;
1883 }
1884 /* Complain if the MP table and the hardware disagree */
1885 if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) &&
1886 (i8259_pin >= 0) && (ioapic_i8259.pin >= 0))
1887 {
1888 printk(KERN_WARNING "ExtINT in hardware and MP table differ\n");
1889 }
1890
1891 /*
1892 * Do not trust the IO-APIC being empty at bootup
1893 */
1894 clear_IO_APIC();
1895 }
1896
1897 /*
1898 * Not an __init, needed by the reboot code
1899 */
1900 void disable_IO_APIC(void)
1901 {
1902 /*
1903 * Clear the IO-APIC before rebooting:
1904 */
1905 clear_IO_APIC();
1906
1907 /*
1908 * If the i8259 is routed through an IOAPIC
1909 * Put that IOAPIC in virtual wire mode
1910 * so legacy interrupts can be delivered.
1911 */
1912 if (ioapic_i8259.pin != -1) {
1913 struct IO_APIC_route_entry entry;
1914
1915 memset(&entry, 0, sizeof(entry));
1916 entry.mask = 0; /* Enabled */
1917 entry.trigger = 0; /* Edge */
1918 entry.irr = 0;
1919 entry.polarity = 0; /* High */
1920 entry.delivery_status = 0;
1921 entry.dest_mode = 0; /* Physical */
1922 entry.delivery_mode = dest_ExtINT; /* ExtInt */
1923 entry.vector = 0;
1924 entry.dest = read_apic_id();
1925
1926 /*
1927 * Add it to the IO-APIC irq-routing table:
1928 */
1929 ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry);
1930 }
1931
1932 disconnect_bsp_APIC(ioapic_i8259.pin != -1);
1933 }
1934
1935 #ifdef CONFIG_X86_32
1936 /*
1937 * function to set the IO-APIC physical IDs based on the
1938 * values stored in the MPC table.
1939 *
1940 * by Matt Domsch <Matt_Domsch@dell.com> Tue Dec 21 12:25:05 CST 1999
1941 */
1942
1943 static void __init setup_ioapic_ids_from_mpc(void)
1944 {
1945 union IO_APIC_reg_00 reg_00;
1946 physid_mask_t phys_id_present_map;
1947 int apic;
1948 int i;
1949 unsigned char old_id;
1950 unsigned long flags;
1951
1952 if (x86_quirks->setup_ioapic_ids && x86_quirks->setup_ioapic_ids())
1953 return;
1954
1955 /*
1956 * Don't check I/O APIC IDs for xAPIC systems. They have
1957 * no meaning without the serial APIC bus.
1958 */
1959 if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
1960 || APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
1961 return;
1962 /*
1963 * This is broken; anything with a real cpu count has to
1964 * circumvent this idiocy regardless.
1965 */
1966 phys_id_present_map = ioapic_phys_id_map(phys_cpu_present_map);
1967
1968 /*
1969 * Set the IOAPIC ID to the value stored in the MPC table.
1970 */
1971 for (apic = 0; apic < nr_ioapics; apic++) {
1972
1973 /* Read the register 0 value */
1974 spin_lock_irqsave(&ioapic_lock, flags);
1975 reg_00.raw = io_apic_read(apic, 0);
1976 spin_unlock_irqrestore(&ioapic_lock, flags);
1977
1978 old_id = mp_ioapics[apic].mp_apicid;
1979
1980 if (mp_ioapics[apic].mp_apicid >= get_physical_broadcast()) {
1981 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n",
1982 apic, mp_ioapics[apic].mp_apicid);
1983 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
1984 reg_00.bits.ID);
1985 mp_ioapics[apic].mp_apicid = reg_00.bits.ID;
1986 }
1987
1988 /*
1989 * Sanity check, is the ID really free? Every APIC in a
1990 * system must have a unique ID or we get lots of nice
1991 * 'stuck on smp_invalidate_needed IPI wait' messages.
1992 */
1993 if (check_apicid_used(phys_id_present_map,
1994 mp_ioapics[apic].mp_apicid)) {
1995 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n",
1996 apic, mp_ioapics[apic].mp_apicid);
1997 for (i = 0; i < get_physical_broadcast(); i++)
1998 if (!physid_isset(i, phys_id_present_map))
1999 break;
2000 if (i >= get_physical_broadcast())
2001 panic("Max APIC ID exceeded!\n");
2002 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2003 i);
2004 physid_set(i, phys_id_present_map);
2005 mp_ioapics[apic].mp_apicid = i;
2006 } else {
2007 physid_mask_t tmp;
2008 tmp = apicid_to_cpu_present(mp_ioapics[apic].mp_apicid);
2009 apic_printk(APIC_VERBOSE, "Setting %d in the "
2010 "phys_id_present_map\n",
2011 mp_ioapics[apic].mp_apicid);
2012 physids_or(phys_id_present_map, phys_id_present_map, tmp);
2013 }
2014
2015
2016 /*
2017 * We need to adjust the IRQ routing table
2018 * if the ID changed.
2019 */
2020 if (old_id != mp_ioapics[apic].mp_apicid)
2021 for (i = 0; i < mp_irq_entries; i++)
2022 if (mp_irqs[i].mp_dstapic == old_id)
2023 mp_irqs[i].mp_dstapic
2024 = mp_ioapics[apic].mp_apicid;
2025
2026 /*
2027 * Read the right value from the MPC table and
2028 * write it into the ID register.
2029 */
2030 apic_printk(APIC_VERBOSE, KERN_INFO
2031 "...changing IO-APIC physical APIC ID to %d ...",
2032 mp_ioapics[apic].mp_apicid);
2033
2034 reg_00.bits.ID = mp_ioapics[apic].mp_apicid;
2035 spin_lock_irqsave(&ioapic_lock, flags);
2036
2037 /*
2038 * Sanity check
2039 */
2040 spin_lock_irqsave(&ioapic_lock, flags);
2041 reg_00.raw = io_apic_read(apic, 0);
2042 spin_unlock_irqrestore(&ioapic_lock, flags);
2043 if (reg_00.bits.ID != mp_ioapics[apic].mp_apicid)
2044 printk("could not set ID!\n");
2045 else
2046 apic_printk(APIC_VERBOSE, " ok.\n");
2047 }
2048 }
2049 #endif
2050
2051 int no_timer_check __initdata;
2052
2053 static int __init notimercheck(char *s)
2054 {
2055 no_timer_check = 1;
2056 return 1;
2057 }
2058 __setup("no_timer_check", notimercheck);
2059
2060 /*
2061 * There is a nasty bug in some older SMP boards, their mptable lies
2062 * about the timer IRQ. We do the following to work around the situation:
2063 *
2064 * - timer IRQ defaults to IO-APIC IRQ
2065 * - if this function detects that timer IRQs are defunct, then we fall
2066 * back to ISA timer IRQs
2067 */
2068 static int __init timer_irq_works(void)
2069 {
2070 unsigned long t1 = jiffies;
2071 unsigned long flags;
2072
2073 if (no_timer_check)
2074 return 1;
2075
2076 local_save_flags(flags);
2077 local_irq_enable();
2078 /* Let ten ticks pass... */
2079 mdelay((10 * 1000) / HZ);
2080 local_irq_restore(flags);
2081
2082 /*
2083 * Expect a few ticks at least, to be sure some possible
2084 * glue logic does not lock up after one or two first
2085 * ticks in a non-ExtINT mode. Also the local APIC
2086 * might have cached one ExtINT interrupt. Finally, at
2087 * least one tick may be lost due to delays.
2088 */
2089
2090 /* jiffies wrap? */
2091 if (time_after(jiffies, t1 + 4))
2092 return 1;
2093 return 0;
2094 }
2095
2096 /*
2097 * In the SMP+IOAPIC case it might happen that there are an unspecified
2098 * number of pending IRQ events unhandled. These cases are very rare,
2099 * so we 'resend' these IRQs via IPIs, to the same CPU. It's much
2100 * better to do it this way as thus we do not have to be aware of
2101 * 'pending' interrupts in the IRQ path, except at this point.
2102 */
2103 /*
2104 * Edge triggered needs to resend any interrupt
2105 * that was delayed but this is now handled in the device
2106 * independent code.
2107 */
2108
2109 /*
2110 * Starting up a edge-triggered IO-APIC interrupt is
2111 * nasty - we need to make sure that we get the edge.
2112 * If it is already asserted for some reason, we need
2113 * return 1 to indicate that is was pending.
2114 *
2115 * This is not complete - we should be able to fake
2116 * an edge even if it isn't on the 8259A...
2117 */
2118
2119 static unsigned int startup_ioapic_irq(unsigned int irq)
2120 {
2121 int was_pending = 0;
2122 unsigned long flags;
2123
2124 spin_lock_irqsave(&ioapic_lock, flags);
2125 if (irq < 16) {
2126 disable_8259A_irq(irq);
2127 if (i8259A_irq_pending(irq))
2128 was_pending = 1;
2129 }
2130 __unmask_IO_APIC_irq(irq);
2131 spin_unlock_irqrestore(&ioapic_lock, flags);
2132
2133 return was_pending;
2134 }
2135
2136 #ifdef CONFIG_X86_64
2137 static int ioapic_retrigger_irq(unsigned int irq)
2138 {
2139
2140 struct irq_cfg *cfg = irq_cfg(irq);
2141 unsigned long flags;
2142
2143 spin_lock_irqsave(&vector_lock, flags);
2144 send_IPI_mask(cpumask_of_cpu(first_cpu(cfg->domain)), cfg->vector);
2145 spin_unlock_irqrestore(&vector_lock, flags);
2146
2147 return 1;
2148 }
2149 #else
2150 static int ioapic_retrigger_irq(unsigned int irq)
2151 {
2152 send_IPI_self(irq_cfg(irq)->vector);
2153
2154 return 1;
2155 }
2156 #endif
2157
2158 /*
2159 * Level and edge triggered IO-APIC interrupts need different handling,
2160 * so we use two separate IRQ descriptors. Edge triggered IRQs can be
2161 * handled with the level-triggered descriptor, but that one has slightly
2162 * more overhead. Level-triggered interrupts cannot be handled with the
2163 * edge-triggered handler, without risking IRQ storms and other ugly
2164 * races.
2165 */
2166
2167 #ifdef CONFIG_SMP
2168
2169 #ifdef CONFIG_INTR_REMAP
2170 static void ir_irq_migration(struct work_struct *work);
2171
2172 static DECLARE_DELAYED_WORK(ir_migration_work, ir_irq_migration);
2173
2174 /*
2175 * Migrate the IO-APIC irq in the presence of intr-remapping.
2176 *
2177 * For edge triggered, irq migration is a simple atomic update(of vector
2178 * and cpu destination) of IRTE and flush the hardware cache.
2179 *
2180 * For level triggered, we need to modify the io-apic RTE aswell with the update
2181 * vector information, along with modifying IRTE with vector and destination.
2182 * So irq migration for level triggered is little bit more complex compared to
2183 * edge triggered migration. But the good news is, we use the same algorithm
2184 * for level triggered migration as we have today, only difference being,
2185 * we now initiate the irq migration from process context instead of the
2186 * interrupt context.
2187 *
2188 * In future, when we do a directed EOI (combined with cpu EOI broadcast
2189 * suppression) to the IO-APIC, level triggered irq migration will also be
2190 * as simple as edge triggered migration and we can do the irq migration
2191 * with a simple atomic update to IO-APIC RTE.
2192 */
2193 static void migrate_ioapic_irq(int irq, cpumask_t mask)
2194 {
2195 struct irq_cfg *cfg;
2196 struct irq_desc *desc;
2197 cpumask_t tmp, cleanup_mask;
2198 struct irte irte;
2199 int modify_ioapic_rte;
2200 unsigned int dest;
2201 unsigned long flags;
2202
2203 cpus_and(tmp, mask, cpu_online_map);
2204 if (cpus_empty(tmp))
2205 return;
2206
2207 if (get_irte(irq, &irte))
2208 return;
2209
2210 if (assign_irq_vector(irq, mask))
2211 return;
2212
2213 cfg = irq_cfg(irq);
2214 cpus_and(tmp, cfg->domain, mask);
2215 dest = cpu_mask_to_apicid(tmp);
2216
2217 desc = irq_to_desc(irq);
2218 modify_ioapic_rte = desc->status & IRQ_LEVEL;
2219 if (modify_ioapic_rte) {
2220 spin_lock_irqsave(&ioapic_lock, flags);
2221 __target_IO_APIC_irq(irq, dest, cfg->vector);
2222 spin_unlock_irqrestore(&ioapic_lock, flags);
2223 }
2224
2225 irte.vector = cfg->vector;
2226 irte.dest_id = IRTE_DEST(dest);
2227
2228 /*
2229 * Modified the IRTE and flushes the Interrupt entry cache.
2230 */
2231 modify_irte(irq, &irte);
2232
2233 if (cfg->move_in_progress) {
2234 cpus_and(cleanup_mask, cfg->old_domain, cpu_online_map);
2235 cfg->move_cleanup_count = cpus_weight(cleanup_mask);
2236 send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
2237 cfg->move_in_progress = 0;
2238 }
2239
2240 desc->affinity = mask;
2241 }
2242
2243 static int migrate_irq_remapped_level(int irq)
2244 {
2245 int ret = -1;
2246 struct irq_desc *desc = irq_to_desc(irq);
2247
2248 mask_IO_APIC_irq(irq);
2249
2250 if (io_apic_level_ack_pending(irq)) {
2251 /*
2252 * Interrupt in progress. Migrating irq now will change the
2253 * vector information in the IO-APIC RTE and that will confuse
2254 * the EOI broadcast performed by cpu.
2255 * So, delay the irq migration to the next instance.
2256 */
2257 schedule_delayed_work(&ir_migration_work, 1);
2258 goto unmask;
2259 }
2260
2261 /* everthing is clear. we have right of way */
2262 migrate_ioapic_irq(irq, desc->pending_mask);
2263
2264 ret = 0;
2265 desc->status &= ~IRQ_MOVE_PENDING;
2266 cpus_clear(desc->pending_mask);
2267
2268 unmask:
2269 unmask_IO_APIC_irq(irq);
2270 return ret;
2271 }
2272
2273 static void ir_irq_migration(struct work_struct *work)
2274 {
2275 unsigned int irq;
2276 struct irq_desc *desc;
2277
2278 for_each_irq_desc(irq, desc) {
2279 if (desc->status & IRQ_MOVE_PENDING) {
2280 unsigned long flags;
2281
2282 spin_lock_irqsave(&desc->lock, flags);
2283 if (!desc->chip->set_affinity ||
2284 !(desc->status & IRQ_MOVE_PENDING)) {
2285 desc->status &= ~IRQ_MOVE_PENDING;
2286 spin_unlock_irqrestore(&desc->lock, flags);
2287 continue;
2288 }
2289
2290 desc->chip->set_affinity(irq, desc->pending_mask);
2291 spin_unlock_irqrestore(&desc->lock, flags);
2292 }
2293 }
2294 }
2295
2296 /*
2297 * Migrates the IRQ destination in the process context.
2298 */
2299 static void set_ir_ioapic_affinity_irq(unsigned int irq, cpumask_t mask)
2300 {
2301 struct irq_desc *desc = irq_to_desc(irq);
2302
2303 if (desc->status & IRQ_LEVEL) {
2304 desc->status |= IRQ_MOVE_PENDING;
2305 desc->pending_mask = mask;
2306 migrate_irq_remapped_level(irq);
2307 return;
2308 }
2309
2310 migrate_ioapic_irq(irq, mask);
2311 }
2312 #endif
2313
2314 asmlinkage void smp_irq_move_cleanup_interrupt(void)
2315 {
2316 unsigned vector, me;
2317 ack_APIC_irq();
2318 #ifdef CONFIG_X86_64
2319 exit_idle();
2320 #endif
2321 irq_enter();
2322
2323 me = smp_processor_id();
2324 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
2325 unsigned int irq;
2326 struct irq_desc *desc;
2327 struct irq_cfg *cfg;
2328 irq = __get_cpu_var(vector_irq)[vector];
2329
2330 desc = irq_to_desc(irq);
2331 if (!desc)
2332 continue;
2333
2334 cfg = irq_cfg(irq);
2335 spin_lock(&desc->lock);
2336 if (!cfg->move_cleanup_count)
2337 goto unlock;
2338
2339 if ((vector == cfg->vector) && cpu_isset(me, cfg->domain))
2340 goto unlock;
2341
2342 __get_cpu_var(vector_irq)[vector] = -1;
2343 cfg->move_cleanup_count--;
2344 unlock:
2345 spin_unlock(&desc->lock);
2346 }
2347
2348 irq_exit();
2349 }
2350
2351 static void irq_complete_move(unsigned int irq)
2352 {
2353 struct irq_cfg *cfg = irq_cfg(irq);
2354 unsigned vector, me;
2355
2356 if (likely(!cfg->move_in_progress))
2357 return;
2358
2359 vector = ~get_irq_regs()->orig_ax;
2360 me = smp_processor_id();
2361 if ((vector == cfg->vector) && cpu_isset(me, cfg->domain)) {
2362 cpumask_t cleanup_mask;
2363
2364 cpus_and(cleanup_mask, cfg->old_domain, cpu_online_map);
2365 cfg->move_cleanup_count = cpus_weight(cleanup_mask);
2366 send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
2367 cfg->move_in_progress = 0;
2368 }
2369 }
2370 #else
2371 static inline void irq_complete_move(unsigned int irq) {}
2372 #endif
2373 #ifdef CONFIG_INTR_REMAP
2374 static void ack_x2apic_level(unsigned int irq)
2375 {
2376 ack_x2APIC_irq();
2377 }
2378
2379 static void ack_x2apic_edge(unsigned int irq)
2380 {
2381 ack_x2APIC_irq();
2382 }
2383 #endif
2384
2385 static void ack_apic_edge(unsigned int irq)
2386 {
2387 irq_complete_move(irq);
2388 move_native_irq(irq);
2389 ack_APIC_irq();
2390 }
2391
2392 #ifdef CONFIG_X86_32
2393 atomic_t irq_mis_count;
2394 #endif
2395
2396 static void ack_apic_level(unsigned int irq)
2397 {
2398 #ifdef CONFIG_X86_32
2399 unsigned long v;
2400 int i;
2401 #endif
2402 int do_unmask_irq = 0;
2403
2404 irq_complete_move(irq);
2405 #ifdef CONFIG_GENERIC_PENDING_IRQ
2406 /* If we are moving the irq we need to mask it */
2407 if (unlikely(irq_to_desc(irq)->status & IRQ_MOVE_PENDING)) {
2408 do_unmask_irq = 1;
2409 mask_IO_APIC_irq(irq);
2410 }
2411 #endif
2412
2413 #ifdef CONFIG_X86_32
2414 /*
2415 * It appears there is an erratum which affects at least version 0x11
2416 * of I/O APIC (that's the 82093AA and cores integrated into various
2417 * chipsets). Under certain conditions a level-triggered interrupt is
2418 * erroneously delivered as edge-triggered one but the respective IRR
2419 * bit gets set nevertheless. As a result the I/O unit expects an EOI
2420 * message but it will never arrive and further interrupts are blocked
2421 * from the source. The exact reason is so far unknown, but the
2422 * phenomenon was observed when two consecutive interrupt requests
2423 * from a given source get delivered to the same CPU and the source is
2424 * temporarily disabled in between.
2425 *
2426 * A workaround is to simulate an EOI message manually. We achieve it
2427 * by setting the trigger mode to edge and then to level when the edge
2428 * trigger mode gets detected in the TMR of a local APIC for a
2429 * level-triggered interrupt. We mask the source for the time of the
2430 * operation to prevent an edge-triggered interrupt escaping meanwhile.
2431 * The idea is from Manfred Spraul. --macro
2432 */
2433 i = irq_cfg(irq)->vector;
2434
2435 v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1));
2436 #endif
2437
2438 /*
2439 * We must acknowledge the irq before we move it or the acknowledge will
2440 * not propagate properly.
2441 */
2442 ack_APIC_irq();
2443
2444 /* Now we can move and renable the irq */
2445 if (unlikely(do_unmask_irq)) {
2446 /* Only migrate the irq if the ack has been received.
2447 *
2448 * On rare occasions the broadcast level triggered ack gets
2449 * delayed going to ioapics, and if we reprogram the
2450 * vector while Remote IRR is still set the irq will never
2451 * fire again.
2452 *
2453 * To prevent this scenario we read the Remote IRR bit
2454 * of the ioapic. This has two effects.
2455 * - On any sane system the read of the ioapic will
2456 * flush writes (and acks) going to the ioapic from
2457 * this cpu.
2458 * - We get to see if the ACK has actually been delivered.
2459 *
2460 * Based on failed experiments of reprogramming the
2461 * ioapic entry from outside of irq context starting
2462 * with masking the ioapic entry and then polling until
2463 * Remote IRR was clear before reprogramming the
2464 * ioapic I don't trust the Remote IRR bit to be
2465 * completey accurate.
2466 *
2467 * However there appears to be no other way to plug
2468 * this race, so if the Remote IRR bit is not
2469 * accurate and is causing problems then it is a hardware bug
2470 * and you can go talk to the chipset vendor about it.
2471 */
2472 if (!io_apic_level_ack_pending(irq))
2473 move_masked_irq(irq);
2474 unmask_IO_APIC_irq(irq);
2475 }
2476
2477 #ifdef CONFIG_X86_32
2478 if (!(v & (1 << (i & 0x1f)))) {
2479 atomic_inc(&irq_mis_count);
2480 spin_lock(&ioapic_lock);
2481 __mask_and_edge_IO_APIC_irq(irq);
2482 __unmask_and_level_IO_APIC_irq(irq);
2483 spin_unlock(&ioapic_lock);
2484 }
2485 #endif
2486 }
2487
2488 static struct irq_chip ioapic_chip __read_mostly = {
2489 .name = "IO-APIC",
2490 .startup = startup_ioapic_irq,
2491 .mask = mask_IO_APIC_irq,
2492 .unmask = unmask_IO_APIC_irq,
2493 .ack = ack_apic_edge,
2494 .eoi = ack_apic_level,
2495 #ifdef CONFIG_SMP
2496 .set_affinity = set_ioapic_affinity_irq,
2497 #endif
2498 .retrigger = ioapic_retrigger_irq,
2499 };
2500
2501 #ifdef CONFIG_INTR_REMAP
2502 static struct irq_chip ir_ioapic_chip __read_mostly = {
2503 .name = "IR-IO-APIC",
2504 .startup = startup_ioapic_irq,
2505 .mask = mask_IO_APIC_irq,
2506 .unmask = unmask_IO_APIC_irq,
2507 .ack = ack_x2apic_edge,
2508 .eoi = ack_x2apic_level,
2509 #ifdef CONFIG_SMP
2510 .set_affinity = set_ir_ioapic_affinity_irq,
2511 #endif
2512 .retrigger = ioapic_retrigger_irq,
2513 };
2514 #endif
2515
2516 static inline void init_IO_APIC_traps(void)
2517 {
2518 int irq;
2519 struct irq_desc *desc;
2520 struct irq_cfg *cfg;
2521
2522 /*
2523 * NOTE! The local APIC isn't very good at handling
2524 * multiple interrupts at the same interrupt level.
2525 * As the interrupt level is determined by taking the
2526 * vector number and shifting that right by 4, we
2527 * want to spread these out a bit so that they don't
2528 * all fall in the same interrupt level.
2529 *
2530 * Also, we've got to be careful not to trash gate
2531 * 0x80, because int 0x80 is hm, kind of importantish. ;)
2532 */
2533 for_each_irq_cfg(cfg) {
2534 irq = cfg->irq;
2535 if (IO_APIC_IRQ(irq) && !cfg->vector) {
2536 /*
2537 * Hmm.. We don't have an entry for this,
2538 * so default to an old-fashioned 8259
2539 * interrupt if we can..
2540 */
2541 if (irq < 16)
2542 make_8259A_irq(irq);
2543 else {
2544 desc = irq_to_desc(irq);
2545 /* Strange. Oh, well.. */
2546 desc->chip = &no_irq_chip;
2547 }
2548 }
2549 }
2550 }
2551
2552 /*
2553 * The local APIC irq-chip implementation:
2554 */
2555
2556 static void mask_lapic_irq(unsigned int irq)
2557 {
2558 unsigned long v;
2559
2560 v = apic_read(APIC_LVT0);
2561 apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
2562 }
2563
2564 static void unmask_lapic_irq(unsigned int irq)
2565 {
2566 unsigned long v;
2567
2568 v = apic_read(APIC_LVT0);
2569 apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED);
2570 }
2571
2572 static void ack_lapic_irq (unsigned int irq)
2573 {
2574 ack_APIC_irq();
2575 }
2576
2577 static struct irq_chip lapic_chip __read_mostly = {
2578 .name = "local-APIC",
2579 .mask = mask_lapic_irq,
2580 .unmask = unmask_lapic_irq,
2581 .ack = ack_lapic_irq,
2582 };
2583
2584 static void lapic_register_intr(int irq)
2585 {
2586 struct irq_desc *desc;
2587
2588 desc = irq_to_desc(irq);
2589 desc->status &= ~IRQ_LEVEL;
2590 set_irq_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq,
2591 "edge");
2592 }
2593
2594 static void __init setup_nmi(void)
2595 {
2596 /*
2597 * Dirty trick to enable the NMI watchdog ...
2598 * We put the 8259A master into AEOI mode and
2599 * unmask on all local APICs LVT0 as NMI.
2600 *
2601 * The idea to use the 8259A in AEOI mode ('8259A Virtual Wire')
2602 * is from Maciej W. Rozycki - so we do not have to EOI from
2603 * the NMI handler or the timer interrupt.
2604 */
2605 apic_printk(APIC_VERBOSE, KERN_INFO "activating NMI Watchdog ...");
2606
2607 enable_NMI_through_LVT0();
2608
2609 apic_printk(APIC_VERBOSE, " done.\n");
2610 }
2611
2612 /*
2613 * This looks a bit hackish but it's about the only one way of sending
2614 * a few INTA cycles to 8259As and any associated glue logic. ICR does
2615 * not support the ExtINT mode, unfortunately. We need to send these
2616 * cycles as some i82489DX-based boards have glue logic that keeps the
2617 * 8259A interrupt line asserted until INTA. --macro
2618 */
2619 static inline void __init unlock_ExtINT_logic(void)
2620 {
2621 int apic, pin, i;
2622 struct IO_APIC_route_entry entry0, entry1;
2623 unsigned char save_control, save_freq_select;
2624
2625 pin = find_isa_irq_pin(8, mp_INT);
2626 if (pin == -1) {
2627 WARN_ON_ONCE(1);
2628 return;
2629 }
2630 apic = find_isa_irq_apic(8, mp_INT);
2631 if (apic == -1) {
2632 WARN_ON_ONCE(1);
2633 return;
2634 }
2635
2636 entry0 = ioapic_read_entry(apic, pin);
2637 clear_IO_APIC_pin(apic, pin);
2638
2639 memset(&entry1, 0, sizeof(entry1));
2640
2641 entry1.dest_mode = 0; /* physical delivery */
2642 entry1.mask = 0; /* unmask IRQ now */
2643 entry1.dest = hard_smp_processor_id();
2644 entry1.delivery_mode = dest_ExtINT;
2645 entry1.polarity = entry0.polarity;
2646 entry1.trigger = 0;
2647 entry1.vector = 0;
2648
2649 ioapic_write_entry(apic, pin, entry1);
2650
2651 save_control = CMOS_READ(RTC_CONTROL);
2652 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
2653 CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6,
2654 RTC_FREQ_SELECT);
2655 CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL);
2656
2657 i = 100;
2658 while (i-- > 0) {
2659 mdelay(10);
2660 if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF)
2661 i -= 10;
2662 }
2663
2664 CMOS_WRITE(save_control, RTC_CONTROL);
2665 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
2666 clear_IO_APIC_pin(apic, pin);
2667
2668 ioapic_write_entry(apic, pin, entry0);
2669 }
2670
2671 static int disable_timer_pin_1 __initdata;
2672 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */
2673 static int __init disable_timer_pin_setup(char *arg)
2674 {
2675 disable_timer_pin_1 = 1;
2676 return 0;
2677 }
2678 early_param("disable_timer_pin_1", disable_timer_pin_setup);
2679
2680 int timer_through_8259 __initdata;
2681
2682 /*
2683 * This code may look a bit paranoid, but it's supposed to cooperate with
2684 * a wide range of boards and BIOS bugs. Fortunately only the timer IRQ
2685 * is so screwy. Thanks to Brian Perkins for testing/hacking this beast
2686 * fanatically on his truly buggy board.
2687 *
2688 * FIXME: really need to revamp this for all platforms.
2689 */
2690 static inline void __init check_timer(void)
2691 {
2692 struct irq_cfg *cfg = irq_cfg(0);
2693 int apic1, pin1, apic2, pin2;
2694 unsigned long flags;
2695 unsigned int ver;
2696 int no_pin1 = 0;
2697
2698 local_irq_save(flags);
2699
2700 ver = apic_read(APIC_LVR);
2701 ver = GET_APIC_VERSION(ver);
2702
2703 /*
2704 * get/set the timer IRQ vector:
2705 */
2706 disable_8259A_irq(0);
2707 assign_irq_vector(0, TARGET_CPUS);
2708
2709 /*
2710 * As IRQ0 is to be enabled in the 8259A, the virtual
2711 * wire has to be disabled in the local APIC. Also
2712 * timer interrupts need to be acknowledged manually in
2713 * the 8259A for the i82489DX when using the NMI
2714 * watchdog as that APIC treats NMIs as level-triggered.
2715 * The AEOI mode will finish them in the 8259A
2716 * automatically.
2717 */
2718 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT);
2719 init_8259A(1);
2720 #ifdef CONFIG_X86_32
2721 timer_ack = (nmi_watchdog == NMI_IO_APIC && !APIC_INTEGRATED(ver));
2722 #endif
2723
2724 pin1 = find_isa_irq_pin(0, mp_INT);
2725 apic1 = find_isa_irq_apic(0, mp_INT);
2726 pin2 = ioapic_i8259.pin;
2727 apic2 = ioapic_i8259.apic;
2728
2729 apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X "
2730 "apic1=%d pin1=%d apic2=%d pin2=%d\n",
2731 cfg->vector, apic1, pin1, apic2, pin2);
2732
2733 /*
2734 * Some BIOS writers are clueless and report the ExtINTA
2735 * I/O APIC input from the cascaded 8259A as the timer
2736 * interrupt input. So just in case, if only one pin
2737 * was found above, try it both directly and through the
2738 * 8259A.
2739 */
2740 if (pin1 == -1) {
2741 #ifdef CONFIG_INTR_REMAP
2742 if (intr_remapping_enabled)
2743 panic("BIOS bug: timer not connected to IO-APIC");
2744 #endif
2745 pin1 = pin2;
2746 apic1 = apic2;
2747 no_pin1 = 1;
2748 } else if (pin2 == -1) {
2749 pin2 = pin1;
2750 apic2 = apic1;
2751 }
2752
2753 if (pin1 != -1) {
2754 /*
2755 * Ok, does IRQ0 through the IOAPIC work?
2756 */
2757 if (no_pin1) {
2758 add_pin_to_irq(0, apic1, pin1);
2759 setup_timer_IRQ0_pin(apic1, pin1, cfg->vector);
2760 }
2761 unmask_IO_APIC_irq(0);
2762 if (timer_irq_works()) {
2763 if (nmi_watchdog == NMI_IO_APIC) {
2764 setup_nmi();
2765 enable_8259A_irq(0);
2766 }
2767 if (disable_timer_pin_1 > 0)
2768 clear_IO_APIC_pin(0, pin1);
2769 goto out;
2770 }
2771 #ifdef CONFIG_INTR_REMAP
2772 if (intr_remapping_enabled)
2773 panic("timer doesn't work through Interrupt-remapped IO-APIC");
2774 #endif
2775 clear_IO_APIC_pin(apic1, pin1);
2776 if (!no_pin1)
2777 apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: "
2778 "8254 timer not connected to IO-APIC\n");
2779
2780 apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer "
2781 "(IRQ0) through the 8259A ...\n");
2782 apic_printk(APIC_QUIET, KERN_INFO
2783 "..... (found apic %d pin %d) ...\n", apic2, pin2);
2784 /*
2785 * legacy devices should be connected to IO APIC #0
2786 */
2787 replace_pin_at_irq(0, apic1, pin1, apic2, pin2);
2788 setup_timer_IRQ0_pin(apic2, pin2, cfg->vector);
2789 unmask_IO_APIC_irq(0);
2790 enable_8259A_irq(0);
2791 if (timer_irq_works()) {
2792 apic_printk(APIC_QUIET, KERN_INFO "....... works.\n");
2793 timer_through_8259 = 1;
2794 if (nmi_watchdog == NMI_IO_APIC) {
2795 disable_8259A_irq(0);
2796 setup_nmi();
2797 enable_8259A_irq(0);
2798 }
2799 goto out;
2800 }
2801 /*
2802 * Cleanup, just in case ...
2803 */
2804 disable_8259A_irq(0);
2805 clear_IO_APIC_pin(apic2, pin2);
2806 apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n");
2807 }
2808
2809 if (nmi_watchdog == NMI_IO_APIC) {
2810 apic_printk(APIC_QUIET, KERN_WARNING "timer doesn't work "
2811 "through the IO-APIC - disabling NMI Watchdog!\n");
2812 nmi_watchdog = NMI_NONE;
2813 }
2814 #ifdef CONFIG_X86_32
2815 timer_ack = 0;
2816 #endif
2817
2818 apic_printk(APIC_QUIET, KERN_INFO
2819 "...trying to set up timer as Virtual Wire IRQ...\n");
2820
2821 lapic_register_intr(0);
2822 apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector); /* Fixed mode */
2823 enable_8259A_irq(0);
2824
2825 if (timer_irq_works()) {
2826 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
2827 goto out;
2828 }
2829 disable_8259A_irq(0);
2830 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector);
2831 apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n");
2832
2833 apic_printk(APIC_QUIET, KERN_INFO
2834 "...trying to set up timer as ExtINT IRQ...\n");
2835
2836 init_8259A(0);
2837 make_8259A_irq(0);
2838 apic_write(APIC_LVT0, APIC_DM_EXTINT);
2839
2840 unlock_ExtINT_logic();
2841
2842 if (timer_irq_works()) {
2843 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
2844 goto out;
2845 }
2846 apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n");
2847 panic("IO-APIC + timer doesn't work! Boot with apic=debug and send a "
2848 "report. Then try booting with the 'noapic' option.\n");
2849 out:
2850 local_irq_restore(flags);
2851 }
2852
2853 /*
2854 * Traditionally ISA IRQ2 is the cascade IRQ, and is not available
2855 * to devices. However there may be an I/O APIC pin available for
2856 * this interrupt regardless. The pin may be left unconnected, but
2857 * typically it will be reused as an ExtINT cascade interrupt for
2858 * the master 8259A. In the MPS case such a pin will normally be
2859 * reported as an ExtINT interrupt in the MP table. With ACPI
2860 * there is no provision for ExtINT interrupts, and in the absence
2861 * of an override it would be treated as an ordinary ISA I/O APIC
2862 * interrupt, that is edge-triggered and unmasked by default. We
2863 * used to do this, but it caused problems on some systems because
2864 * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using
2865 * the same ExtINT cascade interrupt to drive the local APIC of the
2866 * bootstrap processor. Therefore we refrain from routing IRQ2 to
2867 * the I/O APIC in all cases now. No actual device should request
2868 * it anyway. --macro
2869 */
2870 #define PIC_IRQS (1 << PIC_CASCADE_IR)
2871
2872 void __init setup_IO_APIC(void)
2873 {
2874
2875 #ifdef CONFIG_X86_32
2876 enable_IO_APIC();
2877 #else
2878 /*
2879 * calling enable_IO_APIC() is moved to setup_local_APIC for BP
2880 */
2881 #endif
2882
2883 io_apic_irqs = ~PIC_IRQS;
2884
2885 apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n");
2886 /*
2887 * Set up IO-APIC IRQ routing.
2888 */
2889 #ifdef CONFIG_X86_32
2890 if (!acpi_ioapic)
2891 setup_ioapic_ids_from_mpc();
2892 #endif
2893 sync_Arb_IDs();
2894 setup_IO_APIC_irqs();
2895 init_IO_APIC_traps();
2896 check_timer();
2897 }
2898
2899 /*
2900 * Called after all the initialization is done. If we didnt find any
2901 * APIC bugs then we can allow the modify fast path
2902 */
2903
2904 static int __init io_apic_bug_finalize(void)
2905 {
2906 if (sis_apic_bug == -1)
2907 sis_apic_bug = 0;
2908 return 0;
2909 }
2910
2911 late_initcall(io_apic_bug_finalize);
2912
2913 struct sysfs_ioapic_data {
2914 struct sys_device dev;
2915 struct IO_APIC_route_entry entry[0];
2916 };
2917 static struct sysfs_ioapic_data * mp_ioapic_data[MAX_IO_APICS];
2918
2919 static int ioapic_suspend(struct sys_device *dev, pm_message_t state)
2920 {
2921 struct IO_APIC_route_entry *entry;
2922 struct sysfs_ioapic_data *data;
2923 int i;
2924
2925 data = container_of(dev, struct sysfs_ioapic_data, dev);
2926 entry = data->entry;
2927 for (i = 0; i < nr_ioapic_registers[dev->id]; i ++, entry ++ )
2928 *entry = ioapic_read_entry(dev->id, i);
2929
2930 return 0;
2931 }
2932
2933 static int ioapic_resume(struct sys_device *dev)
2934 {
2935 struct IO_APIC_route_entry *entry;
2936 struct sysfs_ioapic_data *data;
2937 unsigned long flags;
2938 union IO_APIC_reg_00 reg_00;
2939 int i;
2940
2941 data = container_of(dev, struct sysfs_ioapic_data, dev);
2942 entry = data->entry;
2943
2944 spin_lock_irqsave(&ioapic_lock, flags);
2945 reg_00.raw = io_apic_read(dev->id, 0);
2946 if (reg_00.bits.ID != mp_ioapics[dev->id].mp_apicid) {
2947 reg_00.bits.ID = mp_ioapics[dev->id].mp_apicid;
2948 io_apic_write(dev->id, 0, reg_00.raw);
2949 }
2950 spin_unlock_irqrestore(&ioapic_lock, flags);
2951 for (i = 0; i < nr_ioapic_registers[dev->id]; i++)
2952 ioapic_write_entry(dev->id, i, entry[i]);
2953
2954 return 0;
2955 }
2956
2957 static struct sysdev_class ioapic_sysdev_class = {
2958 .name = "ioapic",
2959 .suspend = ioapic_suspend,
2960 .resume = ioapic_resume,
2961 };
2962
2963 static int __init ioapic_init_sysfs(void)
2964 {
2965 struct sys_device * dev;
2966 int i, size, error;
2967
2968 error = sysdev_class_register(&ioapic_sysdev_class);
2969 if (error)
2970 return error;
2971
2972 for (i = 0; i < nr_ioapics; i++ ) {
2973 size = sizeof(struct sys_device) + nr_ioapic_registers[i]
2974 * sizeof(struct IO_APIC_route_entry);
2975 mp_ioapic_data[i] = kzalloc(size, GFP_KERNEL);
2976 if (!mp_ioapic_data[i]) {
2977 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
2978 continue;
2979 }
2980 dev = &mp_ioapic_data[i]->dev;
2981 dev->id = i;
2982 dev->cls = &ioapic_sysdev_class;
2983 error = sysdev_register(dev);
2984 if (error) {
2985 kfree(mp_ioapic_data[i]);
2986 mp_ioapic_data[i] = NULL;
2987 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
2988 continue;
2989 }
2990 }
2991
2992 return 0;
2993 }
2994
2995 device_initcall(ioapic_init_sysfs);
2996
2997 /*
2998 * Dynamic irq allocate and deallocation
2999 */
3000 unsigned int create_irq_nr(unsigned int irq_want)
3001 {
3002 /* Allocate an unused irq */
3003 unsigned int irq;
3004 unsigned int new;
3005 unsigned long flags;
3006 struct irq_cfg *cfg_new;
3007
3008 #ifndef CONFIG_HAVE_SPARSE_IRQ
3009 irq_want = nr_irqs - 1;
3010 #endif
3011
3012 irq = 0;
3013 spin_lock_irqsave(&vector_lock, flags);
3014 for (new = irq_want; new > 0; new--) {
3015 if (platform_legacy_irq(new))
3016 continue;
3017 cfg_new = irq_cfg(new);
3018 if (cfg_new && cfg_new->vector != 0)
3019 continue;
3020 /* check if need to create one */
3021 if (!cfg_new)
3022 cfg_new = irq_cfg_alloc(new);
3023 if (__assign_irq_vector(new, TARGET_CPUS) == 0)
3024 irq = new;
3025 break;
3026 }
3027 spin_unlock_irqrestore(&vector_lock, flags);
3028
3029 if (irq > 0) {
3030 dynamic_irq_init(irq);
3031 }
3032 return irq;
3033 }
3034
3035 int create_irq(void)
3036 {
3037 int irq;
3038
3039 irq = create_irq_nr(nr_irqs - 1);
3040
3041 if (irq == 0)
3042 irq = -1;
3043
3044 return irq;
3045 }
3046
3047 void destroy_irq(unsigned int irq)
3048 {
3049 unsigned long flags;
3050
3051 dynamic_irq_cleanup(irq);
3052
3053 #ifdef CONFIG_INTR_REMAP
3054 free_irte(irq);
3055 #endif
3056 spin_lock_irqsave(&vector_lock, flags);
3057 __clear_irq_vector(irq);
3058 spin_unlock_irqrestore(&vector_lock, flags);
3059 }
3060
3061 /*
3062 * MSI message composition
3063 */
3064 #ifdef CONFIG_PCI_MSI
3065 static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq, struct msi_msg *msg)
3066 {
3067 struct irq_cfg *cfg;
3068 int err;
3069 unsigned dest;
3070 cpumask_t tmp;
3071
3072 tmp = TARGET_CPUS;
3073 err = assign_irq_vector(irq, tmp);
3074 if (err)
3075 return err;
3076
3077 cfg = irq_cfg(irq);
3078 cpus_and(tmp, cfg->domain, tmp);
3079 dest = cpu_mask_to_apicid(tmp);
3080
3081 #ifdef CONFIG_INTR_REMAP
3082 if (irq_remapped(irq)) {
3083 struct irte irte;
3084 int ir_index;
3085 u16 sub_handle;
3086
3087 ir_index = map_irq_to_irte_handle(irq, &sub_handle);
3088 BUG_ON(ir_index == -1);
3089
3090 memset (&irte, 0, sizeof(irte));
3091
3092 irte.present = 1;
3093 irte.dst_mode = INT_DEST_MODE;
3094 irte.trigger_mode = 0; /* edge */
3095 irte.dlvry_mode = INT_DELIVERY_MODE;
3096 irte.vector = cfg->vector;
3097 irte.dest_id = IRTE_DEST(dest);
3098
3099 modify_irte(irq, &irte);
3100
3101 msg->address_hi = MSI_ADDR_BASE_HI;
3102 msg->data = sub_handle;
3103 msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
3104 MSI_ADDR_IR_SHV |
3105 MSI_ADDR_IR_INDEX1(ir_index) |
3106 MSI_ADDR_IR_INDEX2(ir_index);
3107 } else
3108 #endif
3109 {
3110 msg->address_hi = MSI_ADDR_BASE_HI;
3111 msg->address_lo =
3112 MSI_ADDR_BASE_LO |
3113 ((INT_DEST_MODE == 0) ?
3114 MSI_ADDR_DEST_MODE_PHYSICAL:
3115 MSI_ADDR_DEST_MODE_LOGICAL) |
3116 ((INT_DELIVERY_MODE != dest_LowestPrio) ?
3117 MSI_ADDR_REDIRECTION_CPU:
3118 MSI_ADDR_REDIRECTION_LOWPRI) |
3119 MSI_ADDR_DEST_ID(dest);
3120
3121 msg->data =
3122 MSI_DATA_TRIGGER_EDGE |
3123 MSI_DATA_LEVEL_ASSERT |
3124 ((INT_DELIVERY_MODE != dest_LowestPrio) ?
3125 MSI_DATA_DELIVERY_FIXED:
3126 MSI_DATA_DELIVERY_LOWPRI) |
3127 MSI_DATA_VECTOR(cfg->vector);
3128 }
3129 return err;
3130 }
3131
3132 #ifdef CONFIG_SMP
3133 static void set_msi_irq_affinity(unsigned int irq, cpumask_t mask)
3134 {
3135 struct irq_cfg *cfg;
3136 struct msi_msg msg;
3137 unsigned int dest;
3138 cpumask_t tmp;
3139 struct irq_desc *desc;
3140
3141 cpus_and(tmp, mask, cpu_online_map);
3142 if (cpus_empty(tmp))
3143 return;
3144
3145 if (assign_irq_vector(irq, mask))
3146 return;
3147
3148 cfg = irq_cfg(irq);
3149 cpus_and(tmp, cfg->domain, mask);
3150 dest = cpu_mask_to_apicid(tmp);
3151
3152 read_msi_msg(irq, &msg);
3153
3154 msg.data &= ~MSI_DATA_VECTOR_MASK;
3155 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3156 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3157 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3158
3159 write_msi_msg(irq, &msg);
3160 desc = irq_to_desc(irq);
3161 desc->affinity = mask;
3162 }
3163
3164 #ifdef CONFIG_INTR_REMAP
3165 /*
3166 * Migrate the MSI irq to another cpumask. This migration is
3167 * done in the process context using interrupt-remapping hardware.
3168 */
3169 static void ir_set_msi_irq_affinity(unsigned int irq, cpumask_t mask)
3170 {
3171 struct irq_cfg *cfg;
3172 unsigned int dest;
3173 cpumask_t tmp, cleanup_mask;
3174 struct irte irte;
3175 struct irq_desc *desc;
3176
3177 cpus_and(tmp, mask, cpu_online_map);
3178 if (cpus_empty(tmp))
3179 return;
3180
3181 if (get_irte(irq, &irte))
3182 return;
3183
3184 if (assign_irq_vector(irq, mask))
3185 return;
3186
3187 cfg = irq_cfg(irq);
3188 cpus_and(tmp, cfg->domain, mask);
3189 dest = cpu_mask_to_apicid(tmp);
3190
3191 irte.vector = cfg->vector;
3192 irte.dest_id = IRTE_DEST(dest);
3193
3194 /*
3195 * atomically update the IRTE with the new destination and vector.
3196 */
3197 modify_irte(irq, &irte);
3198
3199 /*
3200 * After this point, all the interrupts will start arriving
3201 * at the new destination. So, time to cleanup the previous
3202 * vector allocation.
3203 */
3204 if (cfg->move_in_progress) {
3205 cpus_and(cleanup_mask, cfg->old_domain, cpu_online_map);
3206 cfg->move_cleanup_count = cpus_weight(cleanup_mask);
3207 send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
3208 cfg->move_in_progress = 0;
3209 }
3210
3211 desc = irq_to_desc(irq);
3212 desc->affinity = mask;
3213 }
3214 #endif
3215 #endif /* CONFIG_SMP */
3216
3217 /*
3218 * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
3219 * which implement the MSI or MSI-X Capability Structure.
3220 */
3221 static struct irq_chip msi_chip = {
3222 .name = "PCI-MSI",
3223 .unmask = unmask_msi_irq,
3224 .mask = mask_msi_irq,
3225 .ack = ack_apic_edge,
3226 #ifdef CONFIG_SMP
3227 .set_affinity = set_msi_irq_affinity,
3228 #endif
3229 .retrigger = ioapic_retrigger_irq,
3230 };
3231
3232 #ifdef CONFIG_INTR_REMAP
3233 static struct irq_chip msi_ir_chip = {
3234 .name = "IR-PCI-MSI",
3235 .unmask = unmask_msi_irq,
3236 .mask = mask_msi_irq,
3237 .ack = ack_x2apic_edge,
3238 #ifdef CONFIG_SMP
3239 .set_affinity = ir_set_msi_irq_affinity,
3240 #endif
3241 .retrigger = ioapic_retrigger_irq,
3242 };
3243
3244 /*
3245 * Map the PCI dev to the corresponding remapping hardware unit
3246 * and allocate 'nvec' consecutive interrupt-remapping table entries
3247 * in it.
3248 */
3249 static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec)
3250 {
3251 struct intel_iommu *iommu;
3252 int index;
3253
3254 iommu = map_dev_to_ir(dev);
3255 if (!iommu) {
3256 printk(KERN_ERR
3257 "Unable to map PCI %s to iommu\n", pci_name(dev));
3258 return -ENOENT;
3259 }
3260
3261 index = alloc_irte(iommu, irq, nvec);
3262 if (index < 0) {
3263 printk(KERN_ERR
3264 "Unable to allocate %d IRTE for PCI %s\n", nvec,
3265 pci_name(dev));
3266 return -ENOSPC;
3267 }
3268 return index;
3269 }
3270 #endif
3271
3272 static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc, int irq)
3273 {
3274 int ret;
3275 struct msi_msg msg;
3276
3277 ret = msi_compose_msg(dev, irq, &msg);
3278 if (ret < 0)
3279 return ret;
3280
3281 set_irq_msi(irq, desc);
3282 write_msi_msg(irq, &msg);
3283
3284 #ifdef CONFIG_INTR_REMAP
3285 if (irq_remapped(irq)) {
3286 struct irq_desc *desc = irq_to_desc(irq);
3287 /*
3288 * irq migration in process context
3289 */
3290 desc->status |= IRQ_MOVE_PCNTXT;
3291 set_irq_chip_and_handler_name(irq, &msi_ir_chip, handle_edge_irq, "edge");
3292 } else
3293 #endif
3294 set_irq_chip_and_handler_name(irq, &msi_chip, handle_edge_irq, "edge");
3295
3296 return 0;
3297 }
3298
3299 static unsigned int build_irq_for_pci_dev(struct pci_dev *dev)
3300 {
3301 unsigned int irq;
3302
3303 irq = dev->bus->number;
3304 irq <<= 8;
3305 irq |= dev->devfn;
3306 irq <<= 12;
3307
3308 return irq;
3309 }
3310
3311 int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
3312 {
3313 unsigned int irq;
3314 int ret;
3315 unsigned int irq_want;
3316
3317 irq_want = build_irq_for_pci_dev(dev) + 0x100;
3318
3319 irq = create_irq_nr(irq_want);
3320 if (irq == 0)
3321 return -1;
3322
3323 #ifdef CONFIG_INTR_REMAP
3324 if (!intr_remapping_enabled)
3325 goto no_ir;
3326
3327 ret = msi_alloc_irte(dev, irq, 1);
3328 if (ret < 0)
3329 goto error;
3330 no_ir:
3331 #endif
3332 ret = setup_msi_irq(dev, desc, irq);
3333 if (ret < 0) {
3334 destroy_irq(irq);
3335 return ret;
3336 }
3337 return 0;
3338
3339 #ifdef CONFIG_INTR_REMAP
3340 error:
3341 destroy_irq(irq);
3342 return ret;
3343 #endif
3344 }
3345
3346 int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
3347 {
3348 unsigned int irq;
3349 int ret, sub_handle;
3350 struct msi_desc *desc;
3351 unsigned int irq_want;
3352
3353 #ifdef CONFIG_INTR_REMAP
3354 struct intel_iommu *iommu = 0;
3355 int index = 0;
3356 #endif
3357
3358 irq_want = build_irq_for_pci_dev(dev) + 0x100;
3359 sub_handle = 0;
3360 list_for_each_entry(desc, &dev->msi_list, list) {
3361 irq = create_irq_nr(irq_want--);
3362 if (irq == 0)
3363 return -1;
3364 #ifdef CONFIG_INTR_REMAP
3365 if (!intr_remapping_enabled)
3366 goto no_ir;
3367
3368 if (!sub_handle) {
3369 /*
3370 * allocate the consecutive block of IRTE's
3371 * for 'nvec'
3372 */
3373 index = msi_alloc_irte(dev, irq, nvec);
3374 if (index < 0) {
3375 ret = index;
3376 goto error;
3377 }
3378 } else {
3379 iommu = map_dev_to_ir(dev);
3380 if (!iommu) {
3381 ret = -ENOENT;
3382 goto error;
3383 }
3384 /*
3385 * setup the mapping between the irq and the IRTE
3386 * base index, the sub_handle pointing to the
3387 * appropriate interrupt remap table entry.
3388 */
3389 set_irte_irq(irq, iommu, index, sub_handle);
3390 }
3391 no_ir:
3392 #endif
3393 ret = setup_msi_irq(dev, desc, irq);
3394 if (ret < 0)
3395 goto error;
3396 sub_handle++;
3397 }
3398 return 0;
3399
3400 error:
3401 destroy_irq(irq);
3402 return ret;
3403 }
3404
3405 void arch_teardown_msi_irq(unsigned int irq)
3406 {
3407 destroy_irq(irq);
3408 }
3409
3410 #ifdef CONFIG_DMAR
3411 #ifdef CONFIG_SMP
3412 static void dmar_msi_set_affinity(unsigned int irq, cpumask_t mask)
3413 {
3414 struct irq_cfg *cfg;
3415 struct msi_msg msg;
3416 unsigned int dest;
3417 cpumask_t tmp;
3418 struct irq_desc *desc;
3419
3420 cpus_and(tmp, mask, cpu_online_map);
3421 if (cpus_empty(tmp))
3422 return;
3423
3424 if (assign_irq_vector(irq, mask))
3425 return;
3426
3427 cfg = irq_cfg(irq);
3428 cpus_and(tmp, cfg->domain, mask);
3429 dest = cpu_mask_to_apicid(tmp);
3430
3431 dmar_msi_read(irq, &msg);
3432
3433 msg.data &= ~MSI_DATA_VECTOR_MASK;
3434 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3435 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3436 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3437
3438 dmar_msi_write(irq, &msg);
3439 desc = irq_to_desc(irq);
3440 desc->affinity = mask;
3441 }
3442 #endif /* CONFIG_SMP */
3443
3444 struct irq_chip dmar_msi_type = {
3445 .name = "DMAR_MSI",
3446 .unmask = dmar_msi_unmask,
3447 .mask = dmar_msi_mask,
3448 .ack = ack_apic_edge,
3449 #ifdef CONFIG_SMP
3450 .set_affinity = dmar_msi_set_affinity,
3451 #endif
3452 .retrigger = ioapic_retrigger_irq,
3453 };
3454
3455 int arch_setup_dmar_msi(unsigned int irq)
3456 {
3457 int ret;
3458 struct msi_msg msg;
3459
3460 ret = msi_compose_msg(NULL, irq, &msg);
3461 if (ret < 0)
3462 return ret;
3463 dmar_msi_write(irq, &msg);
3464 set_irq_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq,
3465 "edge");
3466 return 0;
3467 }
3468 #endif
3469
3470 #endif /* CONFIG_PCI_MSI */
3471 /*
3472 * Hypertransport interrupt support
3473 */
3474 #ifdef CONFIG_HT_IRQ
3475
3476 #ifdef CONFIG_SMP
3477
3478 static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector)
3479 {
3480 struct ht_irq_msg msg;
3481 fetch_ht_irq_msg(irq, &msg);
3482
3483 msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK);
3484 msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK);
3485
3486 msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest);
3487 msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest);
3488
3489 write_ht_irq_msg(irq, &msg);
3490 }
3491
3492 static void set_ht_irq_affinity(unsigned int irq, cpumask_t mask)
3493 {
3494 struct irq_cfg *cfg;
3495 unsigned int dest;
3496 cpumask_t tmp;
3497 struct irq_desc *desc;
3498
3499 cpus_and(tmp, mask, cpu_online_map);
3500 if (cpus_empty(tmp))
3501 return;
3502
3503 if (assign_irq_vector(irq, mask))
3504 return;
3505
3506 cfg = irq_cfg(irq);
3507 cpus_and(tmp, cfg->domain, mask);
3508 dest = cpu_mask_to_apicid(tmp);
3509
3510 target_ht_irq(irq, dest, cfg->vector);
3511 desc = irq_to_desc(irq);
3512 desc->affinity = mask;
3513 }
3514 #endif
3515
3516 static struct irq_chip ht_irq_chip = {
3517 .name = "PCI-HT",
3518 .mask = mask_ht_irq,
3519 .unmask = unmask_ht_irq,
3520 .ack = ack_apic_edge,
3521 #ifdef CONFIG_SMP
3522 .set_affinity = set_ht_irq_affinity,
3523 #endif
3524 .retrigger = ioapic_retrigger_irq,
3525 };
3526
3527 int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev)
3528 {
3529 struct irq_cfg *cfg;
3530 int err;
3531 cpumask_t tmp;
3532
3533 tmp = TARGET_CPUS;
3534 err = assign_irq_vector(irq, tmp);
3535 if (!err) {
3536 struct ht_irq_msg msg;
3537 unsigned dest;
3538
3539 cfg = irq_cfg(irq);
3540 cpus_and(tmp, cfg->domain, tmp);
3541 dest = cpu_mask_to_apicid(tmp);
3542
3543 msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest);
3544
3545 msg.address_lo =
3546 HT_IRQ_LOW_BASE |
3547 HT_IRQ_LOW_DEST_ID(dest) |
3548 HT_IRQ_LOW_VECTOR(cfg->vector) |
3549 ((INT_DEST_MODE == 0) ?
3550 HT_IRQ_LOW_DM_PHYSICAL :
3551 HT_IRQ_LOW_DM_LOGICAL) |
3552 HT_IRQ_LOW_RQEOI_EDGE |
3553 ((INT_DELIVERY_MODE != dest_LowestPrio) ?
3554 HT_IRQ_LOW_MT_FIXED :
3555 HT_IRQ_LOW_MT_ARBITRATED) |
3556 HT_IRQ_LOW_IRQ_MASKED;
3557
3558 write_ht_irq_msg(irq, &msg);
3559
3560 set_irq_chip_and_handler_name(irq, &ht_irq_chip,
3561 handle_edge_irq, "edge");
3562 }
3563 return err;
3564 }
3565 #endif /* CONFIG_HT_IRQ */
3566
3567 /* --------------------------------------------------------------------------
3568 ACPI-based IOAPIC Configuration
3569 -------------------------------------------------------------------------- */
3570
3571 #ifdef CONFIG_ACPI
3572
3573 #ifdef CONFIG_X86_32
3574 int __init io_apic_get_unique_id(int ioapic, int apic_id)
3575 {
3576 union IO_APIC_reg_00 reg_00;
3577 static physid_mask_t apic_id_map = PHYSID_MASK_NONE;
3578 physid_mask_t tmp;
3579 unsigned long flags;
3580 int i = 0;
3581
3582 /*
3583 * The P4 platform supports up to 256 APIC IDs on two separate APIC
3584 * buses (one for LAPICs, one for IOAPICs), where predecessors only
3585 * supports up to 16 on one shared APIC bus.
3586 *
3587 * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full
3588 * advantage of new APIC bus architecture.
3589 */
3590
3591 if (physids_empty(apic_id_map))
3592 apic_id_map = ioapic_phys_id_map(phys_cpu_present_map);
3593
3594 spin_lock_irqsave(&ioapic_lock, flags);
3595 reg_00.raw = io_apic_read(ioapic, 0);
3596 spin_unlock_irqrestore(&ioapic_lock, flags);
3597
3598 if (apic_id >= get_physical_broadcast()) {
3599 printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying "
3600 "%d\n", ioapic, apic_id, reg_00.bits.ID);
3601 apic_id = reg_00.bits.ID;
3602 }
3603
3604 /*
3605 * Every APIC in a system must have a unique ID or we get lots of nice
3606 * 'stuck on smp_invalidate_needed IPI wait' messages.
3607 */
3608 if (check_apicid_used(apic_id_map, apic_id)) {
3609
3610 for (i = 0; i < get_physical_broadcast(); i++) {
3611 if (!check_apicid_used(apic_id_map, i))
3612 break;
3613 }
3614
3615 if (i == get_physical_broadcast())
3616 panic("Max apic_id exceeded!\n");
3617
3618 printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, "
3619 "trying %d\n", ioapic, apic_id, i);
3620
3621 apic_id = i;
3622 }
3623
3624 tmp = apicid_to_cpu_present(apic_id);
3625 physids_or(apic_id_map, apic_id_map, tmp);
3626
3627 if (reg_00.bits.ID != apic_id) {
3628 reg_00.bits.ID = apic_id;
3629
3630 spin_lock_irqsave(&ioapic_lock, flags);
3631 io_apic_write(ioapic, 0, reg_00.raw);
3632 reg_00.raw = io_apic_read(ioapic, 0);
3633 spin_unlock_irqrestore(&ioapic_lock, flags);
3634
3635 /* Sanity check */
3636 if (reg_00.bits.ID != apic_id) {
3637 printk("IOAPIC[%d]: Unable to change apic_id!\n", ioapic);
3638 return -1;
3639 }
3640 }
3641
3642 apic_printk(APIC_VERBOSE, KERN_INFO
3643 "IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id);
3644
3645 return apic_id;
3646 }
3647
3648 int __init io_apic_get_version(int ioapic)
3649 {
3650 union IO_APIC_reg_01 reg_01;
3651 unsigned long flags;
3652
3653 spin_lock_irqsave(&ioapic_lock, flags);
3654 reg_01.raw = io_apic_read(ioapic, 1);
3655 spin_unlock_irqrestore(&ioapic_lock, flags);
3656
3657 return reg_01.bits.version;
3658 }
3659 #endif
3660
3661 int __init io_apic_get_redir_entries (int ioapic)
3662 {
3663 union IO_APIC_reg_01 reg_01;
3664 unsigned long flags;
3665
3666 spin_lock_irqsave(&ioapic_lock, flags);
3667 reg_01.raw = io_apic_read(ioapic, 1);
3668 spin_unlock_irqrestore(&ioapic_lock, flags);
3669
3670 return reg_01.bits.entries;
3671 }
3672
3673
3674 int io_apic_set_pci_routing (int ioapic, int pin, int irq, int triggering, int polarity)
3675 {
3676 if (!IO_APIC_IRQ(irq)) {
3677 apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n",
3678 ioapic);
3679 return -EINVAL;
3680 }
3681
3682 /*
3683 * IRQs < 16 are already in the irq_2_pin[] map
3684 */
3685 if (irq >= 16)
3686 add_pin_to_irq(irq, ioapic, pin);
3687
3688 setup_IO_APIC_irq(ioapic, pin, irq, triggering, polarity);
3689
3690 return 0;
3691 }
3692
3693
3694 int acpi_get_override_irq(int bus_irq, int *trigger, int *polarity)
3695 {
3696 int i;
3697
3698 if (skip_ioapic_setup)
3699 return -1;
3700
3701 for (i = 0; i < mp_irq_entries; i++)
3702 if (mp_irqs[i].mp_irqtype == mp_INT &&
3703 mp_irqs[i].mp_srcbusirq == bus_irq)
3704 break;
3705 if (i >= mp_irq_entries)
3706 return -1;
3707
3708 *trigger = irq_trigger(i);
3709 *polarity = irq_polarity(i);
3710 return 0;
3711 }
3712
3713 #endif /* CONFIG_ACPI */
3714
3715 /*
3716 * This function currently is only a helper for the i386 smp boot process where
3717 * we need to reprogram the ioredtbls to cater for the cpus which have come online
3718 * so mask in all cases should simply be TARGET_CPUS
3719 */
3720 #ifdef CONFIG_SMP
3721 void __init setup_ioapic_dest(void)
3722 {
3723 int pin, ioapic, irq, irq_entry;
3724 struct irq_cfg *cfg;
3725
3726 if (skip_ioapic_setup == 1)
3727 return;
3728
3729 for (ioapic = 0; ioapic < nr_ioapics; ioapic++) {
3730 for (pin = 0; pin < nr_ioapic_registers[ioapic]; pin++) {
3731 irq_entry = find_irq_entry(ioapic, pin, mp_INT);
3732 if (irq_entry == -1)
3733 continue;
3734 irq = pin_2_irq(irq_entry, ioapic, pin);
3735
3736 /* setup_IO_APIC_irqs could fail to get vector for some device
3737 * when you have too many devices, because at that time only boot
3738 * cpu is online.
3739 */
3740 cfg = irq_cfg(irq);
3741 if (!cfg->vector)
3742 setup_IO_APIC_irq(ioapic, pin, irq,
3743 irq_trigger(irq_entry),
3744 irq_polarity(irq_entry));
3745 #ifdef CONFIG_INTR_REMAP
3746 else if (intr_remapping_enabled)
3747 set_ir_ioapic_affinity_irq(irq, TARGET_CPUS);
3748 #endif
3749 else
3750 set_ioapic_affinity_irq(irq, TARGET_CPUS);
3751 }
3752
3753 }
3754 }
3755 #endif
3756
3757 #define IOAPIC_RESOURCE_NAME_SIZE 11
3758
3759 static struct resource *ioapic_resources;
3760
3761 static struct resource * __init ioapic_setup_resources(void)
3762 {
3763 unsigned long n;
3764 struct resource *res;
3765 char *mem;
3766 int i;
3767
3768 if (nr_ioapics <= 0)
3769 return NULL;
3770
3771 n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource);
3772 n *= nr_ioapics;
3773
3774 mem = alloc_bootmem(n);
3775 res = (void *)mem;
3776
3777 if (mem != NULL) {
3778 mem += sizeof(struct resource) * nr_ioapics;
3779
3780 for (i = 0; i < nr_ioapics; i++) {
3781 res[i].name = mem;
3782 res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY;
3783 sprintf(mem, "IOAPIC %u", i);
3784 mem += IOAPIC_RESOURCE_NAME_SIZE;
3785 }
3786 }
3787
3788 ioapic_resources = res;
3789
3790 return res;
3791 }
3792
3793 void __init ioapic_init_mappings(void)
3794 {
3795 unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0;
3796 int i;
3797 struct resource *ioapic_res;
3798
3799 ioapic_res = ioapic_setup_resources();
3800 for (i = 0; i < nr_ioapics; i++) {
3801 if (smp_found_config) {
3802 ioapic_phys = mp_ioapics[i].mp_apicaddr;
3803 #ifdef CONFIG_X86_32
3804 if (!ioapic_phys) {
3805 printk(KERN_ERR
3806 "WARNING: bogus zero IO-APIC "
3807 "address found in MPTABLE, "
3808 "disabling IO/APIC support!\n");
3809 smp_found_config = 0;
3810 skip_ioapic_setup = 1;
3811 goto fake_ioapic_page;
3812 }
3813 #endif
3814 } else {
3815 #ifdef CONFIG_X86_32
3816 fake_ioapic_page:
3817 #endif
3818 ioapic_phys = (unsigned long)
3819 alloc_bootmem_pages(PAGE_SIZE);
3820 ioapic_phys = __pa(ioapic_phys);
3821 }
3822 set_fixmap_nocache(idx, ioapic_phys);
3823 apic_printk(APIC_VERBOSE,
3824 "mapped IOAPIC to %08lx (%08lx)\n",
3825 __fix_to_virt(idx), ioapic_phys);
3826 idx++;
3827
3828 if (ioapic_res != NULL) {
3829 ioapic_res->start = ioapic_phys;
3830 ioapic_res->end = ioapic_phys + (4 * 1024) - 1;
3831 ioapic_res++;
3832 }
3833 }
3834 }
3835
3836 static int __init ioapic_insert_resources(void)
3837 {
3838 int i;
3839 struct resource *r = ioapic_resources;
3840
3841 if (!r) {
3842 printk(KERN_ERR
3843 "IO APIC resources could be not be allocated.\n");
3844 return -1;
3845 }
3846
3847 for (i = 0; i < nr_ioapics; i++) {
3848 insert_resource(&iomem_resource, r);
3849 r++;
3850 }
3851
3852 return 0;
3853 }
3854
3855 /* Insert the IO APIC resources after PCI initialization has occured to handle
3856 * IO APICS that are mapped in on a BAR in PCI space. */
3857 late_initcall(ioapic_insert_resources);
This page took 0.106176 seconds and 4 git commands to generate.