x2apic: fix reserved APIC register accesses in print_local_APIC()
[deliverable/linux.git] / arch / x86 / kernel / io_apic.c
1 /*
2 * Intel IO-APIC support for multi-Pentium hosts.
3 *
4 * Copyright (C) 1997, 1998, 1999, 2000 Ingo Molnar, Hajnalka Szabo
5 *
6 * Many thanks to Stig Venaas for trying out countless experimental
7 * patches and reporting/debugging problems patiently!
8 *
9 * (c) 1999, Multiple IO-APIC support, developed by
10 * Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and
11 * Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>,
12 * further tested and cleaned up by Zach Brown <zab@redhat.com>
13 * and Ingo Molnar <mingo@redhat.com>
14 *
15 * Fixes
16 * Maciej W. Rozycki : Bits for genuine 82489DX APICs;
17 * thanks to Eric Gilmore
18 * and Rolf G. Tews
19 * for testing these extensively
20 * Paul Diefenbaugh : Added full ACPI support
21 */
22
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/sched.h>
28 #include <linux/pci.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/compiler.h>
31 #include <linux/acpi.h>
32 #include <linux/module.h>
33 #include <linux/sysdev.h>
34 #include <linux/msi.h>
35 #include <linux/htirq.h>
36 #include <linux/freezer.h>
37 #include <linux/kthread.h>
38 #include <linux/jiffies.h> /* time_after() */
39 #ifdef CONFIG_ACPI
40 #include <acpi/acpi_bus.h>
41 #endif
42 #include <linux/bootmem.h>
43 #include <linux/dmar.h>
44
45 #include <asm/idle.h>
46 #include <asm/io.h>
47 #include <asm/smp.h>
48 #include <asm/desc.h>
49 #include <asm/proto.h>
50 #include <asm/acpi.h>
51 #include <asm/dma.h>
52 #include <asm/timer.h>
53 #include <asm/i8259.h>
54 #include <asm/nmi.h>
55 #include <asm/msidef.h>
56 #include <asm/hypertransport.h>
57 #include <asm/setup.h>
58 #include <asm/irq_remapping.h>
59
60 #include <mach_ipi.h>
61 #include <mach_apic.h>
62 #include <mach_apicdef.h>
63
64 #define __apicdebuginit(type) static type __init
65
66 /*
67 * Is the SiS APIC rmw bug present ?
68 * -1 = don't know, 0 = no, 1 = yes
69 */
70 int sis_apic_bug = -1;
71
72 static DEFINE_SPINLOCK(ioapic_lock);
73 static DEFINE_SPINLOCK(vector_lock);
74
75 /*
76 * # of IRQ routing registers
77 */
78 int nr_ioapic_registers[MAX_IO_APICS];
79
80 /* I/O APIC entries */
81 struct mp_config_ioapic mp_ioapics[MAX_IO_APICS];
82 int nr_ioapics;
83
84 /* MP IRQ source entries */
85 struct mp_config_intsrc mp_irqs[MAX_IRQ_SOURCES];
86
87 /* # of MP IRQ source entries */
88 int mp_irq_entries;
89
90 #if defined (CONFIG_MCA) || defined (CONFIG_EISA)
91 int mp_bus_id_to_type[MAX_MP_BUSSES];
92 #endif
93
94 DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES);
95
96 int skip_ioapic_setup;
97
98 static int __init parse_noapic(char *str)
99 {
100 /* disable IO-APIC */
101 disable_ioapic_setup();
102 return 0;
103 }
104 early_param("noapic", parse_noapic);
105
106 struct irq_cfg;
107 struct irq_pin_list;
108 struct irq_cfg {
109 unsigned int irq;
110 #ifdef CONFIG_HAVE_SPARSE_IRQ
111 struct irq_cfg *next;
112 #endif
113 struct irq_pin_list *irq_2_pin;
114 cpumask_t domain;
115 cpumask_t old_domain;
116 unsigned move_cleanup_count;
117 u8 vector;
118 u8 move_in_progress : 1;
119 };
120
121 /* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */
122 static struct irq_cfg irq_cfg_legacy[] __initdata = {
123 [0] = { .irq = 0, .domain = CPU_MASK_ALL, .vector = IRQ0_VECTOR, },
124 [1] = { .irq = 1, .domain = CPU_MASK_ALL, .vector = IRQ1_VECTOR, },
125 [2] = { .irq = 2, .domain = CPU_MASK_ALL, .vector = IRQ2_VECTOR, },
126 [3] = { .irq = 3, .domain = CPU_MASK_ALL, .vector = IRQ3_VECTOR, },
127 [4] = { .irq = 4, .domain = CPU_MASK_ALL, .vector = IRQ4_VECTOR, },
128 [5] = { .irq = 5, .domain = CPU_MASK_ALL, .vector = IRQ5_VECTOR, },
129 [6] = { .irq = 6, .domain = CPU_MASK_ALL, .vector = IRQ6_VECTOR, },
130 [7] = { .irq = 7, .domain = CPU_MASK_ALL, .vector = IRQ7_VECTOR, },
131 [8] = { .irq = 8, .domain = CPU_MASK_ALL, .vector = IRQ8_VECTOR, },
132 [9] = { .irq = 9, .domain = CPU_MASK_ALL, .vector = IRQ9_VECTOR, },
133 [10] = { .irq = 10, .domain = CPU_MASK_ALL, .vector = IRQ10_VECTOR, },
134 [11] = { .irq = 11, .domain = CPU_MASK_ALL, .vector = IRQ11_VECTOR, },
135 [12] = { .irq = 12, .domain = CPU_MASK_ALL, .vector = IRQ12_VECTOR, },
136 [13] = { .irq = 13, .domain = CPU_MASK_ALL, .vector = IRQ13_VECTOR, },
137 [14] = { .irq = 14, .domain = CPU_MASK_ALL, .vector = IRQ14_VECTOR, },
138 [15] = { .irq = 15, .domain = CPU_MASK_ALL, .vector = IRQ15_VECTOR, },
139 };
140
141 static struct irq_cfg irq_cfg_init = { .irq = -1U, };
142
143 static void init_one_irq_cfg(struct irq_cfg *cfg)
144 {
145 memcpy(cfg, &irq_cfg_init, sizeof(struct irq_cfg));
146 }
147
148 static struct irq_cfg *irq_cfgx;
149
150 /*
151 * Protect the irq_cfgx_free freelist:
152 */
153 static DEFINE_SPINLOCK(irq_cfg_lock);
154
155 #ifdef CONFIG_HAVE_SPARSE_IRQ
156 static struct irq_cfg *irq_cfgx_free;
157 #endif
158 static void __init init_work(void *data)
159 {
160 struct dyn_array *da = data;
161 struct irq_cfg *cfg;
162 int legacy_count;
163 int i;
164
165 cfg = *da->name;
166
167 memcpy(cfg, irq_cfg_legacy, sizeof(irq_cfg_legacy));
168
169 legacy_count = sizeof(irq_cfg_legacy)/sizeof(irq_cfg_legacy[0]);
170 for (i = legacy_count; i < *da->nr; i++)
171 init_one_irq_cfg(&cfg[i]);
172
173 #ifdef CONFIG_HAVE_SPARSE_IRQ
174 for (i = 1; i < *da->nr; i++)
175 cfg[i-1].next = &cfg[i];
176
177 irq_cfgx_free = &irq_cfgx[legacy_count];
178 irq_cfgx[legacy_count - 1].next = NULL;
179 #endif
180 }
181
182 #ifdef CONFIG_HAVE_SPARSE_IRQ
183 /* need to be biger than size of irq_cfg_legacy */
184 static int nr_irq_cfg = 32;
185
186 static int __init parse_nr_irq_cfg(char *arg)
187 {
188 if (arg) {
189 nr_irq_cfg = simple_strtoul(arg, NULL, 0);
190 if (nr_irq_cfg < 32)
191 nr_irq_cfg = 32;
192 }
193 return 0;
194 }
195
196 early_param("nr_irq_cfg", parse_nr_irq_cfg);
197
198 #define for_each_irq_cfg(irqX, cfg) \
199 for (cfg = irq_cfgx, irqX = cfg->irq; cfg; cfg = cfg->next, irqX = cfg ? cfg->irq : -1U)
200
201
202 DEFINE_DYN_ARRAY(irq_cfgx, sizeof(struct irq_cfg), nr_irq_cfg, PAGE_SIZE, init_work);
203
204 static struct irq_cfg *irq_cfg(unsigned int irq)
205 {
206 struct irq_cfg *cfg;
207
208 cfg = irq_cfgx;
209 while (cfg) {
210 if (cfg->irq == irq)
211 return cfg;
212
213 cfg = cfg->next;
214 }
215
216 return NULL;
217 }
218
219 static struct irq_cfg *irq_cfg_alloc(unsigned int irq)
220 {
221 struct irq_cfg *cfg, *cfg_pri;
222 unsigned long flags;
223 int count = 0;
224 int i;
225
226 cfg_pri = cfg = irq_cfgx;
227 while (cfg) {
228 if (cfg->irq == irq)
229 return cfg;
230
231 cfg_pri = cfg;
232 cfg = cfg->next;
233 count++;
234 }
235
236 spin_lock_irqsave(&irq_cfg_lock, flags);
237 if (!irq_cfgx_free) {
238 unsigned long phys;
239 unsigned long total_bytes;
240 /*
241 * we run out of pre-allocate ones, allocate more
242 */
243 printk(KERN_DEBUG "try to get more irq_cfg %d\n", nr_irq_cfg);
244
245 total_bytes = sizeof(struct irq_cfg) * nr_irq_cfg;
246 if (after_bootmem)
247 cfg = kzalloc(total_bytes, GFP_ATOMIC);
248 else
249 cfg = __alloc_bootmem_nopanic(total_bytes, PAGE_SIZE, 0);
250
251 if (!cfg)
252 panic("please boot with nr_irq_cfg= %d\n", count * 2);
253
254 phys = __pa(cfg);
255 printk(KERN_DEBUG "irq_irq ==> [%#lx - %#lx]\n", phys, phys + total_bytes);
256
257 for (i = 0; i < nr_irq_cfg; i++)
258 init_one_irq_cfg(&cfg[i]);
259
260 for (i = 1; i < nr_irq_cfg; i++)
261 cfg[i-1].next = &cfg[i];
262
263 irq_cfgx_free = cfg;
264 }
265
266 cfg = irq_cfgx_free;
267 irq_cfgx_free = irq_cfgx_free->next;
268 cfg->next = NULL;
269 if (cfg_pri)
270 cfg_pri->next = cfg;
271 else
272 irq_cfgx = cfg;
273 cfg->irq = irq;
274
275 spin_unlock_irqrestore(&irq_cfg_lock, flags);
276
277 printk(KERN_DEBUG "found new irq_cfg for irq %d\n", cfg->irq);
278 #ifdef CONFIG_HAVE_SPARSE_IRQ_DEBUG
279 {
280 /* dump the results */
281 struct irq_cfg *cfg;
282 unsigned long phys;
283 unsigned long bytes = sizeof(struct irq_cfg);
284
285 printk(KERN_DEBUG "=========================== %d\n", irq);
286 printk(KERN_DEBUG "irq_cfg dump after get that for %d\n", irq);
287 for_each_irq_cfg(cfg) {
288 phys = __pa(cfg);
289 printk(KERN_DEBUG "irq_cfg %d ==> [%#lx - %#lx]\n", cfg->irq, phys, phys + bytes);
290 }
291 printk(KERN_DEBUG "===========================\n");
292 }
293 #endif
294 return cfg;
295 }
296 #else
297
298 #define for_each_irq_cfg(irq, cfg) \
299 for (irq = 0, cfg = &irq_cfgx[irq]; irq < nr_irqs; irq++, cfg = &irq_cfgx[irq])
300
301 DEFINE_DYN_ARRAY(irq_cfgx, sizeof(struct irq_cfg), nr_irqs, PAGE_SIZE, init_work);
302
303 struct irq_cfg *irq_cfg(unsigned int irq)
304 {
305 if (irq < nr_irqs)
306 return &irq_cfgx[irq];
307
308 return NULL;
309 }
310 struct irq_cfg *irq_cfg_alloc(unsigned int irq)
311 {
312 return irq_cfg(irq);
313 }
314
315 #endif
316 /*
317 * This is performance-critical, we want to do it O(1)
318 *
319 * the indexing order of this array favors 1:1 mappings
320 * between pins and IRQs.
321 */
322
323 struct irq_pin_list {
324 int apic, pin;
325 struct irq_pin_list *next;
326 };
327
328 static struct irq_pin_list *irq_2_pin_head;
329 /* fill one page ? */
330 static int nr_irq_2_pin = 0x100;
331 static struct irq_pin_list *irq_2_pin_ptr;
332 static void __init irq_2_pin_init_work(void *data)
333 {
334 struct dyn_array *da = data;
335 struct irq_pin_list *pin;
336 int i;
337
338 pin = *da->name;
339
340 for (i = 1; i < *da->nr; i++)
341 pin[i-1].next = &pin[i];
342
343 irq_2_pin_ptr = &pin[0];
344 }
345 DEFINE_DYN_ARRAY(irq_2_pin_head, sizeof(struct irq_pin_list), nr_irq_2_pin, PAGE_SIZE, irq_2_pin_init_work);
346
347 static struct irq_pin_list *get_one_free_irq_2_pin(void)
348 {
349 struct irq_pin_list *pin;
350 int i;
351
352 pin = irq_2_pin_ptr;
353
354 if (pin) {
355 irq_2_pin_ptr = pin->next;
356 pin->next = NULL;
357 return pin;
358 }
359
360 /*
361 * we run out of pre-allocate ones, allocate more
362 */
363 printk(KERN_DEBUG "try to get more irq_2_pin %d\n", nr_irq_2_pin);
364
365 if (after_bootmem)
366 pin = kzalloc(sizeof(struct irq_pin_list)*nr_irq_2_pin,
367 GFP_ATOMIC);
368 else
369 pin = __alloc_bootmem_nopanic(sizeof(struct irq_pin_list) *
370 nr_irq_2_pin, PAGE_SIZE, 0);
371
372 if (!pin)
373 panic("can not get more irq_2_pin\n");
374
375 for (i = 1; i < nr_irq_2_pin; i++)
376 pin[i-1].next = &pin[i];
377
378 irq_2_pin_ptr = pin->next;
379 pin->next = NULL;
380
381 return pin;
382 }
383
384 struct io_apic {
385 unsigned int index;
386 unsigned int unused[3];
387 unsigned int data;
388 };
389
390 static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx)
391 {
392 return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx)
393 + (mp_ioapics[idx].mp_apicaddr & ~PAGE_MASK);
394 }
395
396 static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg)
397 {
398 struct io_apic __iomem *io_apic = io_apic_base(apic);
399 writel(reg, &io_apic->index);
400 return readl(&io_apic->data);
401 }
402
403 static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value)
404 {
405 struct io_apic __iomem *io_apic = io_apic_base(apic);
406 writel(reg, &io_apic->index);
407 writel(value, &io_apic->data);
408 }
409
410 /*
411 * Re-write a value: to be used for read-modify-write
412 * cycles where the read already set up the index register.
413 *
414 * Older SiS APIC requires we rewrite the index register
415 */
416 static inline void io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value)
417 {
418 struct io_apic __iomem *io_apic = io_apic_base(apic);
419 if (sis_apic_bug)
420 writel(reg, &io_apic->index);
421 writel(value, &io_apic->data);
422 }
423
424 static bool io_apic_level_ack_pending(unsigned int irq)
425 {
426 struct irq_pin_list *entry;
427 unsigned long flags;
428 struct irq_cfg *cfg = irq_cfg(irq);
429
430 spin_lock_irqsave(&ioapic_lock, flags);
431 entry = cfg->irq_2_pin;
432 for (;;) {
433 unsigned int reg;
434 int pin;
435
436 if (!entry)
437 break;
438 pin = entry->pin;
439 reg = io_apic_read(entry->apic, 0x10 + pin*2);
440 /* Is the remote IRR bit set? */
441 if (reg & IO_APIC_REDIR_REMOTE_IRR) {
442 spin_unlock_irqrestore(&ioapic_lock, flags);
443 return true;
444 }
445 if (!entry->next)
446 break;
447 entry = entry->next;
448 }
449 spin_unlock_irqrestore(&ioapic_lock, flags);
450
451 return false;
452 }
453
454 union entry_union {
455 struct { u32 w1, w2; };
456 struct IO_APIC_route_entry entry;
457 };
458
459 static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin)
460 {
461 union entry_union eu;
462 unsigned long flags;
463 spin_lock_irqsave(&ioapic_lock, flags);
464 eu.w1 = io_apic_read(apic, 0x10 + 2 * pin);
465 eu.w2 = io_apic_read(apic, 0x11 + 2 * pin);
466 spin_unlock_irqrestore(&ioapic_lock, flags);
467 return eu.entry;
468 }
469
470 /*
471 * When we write a new IO APIC routing entry, we need to write the high
472 * word first! If the mask bit in the low word is clear, we will enable
473 * the interrupt, and we need to make sure the entry is fully populated
474 * before that happens.
475 */
476 static void
477 __ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
478 {
479 union entry_union eu;
480 eu.entry = e;
481 io_apic_write(apic, 0x11 + 2*pin, eu.w2);
482 io_apic_write(apic, 0x10 + 2*pin, eu.w1);
483 }
484
485 static void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
486 {
487 unsigned long flags;
488 spin_lock_irqsave(&ioapic_lock, flags);
489 __ioapic_write_entry(apic, pin, e);
490 spin_unlock_irqrestore(&ioapic_lock, flags);
491 }
492
493 /*
494 * When we mask an IO APIC routing entry, we need to write the low
495 * word first, in order to set the mask bit before we change the
496 * high bits!
497 */
498 static void ioapic_mask_entry(int apic, int pin)
499 {
500 unsigned long flags;
501 union entry_union eu = { .entry.mask = 1 };
502
503 spin_lock_irqsave(&ioapic_lock, flags);
504 io_apic_write(apic, 0x10 + 2*pin, eu.w1);
505 io_apic_write(apic, 0x11 + 2*pin, eu.w2);
506 spin_unlock_irqrestore(&ioapic_lock, flags);
507 }
508
509 #ifdef CONFIG_SMP
510 static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, u8 vector)
511 {
512 int apic, pin;
513 struct irq_cfg *cfg;
514 struct irq_pin_list *entry;
515
516 cfg = irq_cfg(irq);
517 entry = cfg->irq_2_pin;
518 for (;;) {
519 unsigned int reg;
520
521 if (!entry)
522 break;
523
524 apic = entry->apic;
525 pin = entry->pin;
526 #ifdef CONFIG_INTR_REMAP
527 /*
528 * With interrupt-remapping, destination information comes
529 * from interrupt-remapping table entry.
530 */
531 if (!irq_remapped(irq))
532 io_apic_write(apic, 0x11 + pin*2, dest);
533 #else
534 io_apic_write(apic, 0x11 + pin*2, dest);
535 #endif
536 reg = io_apic_read(apic, 0x10 + pin*2);
537 reg &= ~IO_APIC_REDIR_VECTOR_MASK;
538 reg |= vector;
539 io_apic_modify(apic, 0x10 + pin*2, reg);
540 if (!entry->next)
541 break;
542 entry = entry->next;
543 }
544 }
545
546 static int assign_irq_vector(int irq, cpumask_t mask);
547
548 static void set_ioapic_affinity_irq(unsigned int irq, cpumask_t mask)
549 {
550 struct irq_cfg *cfg;
551 unsigned long flags;
552 unsigned int dest;
553 cpumask_t tmp;
554 struct irq_desc *desc;
555
556 cpus_and(tmp, mask, cpu_online_map);
557 if (cpus_empty(tmp))
558 return;
559
560 cfg = irq_cfg(irq);
561 if (assign_irq_vector(irq, mask))
562 return;
563
564 cpus_and(tmp, cfg->domain, mask);
565 dest = cpu_mask_to_apicid(tmp);
566 /*
567 * Only the high 8 bits are valid.
568 */
569 dest = SET_APIC_LOGICAL_ID(dest);
570
571 desc = irq_to_desc(irq);
572 spin_lock_irqsave(&ioapic_lock, flags);
573 __target_IO_APIC_irq(irq, dest, cfg->vector);
574 desc->affinity = mask;
575 spin_unlock_irqrestore(&ioapic_lock, flags);
576 }
577 #endif /* CONFIG_SMP */
578
579 /*
580 * The common case is 1:1 IRQ<->pin mappings. Sometimes there are
581 * shared ISA-space IRQs, so we have to support them. We are super
582 * fast in the common case, and fast for shared ISA-space IRQs.
583 */
584 static void add_pin_to_irq(unsigned int irq, int apic, int pin)
585 {
586 struct irq_cfg *cfg;
587 struct irq_pin_list *entry;
588
589 /* first time to refer irq_cfg, so with new */
590 cfg = irq_cfg_alloc(irq);
591 entry = cfg->irq_2_pin;
592 if (!entry) {
593 entry = get_one_free_irq_2_pin();
594 cfg->irq_2_pin = entry;
595 entry->apic = apic;
596 entry->pin = pin;
597 printk(KERN_DEBUG " 0 add_pin_to_irq: irq %d --> apic %d pin %d\n", irq, apic, pin);
598 return;
599 }
600
601 while (entry->next) {
602 /* not again, please */
603 if (entry->apic == apic && entry->pin == pin)
604 return;
605
606 entry = entry->next;
607 }
608
609 entry->next = get_one_free_irq_2_pin();
610 entry = entry->next;
611 entry->apic = apic;
612 entry->pin = pin;
613 printk(KERN_DEBUG " x add_pin_to_irq: irq %d --> apic %d pin %d\n", irq, apic, pin);
614 }
615
616 /*
617 * Reroute an IRQ to a different pin.
618 */
619 static void __init replace_pin_at_irq(unsigned int irq,
620 int oldapic, int oldpin,
621 int newapic, int newpin)
622 {
623 struct irq_cfg *cfg = irq_cfg(irq);
624 struct irq_pin_list *entry = cfg->irq_2_pin;
625 int replaced = 0;
626
627 while (entry) {
628 if (entry->apic == oldapic && entry->pin == oldpin) {
629 entry->apic = newapic;
630 entry->pin = newpin;
631 replaced = 1;
632 /* every one is different, right? */
633 break;
634 }
635 entry = entry->next;
636 }
637
638 /* why? call replace before add? */
639 if (!replaced)
640 add_pin_to_irq(irq, newapic, newpin);
641 }
642
643 #define __DO_ACTION(R, ACTION_ENABLE, ACTION_DISABLE, FINAL) \
644 \
645 { \
646 int pin; \
647 struct irq_cfg *cfg; \
648 struct irq_pin_list *entry; \
649 \
650 cfg = irq_cfg(irq); \
651 entry = cfg->irq_2_pin; \
652 for (;;) { \
653 unsigned int reg; \
654 if (!entry) \
655 break; \
656 pin = entry->pin; \
657 reg = io_apic_read(entry->apic, 0x10 + R + pin*2); \
658 reg ACTION_DISABLE; \
659 reg ACTION_ENABLE; \
660 io_apic_modify(entry->apic, 0x10 + R + pin*2, reg); \
661 FINAL; \
662 if (!entry->next) \
663 break; \
664 entry = entry->next; \
665 } \
666 }
667
668 #define DO_ACTION(name,R, ACTION_ENABLE, ACTION_DISABLE, FINAL) \
669 \
670 static void name##_IO_APIC_irq (unsigned int irq) \
671 __DO_ACTION(R, ACTION_ENABLE, ACTION_DISABLE, FINAL)
672
673 /* mask = 0 */
674 DO_ACTION(__unmask, 0, |= 0, &= ~IO_APIC_REDIR_MASKED, )
675
676 #ifdef CONFIG_X86_64
677 /*
678 * Synchronize the IO-APIC and the CPU by doing
679 * a dummy read from the IO-APIC
680 */
681 static inline void io_apic_sync(unsigned int apic)
682 {
683 struct io_apic __iomem *io_apic = io_apic_base(apic);
684 readl(&io_apic->data);
685 }
686
687 /* mask = 1 */
688 DO_ACTION(__mask, 0, |= IO_APIC_REDIR_MASKED, &= ~0, io_apic_sync(entry->apic))
689
690 #else
691
692 /* mask = 1 */
693 DO_ACTION(__mask, 0, |= IO_APIC_REDIR_MASKED, &= ~0, )
694
695 /* mask = 1, trigger = 0 */
696 DO_ACTION(__mask_and_edge, 0, |= IO_APIC_REDIR_MASKED, &= ~IO_APIC_REDIR_LEVEL_TRIGGER, )
697
698 /* mask = 0, trigger = 1 */
699 DO_ACTION(__unmask_and_level, 0, |= IO_APIC_REDIR_LEVEL_TRIGGER, &= ~IO_APIC_REDIR_MASKED, )
700
701 #endif
702
703 static void mask_IO_APIC_irq (unsigned int irq)
704 {
705 unsigned long flags;
706
707 spin_lock_irqsave(&ioapic_lock, flags);
708 __mask_IO_APIC_irq(irq);
709 spin_unlock_irqrestore(&ioapic_lock, flags);
710 }
711
712 static void unmask_IO_APIC_irq (unsigned int irq)
713 {
714 unsigned long flags;
715
716 spin_lock_irqsave(&ioapic_lock, flags);
717 __unmask_IO_APIC_irq(irq);
718 spin_unlock_irqrestore(&ioapic_lock, flags);
719 }
720
721 static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin)
722 {
723 struct IO_APIC_route_entry entry;
724
725 /* Check delivery_mode to be sure we're not clearing an SMI pin */
726 entry = ioapic_read_entry(apic, pin);
727 if (entry.delivery_mode == dest_SMI)
728 return;
729 /*
730 * Disable it in the IO-APIC irq-routing table:
731 */
732 ioapic_mask_entry(apic, pin);
733 }
734
735 static void clear_IO_APIC (void)
736 {
737 int apic, pin;
738
739 for (apic = 0; apic < nr_ioapics; apic++)
740 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
741 clear_IO_APIC_pin(apic, pin);
742 }
743
744 #if !defined(CONFIG_SMP) && defined(CONFIG_X86_32)
745 void send_IPI_self(int vector)
746 {
747 unsigned int cfg;
748
749 /*
750 * Wait for idle.
751 */
752 apic_wait_icr_idle();
753 cfg = APIC_DM_FIXED | APIC_DEST_SELF | vector | APIC_DEST_LOGICAL;
754 /*
755 * Send the IPI. The write to APIC_ICR fires this off.
756 */
757 apic_write(APIC_ICR, cfg);
758 }
759 #endif /* !CONFIG_SMP && CONFIG_X86_32*/
760
761 #ifdef CONFIG_X86_32
762 /*
763 * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to
764 * specific CPU-side IRQs.
765 */
766
767 #define MAX_PIRQS 8
768 static int pirq_entries [MAX_PIRQS];
769 static int pirqs_enabled;
770
771 static int __init ioapic_pirq_setup(char *str)
772 {
773 int i, max;
774 int ints[MAX_PIRQS+1];
775
776 get_options(str, ARRAY_SIZE(ints), ints);
777
778 for (i = 0; i < MAX_PIRQS; i++)
779 pirq_entries[i] = -1;
780
781 pirqs_enabled = 1;
782 apic_printk(APIC_VERBOSE, KERN_INFO
783 "PIRQ redirection, working around broken MP-BIOS.\n");
784 max = MAX_PIRQS;
785 if (ints[0] < MAX_PIRQS)
786 max = ints[0];
787
788 for (i = 0; i < max; i++) {
789 apic_printk(APIC_VERBOSE, KERN_DEBUG
790 "... PIRQ%d -> IRQ %d\n", i, ints[i+1]);
791 /*
792 * PIRQs are mapped upside down, usually.
793 */
794 pirq_entries[MAX_PIRQS-i-1] = ints[i+1];
795 }
796 return 1;
797 }
798
799 __setup("pirq=", ioapic_pirq_setup);
800 #endif /* CONFIG_X86_32 */
801
802 #ifdef CONFIG_INTR_REMAP
803 /* I/O APIC RTE contents at the OS boot up */
804 static struct IO_APIC_route_entry *early_ioapic_entries[MAX_IO_APICS];
805
806 /*
807 * Saves and masks all the unmasked IO-APIC RTE's
808 */
809 int save_mask_IO_APIC_setup(void)
810 {
811 union IO_APIC_reg_01 reg_01;
812 unsigned long flags;
813 int apic, pin;
814
815 /*
816 * The number of IO-APIC IRQ registers (== #pins):
817 */
818 for (apic = 0; apic < nr_ioapics; apic++) {
819 spin_lock_irqsave(&ioapic_lock, flags);
820 reg_01.raw = io_apic_read(apic, 1);
821 spin_unlock_irqrestore(&ioapic_lock, flags);
822 nr_ioapic_registers[apic] = reg_01.bits.entries+1;
823 }
824
825 for (apic = 0; apic < nr_ioapics; apic++) {
826 early_ioapic_entries[apic] =
827 kzalloc(sizeof(struct IO_APIC_route_entry) *
828 nr_ioapic_registers[apic], GFP_KERNEL);
829 if (!early_ioapic_entries[apic])
830 return -ENOMEM;
831 }
832
833 for (apic = 0; apic < nr_ioapics; apic++)
834 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
835 struct IO_APIC_route_entry entry;
836
837 entry = early_ioapic_entries[apic][pin] =
838 ioapic_read_entry(apic, pin);
839 if (!entry.mask) {
840 entry.mask = 1;
841 ioapic_write_entry(apic, pin, entry);
842 }
843 }
844 return 0;
845 }
846
847 void restore_IO_APIC_setup(void)
848 {
849 int apic, pin;
850
851 for (apic = 0; apic < nr_ioapics; apic++)
852 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
853 ioapic_write_entry(apic, pin,
854 early_ioapic_entries[apic][pin]);
855 }
856
857 void reinit_intr_remapped_IO_APIC(int intr_remapping)
858 {
859 /*
860 * for now plain restore of previous settings.
861 * TBD: In the case of OS enabling interrupt-remapping,
862 * IO-APIC RTE's need to be setup to point to interrupt-remapping
863 * table entries. for now, do a plain restore, and wait for
864 * the setup_IO_APIC_irqs() to do proper initialization.
865 */
866 restore_IO_APIC_setup();
867 }
868 #endif
869
870 /*
871 * Find the IRQ entry number of a certain pin.
872 */
873 static int find_irq_entry(int apic, int pin, int type)
874 {
875 int i;
876
877 for (i = 0; i < mp_irq_entries; i++)
878 if (mp_irqs[i].mp_irqtype == type &&
879 (mp_irqs[i].mp_dstapic == mp_ioapics[apic].mp_apicid ||
880 mp_irqs[i].mp_dstapic == MP_APIC_ALL) &&
881 mp_irqs[i].mp_dstirq == pin)
882 return i;
883
884 return -1;
885 }
886
887 /*
888 * Find the pin to which IRQ[irq] (ISA) is connected
889 */
890 static int __init find_isa_irq_pin(int irq, int type)
891 {
892 int i;
893
894 for (i = 0; i < mp_irq_entries; i++) {
895 int lbus = mp_irqs[i].mp_srcbus;
896
897 if (test_bit(lbus, mp_bus_not_pci) &&
898 (mp_irqs[i].mp_irqtype == type) &&
899 (mp_irqs[i].mp_srcbusirq == irq))
900
901 return mp_irqs[i].mp_dstirq;
902 }
903 return -1;
904 }
905
906 static int __init find_isa_irq_apic(int irq, int type)
907 {
908 int i;
909
910 for (i = 0; i < mp_irq_entries; i++) {
911 int lbus = mp_irqs[i].mp_srcbus;
912
913 if (test_bit(lbus, mp_bus_not_pci) &&
914 (mp_irqs[i].mp_irqtype == type) &&
915 (mp_irqs[i].mp_srcbusirq == irq))
916 break;
917 }
918 if (i < mp_irq_entries) {
919 int apic;
920 for(apic = 0; apic < nr_ioapics; apic++) {
921 if (mp_ioapics[apic].mp_apicid == mp_irqs[i].mp_dstapic)
922 return apic;
923 }
924 }
925
926 return -1;
927 }
928
929 /*
930 * Find a specific PCI IRQ entry.
931 * Not an __init, possibly needed by modules
932 */
933 static int pin_2_irq(int idx, int apic, int pin);
934
935 int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin)
936 {
937 int apic, i, best_guess = -1;
938
939 apic_printk(APIC_DEBUG, "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n",
940 bus, slot, pin);
941 if (test_bit(bus, mp_bus_not_pci)) {
942 apic_printk(APIC_VERBOSE, "PCI BIOS passed nonexistent PCI bus %d!\n", bus);
943 return -1;
944 }
945 for (i = 0; i < mp_irq_entries; i++) {
946 int lbus = mp_irqs[i].mp_srcbus;
947
948 for (apic = 0; apic < nr_ioapics; apic++)
949 if (mp_ioapics[apic].mp_apicid == mp_irqs[i].mp_dstapic ||
950 mp_irqs[i].mp_dstapic == MP_APIC_ALL)
951 break;
952
953 if (!test_bit(lbus, mp_bus_not_pci) &&
954 !mp_irqs[i].mp_irqtype &&
955 (bus == lbus) &&
956 (slot == ((mp_irqs[i].mp_srcbusirq >> 2) & 0x1f))) {
957 int irq = pin_2_irq(i,apic,mp_irqs[i].mp_dstirq);
958
959 if (!(apic || IO_APIC_IRQ(irq)))
960 continue;
961
962 if (pin == (mp_irqs[i].mp_srcbusirq & 3))
963 return irq;
964 /*
965 * Use the first all-but-pin matching entry as a
966 * best-guess fuzzy result for broken mptables.
967 */
968 if (best_guess < 0)
969 best_guess = irq;
970 }
971 }
972 return best_guess;
973 }
974
975 EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector);
976
977 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
978 /*
979 * EISA Edge/Level control register, ELCR
980 */
981 static int EISA_ELCR(unsigned int irq)
982 {
983 if (irq < 16) {
984 unsigned int port = 0x4d0 + (irq >> 3);
985 return (inb(port) >> (irq & 7)) & 1;
986 }
987 apic_printk(APIC_VERBOSE, KERN_INFO
988 "Broken MPtable reports ISA irq %d\n", irq);
989 return 0;
990 }
991
992 #endif
993
994 /* ISA interrupts are always polarity zero edge triggered,
995 * when listed as conforming in the MP table. */
996
997 #define default_ISA_trigger(idx) (0)
998 #define default_ISA_polarity(idx) (0)
999
1000 /* EISA interrupts are always polarity zero and can be edge or level
1001 * trigger depending on the ELCR value. If an interrupt is listed as
1002 * EISA conforming in the MP table, that means its trigger type must
1003 * be read in from the ELCR */
1004
1005 #define default_EISA_trigger(idx) (EISA_ELCR(mp_irqs[idx].mp_srcbusirq))
1006 #define default_EISA_polarity(idx) default_ISA_polarity(idx)
1007
1008 /* PCI interrupts are always polarity one level triggered,
1009 * when listed as conforming in the MP table. */
1010
1011 #define default_PCI_trigger(idx) (1)
1012 #define default_PCI_polarity(idx) (1)
1013
1014 /* MCA interrupts are always polarity zero level triggered,
1015 * when listed as conforming in the MP table. */
1016
1017 #define default_MCA_trigger(idx) (1)
1018 #define default_MCA_polarity(idx) default_ISA_polarity(idx)
1019
1020 static int MPBIOS_polarity(int idx)
1021 {
1022 int bus = mp_irqs[idx].mp_srcbus;
1023 int polarity;
1024
1025 /*
1026 * Determine IRQ line polarity (high active or low active):
1027 */
1028 switch (mp_irqs[idx].mp_irqflag & 3)
1029 {
1030 case 0: /* conforms, ie. bus-type dependent polarity */
1031 if (test_bit(bus, mp_bus_not_pci))
1032 polarity = default_ISA_polarity(idx);
1033 else
1034 polarity = default_PCI_polarity(idx);
1035 break;
1036 case 1: /* high active */
1037 {
1038 polarity = 0;
1039 break;
1040 }
1041 case 2: /* reserved */
1042 {
1043 printk(KERN_WARNING "broken BIOS!!\n");
1044 polarity = 1;
1045 break;
1046 }
1047 case 3: /* low active */
1048 {
1049 polarity = 1;
1050 break;
1051 }
1052 default: /* invalid */
1053 {
1054 printk(KERN_WARNING "broken BIOS!!\n");
1055 polarity = 1;
1056 break;
1057 }
1058 }
1059 return polarity;
1060 }
1061
1062 static int MPBIOS_trigger(int idx)
1063 {
1064 int bus = mp_irqs[idx].mp_srcbus;
1065 int trigger;
1066
1067 /*
1068 * Determine IRQ trigger mode (edge or level sensitive):
1069 */
1070 switch ((mp_irqs[idx].mp_irqflag>>2) & 3)
1071 {
1072 case 0: /* conforms, ie. bus-type dependent */
1073 if (test_bit(bus, mp_bus_not_pci))
1074 trigger = default_ISA_trigger(idx);
1075 else
1076 trigger = default_PCI_trigger(idx);
1077 #if defined(CONFIG_EISA) || defined(CONFIG_MCA)
1078 switch (mp_bus_id_to_type[bus]) {
1079 case MP_BUS_ISA: /* ISA pin */
1080 {
1081 /* set before the switch */
1082 break;
1083 }
1084 case MP_BUS_EISA: /* EISA pin */
1085 {
1086 trigger = default_EISA_trigger(idx);
1087 break;
1088 }
1089 case MP_BUS_PCI: /* PCI pin */
1090 {
1091 /* set before the switch */
1092 break;
1093 }
1094 case MP_BUS_MCA: /* MCA pin */
1095 {
1096 trigger = default_MCA_trigger(idx);
1097 break;
1098 }
1099 default:
1100 {
1101 printk(KERN_WARNING "broken BIOS!!\n");
1102 trigger = 1;
1103 break;
1104 }
1105 }
1106 #endif
1107 break;
1108 case 1: /* edge */
1109 {
1110 trigger = 0;
1111 break;
1112 }
1113 case 2: /* reserved */
1114 {
1115 printk(KERN_WARNING "broken BIOS!!\n");
1116 trigger = 1;
1117 break;
1118 }
1119 case 3: /* level */
1120 {
1121 trigger = 1;
1122 break;
1123 }
1124 default: /* invalid */
1125 {
1126 printk(KERN_WARNING "broken BIOS!!\n");
1127 trigger = 0;
1128 break;
1129 }
1130 }
1131 return trigger;
1132 }
1133
1134 static inline int irq_polarity(int idx)
1135 {
1136 return MPBIOS_polarity(idx);
1137 }
1138
1139 static inline int irq_trigger(int idx)
1140 {
1141 return MPBIOS_trigger(idx);
1142 }
1143
1144 int (*ioapic_renumber_irq)(int ioapic, int irq);
1145 static int pin_2_irq(int idx, int apic, int pin)
1146 {
1147 int irq, i;
1148 int bus = mp_irqs[idx].mp_srcbus;
1149
1150 /*
1151 * Debugging check, we are in big trouble if this message pops up!
1152 */
1153 if (mp_irqs[idx].mp_dstirq != pin)
1154 printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n");
1155
1156 if (test_bit(bus, mp_bus_not_pci)) {
1157 irq = mp_irqs[idx].mp_srcbusirq;
1158 } else {
1159 /*
1160 * PCI IRQs are mapped in order
1161 */
1162 i = irq = 0;
1163 while (i < apic)
1164 irq += nr_ioapic_registers[i++];
1165 irq += pin;
1166 /*
1167 * For MPS mode, so far only needed by ES7000 platform
1168 */
1169 if (ioapic_renumber_irq)
1170 irq = ioapic_renumber_irq(apic, irq);
1171 }
1172
1173 #ifdef CONFIG_X86_32
1174 /*
1175 * PCI IRQ command line redirection. Yes, limits are hardcoded.
1176 */
1177 if ((pin >= 16) && (pin <= 23)) {
1178 if (pirq_entries[pin-16] != -1) {
1179 if (!pirq_entries[pin-16]) {
1180 apic_printk(APIC_VERBOSE, KERN_DEBUG
1181 "disabling PIRQ%d\n", pin-16);
1182 } else {
1183 irq = pirq_entries[pin-16];
1184 apic_printk(APIC_VERBOSE, KERN_DEBUG
1185 "using PIRQ%d -> IRQ %d\n",
1186 pin-16, irq);
1187 }
1188 }
1189 }
1190 #endif
1191
1192 return irq;
1193 }
1194
1195 void lock_vector_lock(void)
1196 {
1197 /* Used to the online set of cpus does not change
1198 * during assign_irq_vector.
1199 */
1200 spin_lock(&vector_lock);
1201 }
1202
1203 void unlock_vector_lock(void)
1204 {
1205 spin_unlock(&vector_lock);
1206 }
1207
1208 static int __assign_irq_vector(int irq, cpumask_t mask)
1209 {
1210 /*
1211 * NOTE! The local APIC isn't very good at handling
1212 * multiple interrupts at the same interrupt level.
1213 * As the interrupt level is determined by taking the
1214 * vector number and shifting that right by 4, we
1215 * want to spread these out a bit so that they don't
1216 * all fall in the same interrupt level.
1217 *
1218 * Also, we've got to be careful not to trash gate
1219 * 0x80, because int 0x80 is hm, kind of importantish. ;)
1220 */
1221 static int current_vector = FIRST_DEVICE_VECTOR, current_offset = 0;
1222 unsigned int old_vector;
1223 int cpu;
1224 struct irq_cfg *cfg;
1225
1226 cfg = irq_cfg(irq);
1227
1228 /* Only try and allocate irqs on cpus that are present */
1229 cpus_and(mask, mask, cpu_online_map);
1230
1231 if ((cfg->move_in_progress) || cfg->move_cleanup_count)
1232 return -EBUSY;
1233
1234 old_vector = cfg->vector;
1235 if (old_vector) {
1236 cpumask_t tmp;
1237 cpus_and(tmp, cfg->domain, mask);
1238 if (!cpus_empty(tmp))
1239 return 0;
1240 }
1241
1242 for_each_cpu_mask_nr(cpu, mask) {
1243 cpumask_t domain, new_mask;
1244 int new_cpu;
1245 int vector, offset;
1246
1247 domain = vector_allocation_domain(cpu);
1248 cpus_and(new_mask, domain, cpu_online_map);
1249
1250 vector = current_vector;
1251 offset = current_offset;
1252 next:
1253 vector += 8;
1254 if (vector >= first_system_vector) {
1255 /* If we run out of vectors on large boxen, must share them. */
1256 offset = (offset + 1) % 8;
1257 vector = FIRST_DEVICE_VECTOR + offset;
1258 }
1259 if (unlikely(current_vector == vector))
1260 continue;
1261 #ifdef CONFIG_X86_64
1262 if (vector == IA32_SYSCALL_VECTOR)
1263 goto next;
1264 #else
1265 if (vector == SYSCALL_VECTOR)
1266 goto next;
1267 #endif
1268 for_each_cpu_mask_nr(new_cpu, new_mask)
1269 if (per_cpu(vector_irq, new_cpu)[vector] != -1)
1270 goto next;
1271 /* Found one! */
1272 current_vector = vector;
1273 current_offset = offset;
1274 if (old_vector) {
1275 cfg->move_in_progress = 1;
1276 cfg->old_domain = cfg->domain;
1277 }
1278 for_each_cpu_mask_nr(new_cpu, new_mask)
1279 per_cpu(vector_irq, new_cpu)[vector] = irq;
1280 cfg->vector = vector;
1281 cfg->domain = domain;
1282 return 0;
1283 }
1284 return -ENOSPC;
1285 }
1286
1287 static int assign_irq_vector(int irq, cpumask_t mask)
1288 {
1289 int err;
1290 unsigned long flags;
1291
1292 spin_lock_irqsave(&vector_lock, flags);
1293 err = __assign_irq_vector(irq, mask);
1294 spin_unlock_irqrestore(&vector_lock, flags);
1295 return err;
1296 }
1297
1298 static void __clear_irq_vector(int irq)
1299 {
1300 struct irq_cfg *cfg;
1301 cpumask_t mask;
1302 int cpu, vector;
1303
1304 cfg = irq_cfg(irq);
1305 BUG_ON(!cfg->vector);
1306
1307 vector = cfg->vector;
1308 cpus_and(mask, cfg->domain, cpu_online_map);
1309 for_each_cpu_mask_nr(cpu, mask)
1310 per_cpu(vector_irq, cpu)[vector] = -1;
1311
1312 cfg->vector = 0;
1313 cpus_clear(cfg->domain);
1314 }
1315
1316 void __setup_vector_irq(int cpu)
1317 {
1318 /* Initialize vector_irq on a new cpu */
1319 /* This function must be called with vector_lock held */
1320 int irq, vector;
1321 struct irq_cfg *cfg;
1322
1323 /* Mark the inuse vectors */
1324 for_each_irq_cfg(irq, cfg) {
1325 if (!cpu_isset(cpu, cfg->domain))
1326 continue;
1327 vector = cfg->vector;
1328 per_cpu(vector_irq, cpu)[vector] = irq;
1329 }
1330 /* Mark the free vectors */
1331 for (vector = 0; vector < NR_VECTORS; ++vector) {
1332 irq = per_cpu(vector_irq, cpu)[vector];
1333 if (irq < 0)
1334 continue;
1335
1336 cfg = irq_cfg(irq);
1337 if (!cpu_isset(cpu, cfg->domain))
1338 per_cpu(vector_irq, cpu)[vector] = -1;
1339 }
1340 }
1341
1342 static struct irq_chip ioapic_chip;
1343 #ifdef CONFIG_INTR_REMAP
1344 static struct irq_chip ir_ioapic_chip;
1345 #endif
1346
1347 #define IOAPIC_AUTO -1
1348 #define IOAPIC_EDGE 0
1349 #define IOAPIC_LEVEL 1
1350
1351 #ifdef CONFIG_X86_32
1352 static inline int IO_APIC_irq_trigger(int irq)
1353 {
1354 int apic, idx, pin;
1355
1356 for (apic = 0; apic < nr_ioapics; apic++) {
1357 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1358 idx = find_irq_entry(apic, pin, mp_INT);
1359 if ((idx != -1) && (irq == pin_2_irq(idx, apic, pin)))
1360 return irq_trigger(idx);
1361 }
1362 }
1363 /*
1364 * nonexistent IRQs are edge default
1365 */
1366 return 0;
1367 }
1368 #else
1369 static inline int IO_APIC_irq_trigger(int irq)
1370 {
1371 return 1;
1372 }
1373 #endif
1374
1375 static void ioapic_register_intr(int irq, unsigned long trigger)
1376 {
1377 struct irq_desc *desc;
1378
1379 /* first time to use this irq_desc */
1380 if (irq < 16)
1381 desc = irq_to_desc(irq);
1382 else
1383 desc = irq_to_desc_alloc(irq);
1384
1385 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1386 trigger == IOAPIC_LEVEL)
1387 desc->status |= IRQ_LEVEL;
1388 else
1389 desc->status &= ~IRQ_LEVEL;
1390
1391 #ifdef CONFIG_INTR_REMAP
1392 if (irq_remapped(irq)) {
1393 desc->status |= IRQ_MOVE_PCNTXT;
1394 if (trigger)
1395 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1396 handle_fasteoi_irq,
1397 "fasteoi");
1398 else
1399 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1400 handle_edge_irq, "edge");
1401 return;
1402 }
1403 #endif
1404 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1405 trigger == IOAPIC_LEVEL)
1406 set_irq_chip_and_handler_name(irq, &ioapic_chip,
1407 handle_fasteoi_irq,
1408 "fasteoi");
1409 else
1410 set_irq_chip_and_handler_name(irq, &ioapic_chip,
1411 handle_edge_irq, "edge");
1412 }
1413
1414 static int setup_ioapic_entry(int apic, int irq,
1415 struct IO_APIC_route_entry *entry,
1416 unsigned int destination, int trigger,
1417 int polarity, int vector)
1418 {
1419 /*
1420 * add it to the IO-APIC irq-routing table:
1421 */
1422 memset(entry,0,sizeof(*entry));
1423
1424 #ifdef CONFIG_INTR_REMAP
1425 if (intr_remapping_enabled) {
1426 struct intel_iommu *iommu = map_ioapic_to_ir(apic);
1427 struct irte irte;
1428 struct IR_IO_APIC_route_entry *ir_entry =
1429 (struct IR_IO_APIC_route_entry *) entry;
1430 int index;
1431
1432 if (!iommu)
1433 panic("No mapping iommu for ioapic %d\n", apic);
1434
1435 index = alloc_irte(iommu, irq, 1);
1436 if (index < 0)
1437 panic("Failed to allocate IRTE for ioapic %d\n", apic);
1438
1439 memset(&irte, 0, sizeof(irte));
1440
1441 irte.present = 1;
1442 irte.dst_mode = INT_DEST_MODE;
1443 irte.trigger_mode = trigger;
1444 irte.dlvry_mode = INT_DELIVERY_MODE;
1445 irte.vector = vector;
1446 irte.dest_id = IRTE_DEST(destination);
1447
1448 modify_irte(irq, &irte);
1449
1450 ir_entry->index2 = (index >> 15) & 0x1;
1451 ir_entry->zero = 0;
1452 ir_entry->format = 1;
1453 ir_entry->index = (index & 0x7fff);
1454 } else
1455 #endif
1456 {
1457 entry->delivery_mode = INT_DELIVERY_MODE;
1458 entry->dest_mode = INT_DEST_MODE;
1459 entry->dest = destination;
1460 }
1461
1462 entry->mask = 0; /* enable IRQ */
1463 entry->trigger = trigger;
1464 entry->polarity = polarity;
1465 entry->vector = vector;
1466
1467 /* Mask level triggered irqs.
1468 * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
1469 */
1470 if (trigger)
1471 entry->mask = 1;
1472 return 0;
1473 }
1474
1475 static void setup_IO_APIC_irq(int apic, int pin, unsigned int irq,
1476 int trigger, int polarity)
1477 {
1478 struct irq_cfg *cfg;
1479 struct IO_APIC_route_entry entry;
1480 cpumask_t mask;
1481
1482 if (!IO_APIC_IRQ(irq))
1483 return;
1484
1485 cfg = irq_cfg(irq);
1486
1487 mask = TARGET_CPUS;
1488 if (assign_irq_vector(irq, mask))
1489 return;
1490
1491 cpus_and(mask, cfg->domain, mask);
1492
1493 apic_printk(APIC_VERBOSE,KERN_DEBUG
1494 "IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> "
1495 "IRQ %d Mode:%i Active:%i)\n",
1496 apic, mp_ioapics[apic].mp_apicid, pin, cfg->vector,
1497 irq, trigger, polarity);
1498
1499
1500 if (setup_ioapic_entry(mp_ioapics[apic].mp_apicid, irq, &entry,
1501 cpu_mask_to_apicid(mask), trigger, polarity,
1502 cfg->vector)) {
1503 printk("Failed to setup ioapic entry for ioapic %d, pin %d\n",
1504 mp_ioapics[apic].mp_apicid, pin);
1505 __clear_irq_vector(irq);
1506 return;
1507 }
1508
1509 ioapic_register_intr(irq, trigger);
1510 if (irq < 16)
1511 disable_8259A_irq(irq);
1512
1513 ioapic_write_entry(apic, pin, entry);
1514 }
1515
1516 static void __init setup_IO_APIC_irqs(void)
1517 {
1518 int apic, pin, idx, irq, first_notcon = 1;
1519
1520 apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n");
1521
1522 for (apic = 0; apic < nr_ioapics; apic++) {
1523 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1524
1525 idx = find_irq_entry(apic,pin,mp_INT);
1526 if (idx == -1) {
1527 if (first_notcon) {
1528 apic_printk(APIC_VERBOSE, KERN_DEBUG " IO-APIC (apicid-pin) %d-%d", mp_ioapics[apic].mp_apicid, pin);
1529 first_notcon = 0;
1530 } else
1531 apic_printk(APIC_VERBOSE, ", %d-%d", mp_ioapics[apic].mp_apicid, pin);
1532 continue;
1533 }
1534 if (!first_notcon) {
1535 apic_printk(APIC_VERBOSE, " not connected.\n");
1536 first_notcon = 1;
1537 }
1538
1539 irq = pin_2_irq(idx, apic, pin);
1540 #ifdef CONFIG_X86_32
1541 if (multi_timer_check(apic, irq))
1542 continue;
1543 #endif
1544 add_pin_to_irq(irq, apic, pin);
1545
1546 setup_IO_APIC_irq(apic, pin, irq,
1547 irq_trigger(idx), irq_polarity(idx));
1548 }
1549 }
1550
1551 if (!first_notcon)
1552 apic_printk(APIC_VERBOSE, " not connected.\n");
1553 }
1554
1555 /*
1556 * Set up the timer pin, possibly with the 8259A-master behind.
1557 */
1558 static void __init setup_timer_IRQ0_pin(unsigned int apic, unsigned int pin,
1559 int vector)
1560 {
1561 struct IO_APIC_route_entry entry;
1562
1563 #ifdef CONFIG_INTR_REMAP
1564 if (intr_remapping_enabled)
1565 return;
1566 #endif
1567
1568 memset(&entry, 0, sizeof(entry));
1569
1570 /*
1571 * We use logical delivery to get the timer IRQ
1572 * to the first CPU.
1573 */
1574 entry.dest_mode = INT_DEST_MODE;
1575 entry.mask = 1; /* mask IRQ now */
1576 entry.dest = cpu_mask_to_apicid(TARGET_CPUS);
1577 entry.delivery_mode = INT_DELIVERY_MODE;
1578 entry.polarity = 0;
1579 entry.trigger = 0;
1580 entry.vector = vector;
1581
1582 /*
1583 * The timer IRQ doesn't have to know that behind the
1584 * scene we may have a 8259A-master in AEOI mode ...
1585 */
1586 set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge");
1587
1588 /*
1589 * Add it to the IO-APIC irq-routing table:
1590 */
1591 ioapic_write_entry(apic, pin, entry);
1592 }
1593
1594
1595 __apicdebuginit(void) print_IO_APIC(void)
1596 {
1597 int apic, i;
1598 union IO_APIC_reg_00 reg_00;
1599 union IO_APIC_reg_01 reg_01;
1600 union IO_APIC_reg_02 reg_02;
1601 union IO_APIC_reg_03 reg_03;
1602 unsigned long flags;
1603 struct irq_cfg *cfg;
1604 unsigned int irq;
1605
1606 if (apic_verbosity == APIC_QUIET)
1607 return;
1608
1609 printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries);
1610 for (i = 0; i < nr_ioapics; i++)
1611 printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n",
1612 mp_ioapics[i].mp_apicid, nr_ioapic_registers[i]);
1613
1614 /*
1615 * We are a bit conservative about what we expect. We have to
1616 * know about every hardware change ASAP.
1617 */
1618 printk(KERN_INFO "testing the IO APIC.......................\n");
1619
1620 for (apic = 0; apic < nr_ioapics; apic++) {
1621
1622 spin_lock_irqsave(&ioapic_lock, flags);
1623 reg_00.raw = io_apic_read(apic, 0);
1624 reg_01.raw = io_apic_read(apic, 1);
1625 if (reg_01.bits.version >= 0x10)
1626 reg_02.raw = io_apic_read(apic, 2);
1627 if (reg_01.bits.version >= 0x20)
1628 reg_03.raw = io_apic_read(apic, 3);
1629 spin_unlock_irqrestore(&ioapic_lock, flags);
1630
1631 printk("\n");
1632 printk(KERN_DEBUG "IO APIC #%d......\n", mp_ioapics[apic].mp_apicid);
1633 printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw);
1634 printk(KERN_DEBUG "....... : physical APIC id: %02X\n", reg_00.bits.ID);
1635 printk(KERN_DEBUG "....... : Delivery Type: %X\n", reg_00.bits.delivery_type);
1636 printk(KERN_DEBUG "....... : LTS : %X\n", reg_00.bits.LTS);
1637
1638 printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)&reg_01);
1639 printk(KERN_DEBUG "....... : max redirection entries: %04X\n", reg_01.bits.entries);
1640
1641 printk(KERN_DEBUG "....... : PRQ implemented: %X\n", reg_01.bits.PRQ);
1642 printk(KERN_DEBUG "....... : IO APIC version: %04X\n", reg_01.bits.version);
1643
1644 /*
1645 * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02,
1646 * but the value of reg_02 is read as the previous read register
1647 * value, so ignore it if reg_02 == reg_01.
1648 */
1649 if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) {
1650 printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw);
1651 printk(KERN_DEBUG "....... : arbitration: %02X\n", reg_02.bits.arbitration);
1652 }
1653
1654 /*
1655 * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02
1656 * or reg_03, but the value of reg_0[23] is read as the previous read
1657 * register value, so ignore it if reg_03 == reg_0[12].
1658 */
1659 if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw &&
1660 reg_03.raw != reg_01.raw) {
1661 printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw);
1662 printk(KERN_DEBUG "....... : Boot DT : %X\n", reg_03.bits.boot_DT);
1663 }
1664
1665 printk(KERN_DEBUG ".... IRQ redirection table:\n");
1666
1667 printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol"
1668 " Stat Dmod Deli Vect: \n");
1669
1670 for (i = 0; i <= reg_01.bits.entries; i++) {
1671 struct IO_APIC_route_entry entry;
1672
1673 entry = ioapic_read_entry(apic, i);
1674
1675 printk(KERN_DEBUG " %02x %03X ",
1676 i,
1677 entry.dest
1678 );
1679
1680 printk("%1d %1d %1d %1d %1d %1d %1d %02X\n",
1681 entry.mask,
1682 entry.trigger,
1683 entry.irr,
1684 entry.polarity,
1685 entry.delivery_status,
1686 entry.dest_mode,
1687 entry.delivery_mode,
1688 entry.vector
1689 );
1690 }
1691 }
1692 printk(KERN_DEBUG "IRQ to pin mappings:\n");
1693 for_each_irq_cfg(irq, cfg) {
1694 struct irq_pin_list *entry = cfg->irq_2_pin;
1695 if (!entry)
1696 continue;
1697 printk(KERN_DEBUG "IRQ%d ", irq);
1698 for (;;) {
1699 printk("-> %d:%d", entry->apic, entry->pin);
1700 if (!entry->next)
1701 break;
1702 entry = entry->next;
1703 }
1704 printk("\n");
1705 }
1706
1707 printk(KERN_INFO ".................................... done.\n");
1708
1709 return;
1710 }
1711
1712 __apicdebuginit(void) print_APIC_bitfield(int base)
1713 {
1714 unsigned int v;
1715 int i, j;
1716
1717 if (apic_verbosity == APIC_QUIET)
1718 return;
1719
1720 printk(KERN_DEBUG "0123456789abcdef0123456789abcdef\n" KERN_DEBUG);
1721 for (i = 0; i < 8; i++) {
1722 v = apic_read(base + i*0x10);
1723 for (j = 0; j < 32; j++) {
1724 if (v & (1<<j))
1725 printk("1");
1726 else
1727 printk("0");
1728 }
1729 printk("\n");
1730 }
1731 }
1732
1733 __apicdebuginit(void) print_local_APIC(void *dummy)
1734 {
1735 unsigned int v, ver, maxlvt;
1736 u64 icr;
1737
1738 if (apic_verbosity == APIC_QUIET)
1739 return;
1740
1741 printk("\n" KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n",
1742 smp_processor_id(), hard_smp_processor_id());
1743 v = apic_read(APIC_ID);
1744 printk(KERN_INFO "... APIC ID: %08x (%01x)\n", v, read_apic_id());
1745 v = apic_read(APIC_LVR);
1746 printk(KERN_INFO "... APIC VERSION: %08x\n", v);
1747 ver = GET_APIC_VERSION(v);
1748 maxlvt = lapic_get_maxlvt();
1749
1750 v = apic_read(APIC_TASKPRI);
1751 printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1752
1753 if (APIC_INTEGRATED(ver)) { /* !82489DX */
1754 if (!APIC_XAPIC(ver)) {
1755 v = apic_read(APIC_ARBPRI);
1756 printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v,
1757 v & APIC_ARBPRI_MASK);
1758 }
1759 v = apic_read(APIC_PROCPRI);
1760 printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v);
1761 }
1762
1763 /*
1764 * Remote read supported only in the 82489DX and local APIC for
1765 * Pentium processors.
1766 */
1767 if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1768 v = apic_read(APIC_RRR);
1769 printk(KERN_DEBUG "... APIC RRR: %08x\n", v);
1770 }
1771
1772 v = apic_read(APIC_LDR);
1773 printk(KERN_DEBUG "... APIC LDR: %08x\n", v);
1774 if (!x2apic_enabled()) {
1775 v = apic_read(APIC_DFR);
1776 printk(KERN_DEBUG "... APIC DFR: %08x\n", v);
1777 }
1778 v = apic_read(APIC_SPIV);
1779 printk(KERN_DEBUG "... APIC SPIV: %08x\n", v);
1780
1781 printk(KERN_DEBUG "... APIC ISR field:\n");
1782 print_APIC_bitfield(APIC_ISR);
1783 printk(KERN_DEBUG "... APIC TMR field:\n");
1784 print_APIC_bitfield(APIC_TMR);
1785 printk(KERN_DEBUG "... APIC IRR field:\n");
1786 print_APIC_bitfield(APIC_IRR);
1787
1788 if (APIC_INTEGRATED(ver)) { /* !82489DX */
1789 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
1790 apic_write(APIC_ESR, 0);
1791
1792 v = apic_read(APIC_ESR);
1793 printk(KERN_DEBUG "... APIC ESR: %08x\n", v);
1794 }
1795
1796 icr = apic_icr_read();
1797 printk(KERN_DEBUG "... APIC ICR: %08x\n", (u32)icr);
1798 printk(KERN_DEBUG "... APIC ICR2: %08x\n", (u32)(icr >> 32));
1799
1800 v = apic_read(APIC_LVTT);
1801 printk(KERN_DEBUG "... APIC LVTT: %08x\n", v);
1802
1803 if (maxlvt > 3) { /* PC is LVT#4. */
1804 v = apic_read(APIC_LVTPC);
1805 printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v);
1806 }
1807 v = apic_read(APIC_LVT0);
1808 printk(KERN_DEBUG "... APIC LVT0: %08x\n", v);
1809 v = apic_read(APIC_LVT1);
1810 printk(KERN_DEBUG "... APIC LVT1: %08x\n", v);
1811
1812 if (maxlvt > 2) { /* ERR is LVT#3. */
1813 v = apic_read(APIC_LVTERR);
1814 printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v);
1815 }
1816
1817 v = apic_read(APIC_TMICT);
1818 printk(KERN_DEBUG "... APIC TMICT: %08x\n", v);
1819 v = apic_read(APIC_TMCCT);
1820 printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v);
1821 v = apic_read(APIC_TDCR);
1822 printk(KERN_DEBUG "... APIC TDCR: %08x\n", v);
1823 printk("\n");
1824 }
1825
1826 __apicdebuginit(void) print_all_local_APICs(void)
1827 {
1828 int cpu;
1829
1830 preempt_disable();
1831 for_each_online_cpu(cpu)
1832 smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1833 preempt_enable();
1834 }
1835
1836 __apicdebuginit(void) print_PIC(void)
1837 {
1838 unsigned int v;
1839 unsigned long flags;
1840
1841 if (apic_verbosity == APIC_QUIET)
1842 return;
1843
1844 printk(KERN_DEBUG "\nprinting PIC contents\n");
1845
1846 spin_lock_irqsave(&i8259A_lock, flags);
1847
1848 v = inb(0xa1) << 8 | inb(0x21);
1849 printk(KERN_DEBUG "... PIC IMR: %04x\n", v);
1850
1851 v = inb(0xa0) << 8 | inb(0x20);
1852 printk(KERN_DEBUG "... PIC IRR: %04x\n", v);
1853
1854 outb(0x0b,0xa0);
1855 outb(0x0b,0x20);
1856 v = inb(0xa0) << 8 | inb(0x20);
1857 outb(0x0a,0xa0);
1858 outb(0x0a,0x20);
1859
1860 spin_unlock_irqrestore(&i8259A_lock, flags);
1861
1862 printk(KERN_DEBUG "... PIC ISR: %04x\n", v);
1863
1864 v = inb(0x4d1) << 8 | inb(0x4d0);
1865 printk(KERN_DEBUG "... PIC ELCR: %04x\n", v);
1866 }
1867
1868 __apicdebuginit(int) print_all_ICs(void)
1869 {
1870 print_PIC();
1871 print_all_local_APICs();
1872 print_IO_APIC();
1873
1874 return 0;
1875 }
1876
1877 fs_initcall(print_all_ICs);
1878
1879
1880 /* Where if anywhere is the i8259 connect in external int mode */
1881 static struct { int pin, apic; } ioapic_i8259 = { -1, -1 };
1882
1883 void __init enable_IO_APIC(void)
1884 {
1885 union IO_APIC_reg_01 reg_01;
1886 int i8259_apic, i8259_pin;
1887 int apic;
1888 unsigned long flags;
1889
1890 #ifdef CONFIG_X86_32
1891 int i;
1892 if (!pirqs_enabled)
1893 for (i = 0; i < MAX_PIRQS; i++)
1894 pirq_entries[i] = -1;
1895 #endif
1896
1897 /*
1898 * The number of IO-APIC IRQ registers (== #pins):
1899 */
1900 for (apic = 0; apic < nr_ioapics; apic++) {
1901 spin_lock_irqsave(&ioapic_lock, flags);
1902 reg_01.raw = io_apic_read(apic, 1);
1903 spin_unlock_irqrestore(&ioapic_lock, flags);
1904 nr_ioapic_registers[apic] = reg_01.bits.entries+1;
1905 }
1906 for(apic = 0; apic < nr_ioapics; apic++) {
1907 int pin;
1908 /* See if any of the pins is in ExtINT mode */
1909 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1910 struct IO_APIC_route_entry entry;
1911 entry = ioapic_read_entry(apic, pin);
1912
1913 /* If the interrupt line is enabled and in ExtInt mode
1914 * I have found the pin where the i8259 is connected.
1915 */
1916 if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) {
1917 ioapic_i8259.apic = apic;
1918 ioapic_i8259.pin = pin;
1919 goto found_i8259;
1920 }
1921 }
1922 }
1923 found_i8259:
1924 /* Look to see what if the MP table has reported the ExtINT */
1925 /* If we could not find the appropriate pin by looking at the ioapic
1926 * the i8259 probably is not connected the ioapic but give the
1927 * mptable a chance anyway.
1928 */
1929 i8259_pin = find_isa_irq_pin(0, mp_ExtINT);
1930 i8259_apic = find_isa_irq_apic(0, mp_ExtINT);
1931 /* Trust the MP table if nothing is setup in the hardware */
1932 if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) {
1933 printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n");
1934 ioapic_i8259.pin = i8259_pin;
1935 ioapic_i8259.apic = i8259_apic;
1936 }
1937 /* Complain if the MP table and the hardware disagree */
1938 if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) &&
1939 (i8259_pin >= 0) && (ioapic_i8259.pin >= 0))
1940 {
1941 printk(KERN_WARNING "ExtINT in hardware and MP table differ\n");
1942 }
1943
1944 /*
1945 * Do not trust the IO-APIC being empty at bootup
1946 */
1947 clear_IO_APIC();
1948 }
1949
1950 /*
1951 * Not an __init, needed by the reboot code
1952 */
1953 void disable_IO_APIC(void)
1954 {
1955 /*
1956 * Clear the IO-APIC before rebooting:
1957 */
1958 clear_IO_APIC();
1959
1960 /*
1961 * If the i8259 is routed through an IOAPIC
1962 * Put that IOAPIC in virtual wire mode
1963 * so legacy interrupts can be delivered.
1964 */
1965 if (ioapic_i8259.pin != -1) {
1966 struct IO_APIC_route_entry entry;
1967
1968 memset(&entry, 0, sizeof(entry));
1969 entry.mask = 0; /* Enabled */
1970 entry.trigger = 0; /* Edge */
1971 entry.irr = 0;
1972 entry.polarity = 0; /* High */
1973 entry.delivery_status = 0;
1974 entry.dest_mode = 0; /* Physical */
1975 entry.delivery_mode = dest_ExtINT; /* ExtInt */
1976 entry.vector = 0;
1977 entry.dest = read_apic_id();
1978
1979 /*
1980 * Add it to the IO-APIC irq-routing table:
1981 */
1982 ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry);
1983 }
1984
1985 disconnect_bsp_APIC(ioapic_i8259.pin != -1);
1986 }
1987
1988 #ifdef CONFIG_X86_32
1989 /*
1990 * function to set the IO-APIC physical IDs based on the
1991 * values stored in the MPC table.
1992 *
1993 * by Matt Domsch <Matt_Domsch@dell.com> Tue Dec 21 12:25:05 CST 1999
1994 */
1995
1996 static void __init setup_ioapic_ids_from_mpc(void)
1997 {
1998 union IO_APIC_reg_00 reg_00;
1999 physid_mask_t phys_id_present_map;
2000 int apic;
2001 int i;
2002 unsigned char old_id;
2003 unsigned long flags;
2004
2005 if (x86_quirks->setup_ioapic_ids && x86_quirks->setup_ioapic_ids())
2006 return;
2007
2008 /*
2009 * Don't check I/O APIC IDs for xAPIC systems. They have
2010 * no meaning without the serial APIC bus.
2011 */
2012 if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2013 || APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
2014 return;
2015 /*
2016 * This is broken; anything with a real cpu count has to
2017 * circumvent this idiocy regardless.
2018 */
2019 phys_id_present_map = ioapic_phys_id_map(phys_cpu_present_map);
2020
2021 /*
2022 * Set the IOAPIC ID to the value stored in the MPC table.
2023 */
2024 for (apic = 0; apic < nr_ioapics; apic++) {
2025
2026 /* Read the register 0 value */
2027 spin_lock_irqsave(&ioapic_lock, flags);
2028 reg_00.raw = io_apic_read(apic, 0);
2029 spin_unlock_irqrestore(&ioapic_lock, flags);
2030
2031 old_id = mp_ioapics[apic].mp_apicid;
2032
2033 if (mp_ioapics[apic].mp_apicid >= get_physical_broadcast()) {
2034 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n",
2035 apic, mp_ioapics[apic].mp_apicid);
2036 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2037 reg_00.bits.ID);
2038 mp_ioapics[apic].mp_apicid = reg_00.bits.ID;
2039 }
2040
2041 /*
2042 * Sanity check, is the ID really free? Every APIC in a
2043 * system must have a unique ID or we get lots of nice
2044 * 'stuck on smp_invalidate_needed IPI wait' messages.
2045 */
2046 if (check_apicid_used(phys_id_present_map,
2047 mp_ioapics[apic].mp_apicid)) {
2048 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n",
2049 apic, mp_ioapics[apic].mp_apicid);
2050 for (i = 0; i < get_physical_broadcast(); i++)
2051 if (!physid_isset(i, phys_id_present_map))
2052 break;
2053 if (i >= get_physical_broadcast())
2054 panic("Max APIC ID exceeded!\n");
2055 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
2056 i);
2057 physid_set(i, phys_id_present_map);
2058 mp_ioapics[apic].mp_apicid = i;
2059 } else {
2060 physid_mask_t tmp;
2061 tmp = apicid_to_cpu_present(mp_ioapics[apic].mp_apicid);
2062 apic_printk(APIC_VERBOSE, "Setting %d in the "
2063 "phys_id_present_map\n",
2064 mp_ioapics[apic].mp_apicid);
2065 physids_or(phys_id_present_map, phys_id_present_map, tmp);
2066 }
2067
2068
2069 /*
2070 * We need to adjust the IRQ routing table
2071 * if the ID changed.
2072 */
2073 if (old_id != mp_ioapics[apic].mp_apicid)
2074 for (i = 0; i < mp_irq_entries; i++)
2075 if (mp_irqs[i].mp_dstapic == old_id)
2076 mp_irqs[i].mp_dstapic
2077 = mp_ioapics[apic].mp_apicid;
2078
2079 /*
2080 * Read the right value from the MPC table and
2081 * write it into the ID register.
2082 */
2083 apic_printk(APIC_VERBOSE, KERN_INFO
2084 "...changing IO-APIC physical APIC ID to %d ...",
2085 mp_ioapics[apic].mp_apicid);
2086
2087 reg_00.bits.ID = mp_ioapics[apic].mp_apicid;
2088 spin_lock_irqsave(&ioapic_lock, flags);
2089 io_apic_write(apic, 0, reg_00.raw);
2090 spin_unlock_irqrestore(&ioapic_lock, flags);
2091
2092 /*
2093 * Sanity check
2094 */
2095 spin_lock_irqsave(&ioapic_lock, flags);
2096 reg_00.raw = io_apic_read(apic, 0);
2097 spin_unlock_irqrestore(&ioapic_lock, flags);
2098 if (reg_00.bits.ID != mp_ioapics[apic].mp_apicid)
2099 printk("could not set ID!\n");
2100 else
2101 apic_printk(APIC_VERBOSE, " ok.\n");
2102 }
2103 }
2104 #endif
2105
2106 int no_timer_check __initdata;
2107
2108 static int __init notimercheck(char *s)
2109 {
2110 no_timer_check = 1;
2111 return 1;
2112 }
2113 __setup("no_timer_check", notimercheck);
2114
2115 /*
2116 * There is a nasty bug in some older SMP boards, their mptable lies
2117 * about the timer IRQ. We do the following to work around the situation:
2118 *
2119 * - timer IRQ defaults to IO-APIC IRQ
2120 * - if this function detects that timer IRQs are defunct, then we fall
2121 * back to ISA timer IRQs
2122 */
2123 static int __init timer_irq_works(void)
2124 {
2125 unsigned long t1 = jiffies;
2126 unsigned long flags;
2127
2128 if (no_timer_check)
2129 return 1;
2130
2131 local_save_flags(flags);
2132 local_irq_enable();
2133 /* Let ten ticks pass... */
2134 mdelay((10 * 1000) / HZ);
2135 local_irq_restore(flags);
2136
2137 /*
2138 * Expect a few ticks at least, to be sure some possible
2139 * glue logic does not lock up after one or two first
2140 * ticks in a non-ExtINT mode. Also the local APIC
2141 * might have cached one ExtINT interrupt. Finally, at
2142 * least one tick may be lost due to delays.
2143 */
2144
2145 /* jiffies wrap? */
2146 if (time_after(jiffies, t1 + 4))
2147 return 1;
2148 return 0;
2149 }
2150
2151 /*
2152 * In the SMP+IOAPIC case it might happen that there are an unspecified
2153 * number of pending IRQ events unhandled. These cases are very rare,
2154 * so we 'resend' these IRQs via IPIs, to the same CPU. It's much
2155 * better to do it this way as thus we do not have to be aware of
2156 * 'pending' interrupts in the IRQ path, except at this point.
2157 */
2158 /*
2159 * Edge triggered needs to resend any interrupt
2160 * that was delayed but this is now handled in the device
2161 * independent code.
2162 */
2163
2164 /*
2165 * Starting up a edge-triggered IO-APIC interrupt is
2166 * nasty - we need to make sure that we get the edge.
2167 * If it is already asserted for some reason, we need
2168 * return 1 to indicate that is was pending.
2169 *
2170 * This is not complete - we should be able to fake
2171 * an edge even if it isn't on the 8259A...
2172 */
2173
2174 static unsigned int startup_ioapic_irq(unsigned int irq)
2175 {
2176 int was_pending = 0;
2177 unsigned long flags;
2178
2179 spin_lock_irqsave(&ioapic_lock, flags);
2180 if (irq < 16) {
2181 disable_8259A_irq(irq);
2182 if (i8259A_irq_pending(irq))
2183 was_pending = 1;
2184 }
2185 __unmask_IO_APIC_irq(irq);
2186 spin_unlock_irqrestore(&ioapic_lock, flags);
2187
2188 return was_pending;
2189 }
2190
2191 #ifdef CONFIG_X86_64
2192 static int ioapic_retrigger_irq(unsigned int irq)
2193 {
2194
2195 struct irq_cfg *cfg = irq_cfg(irq);
2196 unsigned long flags;
2197
2198 spin_lock_irqsave(&vector_lock, flags);
2199 send_IPI_mask(cpumask_of_cpu(first_cpu(cfg->domain)), cfg->vector);
2200 spin_unlock_irqrestore(&vector_lock, flags);
2201
2202 return 1;
2203 }
2204 #else
2205 static int ioapic_retrigger_irq(unsigned int irq)
2206 {
2207 send_IPI_self(irq_cfg(irq)->vector);
2208
2209 return 1;
2210 }
2211 #endif
2212
2213 /*
2214 * Level and edge triggered IO-APIC interrupts need different handling,
2215 * so we use two separate IRQ descriptors. Edge triggered IRQs can be
2216 * handled with the level-triggered descriptor, but that one has slightly
2217 * more overhead. Level-triggered interrupts cannot be handled with the
2218 * edge-triggered handler, without risking IRQ storms and other ugly
2219 * races.
2220 */
2221
2222 #ifdef CONFIG_SMP
2223
2224 #ifdef CONFIG_INTR_REMAP
2225 static void ir_irq_migration(struct work_struct *work);
2226
2227 static DECLARE_DELAYED_WORK(ir_migration_work, ir_irq_migration);
2228
2229 /*
2230 * Migrate the IO-APIC irq in the presence of intr-remapping.
2231 *
2232 * For edge triggered, irq migration is a simple atomic update(of vector
2233 * and cpu destination) of IRTE and flush the hardware cache.
2234 *
2235 * For level triggered, we need to modify the io-apic RTE aswell with the update
2236 * vector information, along with modifying IRTE with vector and destination.
2237 * So irq migration for level triggered is little bit more complex compared to
2238 * edge triggered migration. But the good news is, we use the same algorithm
2239 * for level triggered migration as we have today, only difference being,
2240 * we now initiate the irq migration from process context instead of the
2241 * interrupt context.
2242 *
2243 * In future, when we do a directed EOI (combined with cpu EOI broadcast
2244 * suppression) to the IO-APIC, level triggered irq migration will also be
2245 * as simple as edge triggered migration and we can do the irq migration
2246 * with a simple atomic update to IO-APIC RTE.
2247 */
2248 static void migrate_ioapic_irq(int irq, cpumask_t mask)
2249 {
2250 struct irq_cfg *cfg;
2251 struct irq_desc *desc;
2252 cpumask_t tmp, cleanup_mask;
2253 struct irte irte;
2254 int modify_ioapic_rte;
2255 unsigned int dest;
2256 unsigned long flags;
2257
2258 cpus_and(tmp, mask, cpu_online_map);
2259 if (cpus_empty(tmp))
2260 return;
2261
2262 if (get_irte(irq, &irte))
2263 return;
2264
2265 if (assign_irq_vector(irq, mask))
2266 return;
2267
2268 cfg = irq_cfg(irq);
2269 cpus_and(tmp, cfg->domain, mask);
2270 dest = cpu_mask_to_apicid(tmp);
2271
2272 desc = irq_to_desc(irq);
2273 modify_ioapic_rte = desc->status & IRQ_LEVEL;
2274 if (modify_ioapic_rte) {
2275 spin_lock_irqsave(&ioapic_lock, flags);
2276 __target_IO_APIC_irq(irq, dest, cfg->vector);
2277 spin_unlock_irqrestore(&ioapic_lock, flags);
2278 }
2279
2280 irte.vector = cfg->vector;
2281 irte.dest_id = IRTE_DEST(dest);
2282
2283 /*
2284 * Modified the IRTE and flushes the Interrupt entry cache.
2285 */
2286 modify_irte(irq, &irte);
2287
2288 if (cfg->move_in_progress) {
2289 cpus_and(cleanup_mask, cfg->old_domain, cpu_online_map);
2290 cfg->move_cleanup_count = cpus_weight(cleanup_mask);
2291 send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
2292 cfg->move_in_progress = 0;
2293 }
2294
2295 desc->affinity = mask;
2296 }
2297
2298 static int migrate_irq_remapped_level(int irq)
2299 {
2300 int ret = -1;
2301 struct irq_desc *desc = irq_to_desc(irq);
2302
2303 mask_IO_APIC_irq(irq);
2304
2305 if (io_apic_level_ack_pending(irq)) {
2306 /*
2307 * Interrupt in progress. Migrating irq now will change the
2308 * vector information in the IO-APIC RTE and that will confuse
2309 * the EOI broadcast performed by cpu.
2310 * So, delay the irq migration to the next instance.
2311 */
2312 schedule_delayed_work(&ir_migration_work, 1);
2313 goto unmask;
2314 }
2315
2316 /* everthing is clear. we have right of way */
2317 migrate_ioapic_irq(irq, desc->pending_mask);
2318
2319 ret = 0;
2320 desc->status &= ~IRQ_MOVE_PENDING;
2321 cpus_clear(desc->pending_mask);
2322
2323 unmask:
2324 unmask_IO_APIC_irq(irq);
2325 return ret;
2326 }
2327
2328 static void ir_irq_migration(struct work_struct *work)
2329 {
2330 unsigned int irq;
2331 struct irq_desc *desc;
2332
2333 for_each_irq_desc(irq, desc) {
2334 if (desc->status & IRQ_MOVE_PENDING) {
2335 unsigned long flags;
2336
2337 spin_lock_irqsave(&desc->lock, flags);
2338 if (!desc->chip->set_affinity ||
2339 !(desc->status & IRQ_MOVE_PENDING)) {
2340 desc->status &= ~IRQ_MOVE_PENDING;
2341 spin_unlock_irqrestore(&desc->lock, flags);
2342 continue;
2343 }
2344
2345 desc->chip->set_affinity(irq, desc->pending_mask);
2346 spin_unlock_irqrestore(&desc->lock, flags);
2347 }
2348 }
2349 }
2350
2351 /*
2352 * Migrates the IRQ destination in the process context.
2353 */
2354 static void set_ir_ioapic_affinity_irq(unsigned int irq, cpumask_t mask)
2355 {
2356 struct irq_desc *desc = irq_to_desc(irq);
2357
2358 if (desc->status & IRQ_LEVEL) {
2359 desc->status |= IRQ_MOVE_PENDING;
2360 desc->pending_mask = mask;
2361 migrate_irq_remapped_level(irq);
2362 return;
2363 }
2364
2365 migrate_ioapic_irq(irq, mask);
2366 }
2367 #endif
2368
2369 asmlinkage void smp_irq_move_cleanup_interrupt(void)
2370 {
2371 unsigned vector, me;
2372 ack_APIC_irq();
2373 #ifdef CONFIG_X86_64
2374 exit_idle();
2375 #endif
2376 irq_enter();
2377
2378 me = smp_processor_id();
2379 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
2380 unsigned int irq;
2381 struct irq_desc *desc;
2382 struct irq_cfg *cfg;
2383 irq = __get_cpu_var(vector_irq)[vector];
2384
2385 desc = irq_to_desc(irq);
2386 if (!desc)
2387 continue;
2388
2389 cfg = irq_cfg(irq);
2390 spin_lock(&desc->lock);
2391 if (!cfg->move_cleanup_count)
2392 goto unlock;
2393
2394 if ((vector == cfg->vector) && cpu_isset(me, cfg->domain))
2395 goto unlock;
2396
2397 __get_cpu_var(vector_irq)[vector] = -1;
2398 cfg->move_cleanup_count--;
2399 unlock:
2400 spin_unlock(&desc->lock);
2401 }
2402
2403 irq_exit();
2404 }
2405
2406 static void irq_complete_move(unsigned int irq)
2407 {
2408 struct irq_cfg *cfg = irq_cfg(irq);
2409 unsigned vector, me;
2410
2411 if (likely(!cfg->move_in_progress))
2412 return;
2413
2414 vector = ~get_irq_regs()->orig_ax;
2415 me = smp_processor_id();
2416 if ((vector == cfg->vector) && cpu_isset(me, cfg->domain)) {
2417 cpumask_t cleanup_mask;
2418
2419 cpus_and(cleanup_mask, cfg->old_domain, cpu_online_map);
2420 cfg->move_cleanup_count = cpus_weight(cleanup_mask);
2421 send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
2422 cfg->move_in_progress = 0;
2423 }
2424 }
2425 #else
2426 static inline void irq_complete_move(unsigned int irq) {}
2427 #endif
2428 #ifdef CONFIG_INTR_REMAP
2429 static void ack_x2apic_level(unsigned int irq)
2430 {
2431 ack_x2APIC_irq();
2432 }
2433
2434 static void ack_x2apic_edge(unsigned int irq)
2435 {
2436 ack_x2APIC_irq();
2437 }
2438 #endif
2439
2440 static void ack_apic_edge(unsigned int irq)
2441 {
2442 irq_complete_move(irq);
2443 move_native_irq(irq);
2444 ack_APIC_irq();
2445 }
2446
2447 #ifdef CONFIG_X86_32
2448 atomic_t irq_mis_count;
2449 #endif
2450
2451 static void ack_apic_level(unsigned int irq)
2452 {
2453 #ifdef CONFIG_X86_32
2454 unsigned long v;
2455 int i;
2456 #endif
2457 int do_unmask_irq = 0;
2458
2459 irq_complete_move(irq);
2460 #ifdef CONFIG_GENERIC_PENDING_IRQ
2461 /* If we are moving the irq we need to mask it */
2462 if (unlikely(irq_to_desc(irq)->status & IRQ_MOVE_PENDING)) {
2463 do_unmask_irq = 1;
2464 mask_IO_APIC_irq(irq);
2465 }
2466 #endif
2467
2468 #ifdef CONFIG_X86_32
2469 /*
2470 * It appears there is an erratum which affects at least version 0x11
2471 * of I/O APIC (that's the 82093AA and cores integrated into various
2472 * chipsets). Under certain conditions a level-triggered interrupt is
2473 * erroneously delivered as edge-triggered one but the respective IRR
2474 * bit gets set nevertheless. As a result the I/O unit expects an EOI
2475 * message but it will never arrive and further interrupts are blocked
2476 * from the source. The exact reason is so far unknown, but the
2477 * phenomenon was observed when two consecutive interrupt requests
2478 * from a given source get delivered to the same CPU and the source is
2479 * temporarily disabled in between.
2480 *
2481 * A workaround is to simulate an EOI message manually. We achieve it
2482 * by setting the trigger mode to edge and then to level when the edge
2483 * trigger mode gets detected in the TMR of a local APIC for a
2484 * level-triggered interrupt. We mask the source for the time of the
2485 * operation to prevent an edge-triggered interrupt escaping meanwhile.
2486 * The idea is from Manfred Spraul. --macro
2487 */
2488 i = irq_cfg(irq)->vector;
2489
2490 v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1));
2491 #endif
2492
2493 /*
2494 * We must acknowledge the irq before we move it or the acknowledge will
2495 * not propagate properly.
2496 */
2497 ack_APIC_irq();
2498
2499 /* Now we can move and renable the irq */
2500 if (unlikely(do_unmask_irq)) {
2501 /* Only migrate the irq if the ack has been received.
2502 *
2503 * On rare occasions the broadcast level triggered ack gets
2504 * delayed going to ioapics, and if we reprogram the
2505 * vector while Remote IRR is still set the irq will never
2506 * fire again.
2507 *
2508 * To prevent this scenario we read the Remote IRR bit
2509 * of the ioapic. This has two effects.
2510 * - On any sane system the read of the ioapic will
2511 * flush writes (and acks) going to the ioapic from
2512 * this cpu.
2513 * - We get to see if the ACK has actually been delivered.
2514 *
2515 * Based on failed experiments of reprogramming the
2516 * ioapic entry from outside of irq context starting
2517 * with masking the ioapic entry and then polling until
2518 * Remote IRR was clear before reprogramming the
2519 * ioapic I don't trust the Remote IRR bit to be
2520 * completey accurate.
2521 *
2522 * However there appears to be no other way to plug
2523 * this race, so if the Remote IRR bit is not
2524 * accurate and is causing problems then it is a hardware bug
2525 * and you can go talk to the chipset vendor about it.
2526 */
2527 if (!io_apic_level_ack_pending(irq))
2528 move_masked_irq(irq);
2529 unmask_IO_APIC_irq(irq);
2530 }
2531
2532 #ifdef CONFIG_X86_32
2533 if (!(v & (1 << (i & 0x1f)))) {
2534 atomic_inc(&irq_mis_count);
2535 spin_lock(&ioapic_lock);
2536 __mask_and_edge_IO_APIC_irq(irq);
2537 __unmask_and_level_IO_APIC_irq(irq);
2538 spin_unlock(&ioapic_lock);
2539 }
2540 #endif
2541 }
2542
2543 static struct irq_chip ioapic_chip __read_mostly = {
2544 .name = "IO-APIC",
2545 .startup = startup_ioapic_irq,
2546 .mask = mask_IO_APIC_irq,
2547 .unmask = unmask_IO_APIC_irq,
2548 .ack = ack_apic_edge,
2549 .eoi = ack_apic_level,
2550 #ifdef CONFIG_SMP
2551 .set_affinity = set_ioapic_affinity_irq,
2552 #endif
2553 .retrigger = ioapic_retrigger_irq,
2554 };
2555
2556 #ifdef CONFIG_INTR_REMAP
2557 static struct irq_chip ir_ioapic_chip __read_mostly = {
2558 .name = "IR-IO-APIC",
2559 .startup = startup_ioapic_irq,
2560 .mask = mask_IO_APIC_irq,
2561 .unmask = unmask_IO_APIC_irq,
2562 .ack = ack_x2apic_edge,
2563 .eoi = ack_x2apic_level,
2564 #ifdef CONFIG_SMP
2565 .set_affinity = set_ir_ioapic_affinity_irq,
2566 #endif
2567 .retrigger = ioapic_retrigger_irq,
2568 };
2569 #endif
2570
2571 static inline void init_IO_APIC_traps(void)
2572 {
2573 int irq;
2574 struct irq_desc *desc;
2575 struct irq_cfg *cfg;
2576
2577 /*
2578 * NOTE! The local APIC isn't very good at handling
2579 * multiple interrupts at the same interrupt level.
2580 * As the interrupt level is determined by taking the
2581 * vector number and shifting that right by 4, we
2582 * want to spread these out a bit so that they don't
2583 * all fall in the same interrupt level.
2584 *
2585 * Also, we've got to be careful not to trash gate
2586 * 0x80, because int 0x80 is hm, kind of importantish. ;)
2587 */
2588 for_each_irq_cfg(irq, cfg) {
2589 if (IO_APIC_IRQ(irq) && !cfg->vector) {
2590 /*
2591 * Hmm.. We don't have an entry for this,
2592 * so default to an old-fashioned 8259
2593 * interrupt if we can..
2594 */
2595 if (irq < 16)
2596 make_8259A_irq(irq);
2597 else {
2598 desc = irq_to_desc(irq);
2599 /* Strange. Oh, well.. */
2600 desc->chip = &no_irq_chip;
2601 }
2602 }
2603 }
2604 }
2605
2606 /*
2607 * The local APIC irq-chip implementation:
2608 */
2609
2610 static void mask_lapic_irq(unsigned int irq)
2611 {
2612 unsigned long v;
2613
2614 v = apic_read(APIC_LVT0);
2615 apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
2616 }
2617
2618 static void unmask_lapic_irq(unsigned int irq)
2619 {
2620 unsigned long v;
2621
2622 v = apic_read(APIC_LVT0);
2623 apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED);
2624 }
2625
2626 static void ack_lapic_irq (unsigned int irq)
2627 {
2628 ack_APIC_irq();
2629 }
2630
2631 static struct irq_chip lapic_chip __read_mostly = {
2632 .name = "local-APIC",
2633 .mask = mask_lapic_irq,
2634 .unmask = unmask_lapic_irq,
2635 .ack = ack_lapic_irq,
2636 };
2637
2638 static void lapic_register_intr(int irq)
2639 {
2640 struct irq_desc *desc;
2641
2642 desc = irq_to_desc(irq);
2643 desc->status &= ~IRQ_LEVEL;
2644 set_irq_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq,
2645 "edge");
2646 }
2647
2648 static void __init setup_nmi(void)
2649 {
2650 /*
2651 * Dirty trick to enable the NMI watchdog ...
2652 * We put the 8259A master into AEOI mode and
2653 * unmask on all local APICs LVT0 as NMI.
2654 *
2655 * The idea to use the 8259A in AEOI mode ('8259A Virtual Wire')
2656 * is from Maciej W. Rozycki - so we do not have to EOI from
2657 * the NMI handler or the timer interrupt.
2658 */
2659 apic_printk(APIC_VERBOSE, KERN_INFO "activating NMI Watchdog ...");
2660
2661 enable_NMI_through_LVT0();
2662
2663 apic_printk(APIC_VERBOSE, " done.\n");
2664 }
2665
2666 /*
2667 * This looks a bit hackish but it's about the only one way of sending
2668 * a few INTA cycles to 8259As and any associated glue logic. ICR does
2669 * not support the ExtINT mode, unfortunately. We need to send these
2670 * cycles as some i82489DX-based boards have glue logic that keeps the
2671 * 8259A interrupt line asserted until INTA. --macro
2672 */
2673 static inline void __init unlock_ExtINT_logic(void)
2674 {
2675 int apic, pin, i;
2676 struct IO_APIC_route_entry entry0, entry1;
2677 unsigned char save_control, save_freq_select;
2678
2679 pin = find_isa_irq_pin(8, mp_INT);
2680 if (pin == -1) {
2681 WARN_ON_ONCE(1);
2682 return;
2683 }
2684 apic = find_isa_irq_apic(8, mp_INT);
2685 if (apic == -1) {
2686 WARN_ON_ONCE(1);
2687 return;
2688 }
2689
2690 entry0 = ioapic_read_entry(apic, pin);
2691 clear_IO_APIC_pin(apic, pin);
2692
2693 memset(&entry1, 0, sizeof(entry1));
2694
2695 entry1.dest_mode = 0; /* physical delivery */
2696 entry1.mask = 0; /* unmask IRQ now */
2697 entry1.dest = hard_smp_processor_id();
2698 entry1.delivery_mode = dest_ExtINT;
2699 entry1.polarity = entry0.polarity;
2700 entry1.trigger = 0;
2701 entry1.vector = 0;
2702
2703 ioapic_write_entry(apic, pin, entry1);
2704
2705 save_control = CMOS_READ(RTC_CONTROL);
2706 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
2707 CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6,
2708 RTC_FREQ_SELECT);
2709 CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL);
2710
2711 i = 100;
2712 while (i-- > 0) {
2713 mdelay(10);
2714 if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF)
2715 i -= 10;
2716 }
2717
2718 CMOS_WRITE(save_control, RTC_CONTROL);
2719 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
2720 clear_IO_APIC_pin(apic, pin);
2721
2722 ioapic_write_entry(apic, pin, entry0);
2723 }
2724
2725 static int disable_timer_pin_1 __initdata;
2726 /* Actually the next is obsolete, but keep it for paranoid reasons -AK */
2727 static int __init disable_timer_pin_setup(char *arg)
2728 {
2729 disable_timer_pin_1 = 1;
2730 return 0;
2731 }
2732 early_param("disable_timer_pin_1", disable_timer_pin_setup);
2733
2734 int timer_through_8259 __initdata;
2735
2736 /*
2737 * This code may look a bit paranoid, but it's supposed to cooperate with
2738 * a wide range of boards and BIOS bugs. Fortunately only the timer IRQ
2739 * is so screwy. Thanks to Brian Perkins for testing/hacking this beast
2740 * fanatically on his truly buggy board.
2741 *
2742 * FIXME: really need to revamp this for all platforms.
2743 */
2744 static inline void __init check_timer(void)
2745 {
2746 struct irq_cfg *cfg = irq_cfg(0);
2747 int apic1, pin1, apic2, pin2;
2748 unsigned long flags;
2749 unsigned int ver;
2750 int no_pin1 = 0;
2751
2752 local_irq_save(flags);
2753
2754 ver = apic_read(APIC_LVR);
2755 ver = GET_APIC_VERSION(ver);
2756
2757 /*
2758 * get/set the timer IRQ vector:
2759 */
2760 disable_8259A_irq(0);
2761 assign_irq_vector(0, TARGET_CPUS);
2762
2763 /*
2764 * As IRQ0 is to be enabled in the 8259A, the virtual
2765 * wire has to be disabled in the local APIC. Also
2766 * timer interrupts need to be acknowledged manually in
2767 * the 8259A for the i82489DX when using the NMI
2768 * watchdog as that APIC treats NMIs as level-triggered.
2769 * The AEOI mode will finish them in the 8259A
2770 * automatically.
2771 */
2772 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT);
2773 init_8259A(1);
2774 #ifdef CONFIG_X86_32
2775 timer_ack = (nmi_watchdog == NMI_IO_APIC && !APIC_INTEGRATED(ver));
2776 #endif
2777
2778 pin1 = find_isa_irq_pin(0, mp_INT);
2779 apic1 = find_isa_irq_apic(0, mp_INT);
2780 pin2 = ioapic_i8259.pin;
2781 apic2 = ioapic_i8259.apic;
2782
2783 apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X "
2784 "apic1=%d pin1=%d apic2=%d pin2=%d\n",
2785 cfg->vector, apic1, pin1, apic2, pin2);
2786
2787 /*
2788 * Some BIOS writers are clueless and report the ExtINTA
2789 * I/O APIC input from the cascaded 8259A as the timer
2790 * interrupt input. So just in case, if only one pin
2791 * was found above, try it both directly and through the
2792 * 8259A.
2793 */
2794 if (pin1 == -1) {
2795 #ifdef CONFIG_INTR_REMAP
2796 if (intr_remapping_enabled)
2797 panic("BIOS bug: timer not connected to IO-APIC");
2798 #endif
2799 pin1 = pin2;
2800 apic1 = apic2;
2801 no_pin1 = 1;
2802 } else if (pin2 == -1) {
2803 pin2 = pin1;
2804 apic2 = apic1;
2805 }
2806
2807 if (pin1 != -1) {
2808 /*
2809 * Ok, does IRQ0 through the IOAPIC work?
2810 */
2811 if (no_pin1) {
2812 add_pin_to_irq(0, apic1, pin1);
2813 setup_timer_IRQ0_pin(apic1, pin1, cfg->vector);
2814 }
2815 unmask_IO_APIC_irq(0);
2816 if (timer_irq_works()) {
2817 if (nmi_watchdog == NMI_IO_APIC) {
2818 setup_nmi();
2819 enable_8259A_irq(0);
2820 }
2821 if (disable_timer_pin_1 > 0)
2822 clear_IO_APIC_pin(0, pin1);
2823 goto out;
2824 }
2825 #ifdef CONFIG_INTR_REMAP
2826 if (intr_remapping_enabled)
2827 panic("timer doesn't work through Interrupt-remapped IO-APIC");
2828 #endif
2829 clear_IO_APIC_pin(apic1, pin1);
2830 if (!no_pin1)
2831 apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: "
2832 "8254 timer not connected to IO-APIC\n");
2833
2834 apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer "
2835 "(IRQ0) through the 8259A ...\n");
2836 apic_printk(APIC_QUIET, KERN_INFO
2837 "..... (found apic %d pin %d) ...\n", apic2, pin2);
2838 /*
2839 * legacy devices should be connected to IO APIC #0
2840 */
2841 replace_pin_at_irq(0, apic1, pin1, apic2, pin2);
2842 setup_timer_IRQ0_pin(apic2, pin2, cfg->vector);
2843 unmask_IO_APIC_irq(0);
2844 enable_8259A_irq(0);
2845 if (timer_irq_works()) {
2846 apic_printk(APIC_QUIET, KERN_INFO "....... works.\n");
2847 timer_through_8259 = 1;
2848 if (nmi_watchdog == NMI_IO_APIC) {
2849 disable_8259A_irq(0);
2850 setup_nmi();
2851 enable_8259A_irq(0);
2852 }
2853 goto out;
2854 }
2855 /*
2856 * Cleanup, just in case ...
2857 */
2858 disable_8259A_irq(0);
2859 clear_IO_APIC_pin(apic2, pin2);
2860 apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n");
2861 }
2862
2863 if (nmi_watchdog == NMI_IO_APIC) {
2864 apic_printk(APIC_QUIET, KERN_WARNING "timer doesn't work "
2865 "through the IO-APIC - disabling NMI Watchdog!\n");
2866 nmi_watchdog = NMI_NONE;
2867 }
2868 #ifdef CONFIG_X86_32
2869 timer_ack = 0;
2870 #endif
2871
2872 apic_printk(APIC_QUIET, KERN_INFO
2873 "...trying to set up timer as Virtual Wire IRQ...\n");
2874
2875 lapic_register_intr(0);
2876 apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector); /* Fixed mode */
2877 enable_8259A_irq(0);
2878
2879 if (timer_irq_works()) {
2880 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
2881 goto out;
2882 }
2883 disable_8259A_irq(0);
2884 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector);
2885 apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n");
2886
2887 apic_printk(APIC_QUIET, KERN_INFO
2888 "...trying to set up timer as ExtINT IRQ...\n");
2889
2890 init_8259A(0);
2891 make_8259A_irq(0);
2892 apic_write(APIC_LVT0, APIC_DM_EXTINT);
2893
2894 unlock_ExtINT_logic();
2895
2896 if (timer_irq_works()) {
2897 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
2898 goto out;
2899 }
2900 apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n");
2901 panic("IO-APIC + timer doesn't work! Boot with apic=debug and send a "
2902 "report. Then try booting with the 'noapic' option.\n");
2903 out:
2904 local_irq_restore(flags);
2905 }
2906
2907 /*
2908 * Traditionally ISA IRQ2 is the cascade IRQ, and is not available
2909 * to devices. However there may be an I/O APIC pin available for
2910 * this interrupt regardless. The pin may be left unconnected, but
2911 * typically it will be reused as an ExtINT cascade interrupt for
2912 * the master 8259A. In the MPS case such a pin will normally be
2913 * reported as an ExtINT interrupt in the MP table. With ACPI
2914 * there is no provision for ExtINT interrupts, and in the absence
2915 * of an override it would be treated as an ordinary ISA I/O APIC
2916 * interrupt, that is edge-triggered and unmasked by default. We
2917 * used to do this, but it caused problems on some systems because
2918 * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using
2919 * the same ExtINT cascade interrupt to drive the local APIC of the
2920 * bootstrap processor. Therefore we refrain from routing IRQ2 to
2921 * the I/O APIC in all cases now. No actual device should request
2922 * it anyway. --macro
2923 */
2924 #define PIC_IRQS (1 << PIC_CASCADE_IR)
2925
2926 void __init setup_IO_APIC(void)
2927 {
2928
2929 #ifdef CONFIG_X86_32
2930 enable_IO_APIC();
2931 #else
2932 /*
2933 * calling enable_IO_APIC() is moved to setup_local_APIC for BP
2934 */
2935 #endif
2936
2937 io_apic_irqs = ~PIC_IRQS;
2938
2939 apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n");
2940 /*
2941 * Set up IO-APIC IRQ routing.
2942 */
2943 #ifdef CONFIG_X86_32
2944 if (!acpi_ioapic)
2945 setup_ioapic_ids_from_mpc();
2946 #endif
2947 sync_Arb_IDs();
2948 setup_IO_APIC_irqs();
2949 init_IO_APIC_traps();
2950 check_timer();
2951 }
2952
2953 /*
2954 * Called after all the initialization is done. If we didnt find any
2955 * APIC bugs then we can allow the modify fast path
2956 */
2957
2958 static int __init io_apic_bug_finalize(void)
2959 {
2960 if (sis_apic_bug == -1)
2961 sis_apic_bug = 0;
2962 return 0;
2963 }
2964
2965 late_initcall(io_apic_bug_finalize);
2966
2967 struct sysfs_ioapic_data {
2968 struct sys_device dev;
2969 struct IO_APIC_route_entry entry[0];
2970 };
2971 static struct sysfs_ioapic_data * mp_ioapic_data[MAX_IO_APICS];
2972
2973 static int ioapic_suspend(struct sys_device *dev, pm_message_t state)
2974 {
2975 struct IO_APIC_route_entry *entry;
2976 struct sysfs_ioapic_data *data;
2977 int i;
2978
2979 data = container_of(dev, struct sysfs_ioapic_data, dev);
2980 entry = data->entry;
2981 for (i = 0; i < nr_ioapic_registers[dev->id]; i ++, entry ++ )
2982 *entry = ioapic_read_entry(dev->id, i);
2983
2984 return 0;
2985 }
2986
2987 static int ioapic_resume(struct sys_device *dev)
2988 {
2989 struct IO_APIC_route_entry *entry;
2990 struct sysfs_ioapic_data *data;
2991 unsigned long flags;
2992 union IO_APIC_reg_00 reg_00;
2993 int i;
2994
2995 data = container_of(dev, struct sysfs_ioapic_data, dev);
2996 entry = data->entry;
2997
2998 spin_lock_irqsave(&ioapic_lock, flags);
2999 reg_00.raw = io_apic_read(dev->id, 0);
3000 if (reg_00.bits.ID != mp_ioapics[dev->id].mp_apicid) {
3001 reg_00.bits.ID = mp_ioapics[dev->id].mp_apicid;
3002 io_apic_write(dev->id, 0, reg_00.raw);
3003 }
3004 spin_unlock_irqrestore(&ioapic_lock, flags);
3005 for (i = 0; i < nr_ioapic_registers[dev->id]; i++)
3006 ioapic_write_entry(dev->id, i, entry[i]);
3007
3008 return 0;
3009 }
3010
3011 static struct sysdev_class ioapic_sysdev_class = {
3012 .name = "ioapic",
3013 .suspend = ioapic_suspend,
3014 .resume = ioapic_resume,
3015 };
3016
3017 static int __init ioapic_init_sysfs(void)
3018 {
3019 struct sys_device * dev;
3020 int i, size, error;
3021
3022 error = sysdev_class_register(&ioapic_sysdev_class);
3023 if (error)
3024 return error;
3025
3026 for (i = 0; i < nr_ioapics; i++ ) {
3027 size = sizeof(struct sys_device) + nr_ioapic_registers[i]
3028 * sizeof(struct IO_APIC_route_entry);
3029 mp_ioapic_data[i] = kzalloc(size, GFP_KERNEL);
3030 if (!mp_ioapic_data[i]) {
3031 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3032 continue;
3033 }
3034 dev = &mp_ioapic_data[i]->dev;
3035 dev->id = i;
3036 dev->cls = &ioapic_sysdev_class;
3037 error = sysdev_register(dev);
3038 if (error) {
3039 kfree(mp_ioapic_data[i]);
3040 mp_ioapic_data[i] = NULL;
3041 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3042 continue;
3043 }
3044 }
3045
3046 return 0;
3047 }
3048
3049 device_initcall(ioapic_init_sysfs);
3050
3051 /*
3052 * Dynamic irq allocate and deallocation
3053 */
3054 unsigned int create_irq_nr(unsigned int irq_want)
3055 {
3056 /* Allocate an unused irq */
3057 unsigned int irq;
3058 unsigned int new;
3059 unsigned long flags;
3060 struct irq_cfg *cfg_new;
3061
3062 #ifndef CONFIG_HAVE_SPARSE_IRQ
3063 irq_want = nr_irqs - 1;
3064 #endif
3065
3066 irq = 0;
3067 spin_lock_irqsave(&vector_lock, flags);
3068 for (new = irq_want; new > 0; new--) {
3069 if (platform_legacy_irq(new))
3070 continue;
3071 cfg_new = irq_cfg(new);
3072 if (cfg_new && cfg_new->vector != 0)
3073 continue;
3074 /* check if need to create one */
3075 if (!cfg_new)
3076 cfg_new = irq_cfg_alloc(new);
3077 if (__assign_irq_vector(new, TARGET_CPUS) == 0)
3078 irq = new;
3079 break;
3080 }
3081 spin_unlock_irqrestore(&vector_lock, flags);
3082
3083 if (irq > 0) {
3084 dynamic_irq_init(irq);
3085 }
3086 return irq;
3087 }
3088
3089 int create_irq(void)
3090 {
3091 int irq;
3092
3093 irq = create_irq_nr(nr_irqs - 1);
3094
3095 if (irq == 0)
3096 irq = -1;
3097
3098 return irq;
3099 }
3100
3101 void destroy_irq(unsigned int irq)
3102 {
3103 unsigned long flags;
3104
3105 dynamic_irq_cleanup(irq);
3106
3107 #ifdef CONFIG_INTR_REMAP
3108 free_irte(irq);
3109 #endif
3110 spin_lock_irqsave(&vector_lock, flags);
3111 __clear_irq_vector(irq);
3112 spin_unlock_irqrestore(&vector_lock, flags);
3113 }
3114
3115 /*
3116 * MSI message composition
3117 */
3118 #ifdef CONFIG_PCI_MSI
3119 static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq, struct msi_msg *msg)
3120 {
3121 struct irq_cfg *cfg;
3122 int err;
3123 unsigned dest;
3124 cpumask_t tmp;
3125
3126 tmp = TARGET_CPUS;
3127 err = assign_irq_vector(irq, tmp);
3128 if (err)
3129 return err;
3130
3131 cfg = irq_cfg(irq);
3132 cpus_and(tmp, cfg->domain, tmp);
3133 dest = cpu_mask_to_apicid(tmp);
3134
3135 #ifdef CONFIG_INTR_REMAP
3136 if (irq_remapped(irq)) {
3137 struct irte irte;
3138 int ir_index;
3139 u16 sub_handle;
3140
3141 ir_index = map_irq_to_irte_handle(irq, &sub_handle);
3142 BUG_ON(ir_index == -1);
3143
3144 memset (&irte, 0, sizeof(irte));
3145
3146 irte.present = 1;
3147 irte.dst_mode = INT_DEST_MODE;
3148 irte.trigger_mode = 0; /* edge */
3149 irte.dlvry_mode = INT_DELIVERY_MODE;
3150 irte.vector = cfg->vector;
3151 irte.dest_id = IRTE_DEST(dest);
3152
3153 modify_irte(irq, &irte);
3154
3155 msg->address_hi = MSI_ADDR_BASE_HI;
3156 msg->data = sub_handle;
3157 msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
3158 MSI_ADDR_IR_SHV |
3159 MSI_ADDR_IR_INDEX1(ir_index) |
3160 MSI_ADDR_IR_INDEX2(ir_index);
3161 } else
3162 #endif
3163 {
3164 msg->address_hi = MSI_ADDR_BASE_HI;
3165 msg->address_lo =
3166 MSI_ADDR_BASE_LO |
3167 ((INT_DEST_MODE == 0) ?
3168 MSI_ADDR_DEST_MODE_PHYSICAL:
3169 MSI_ADDR_DEST_MODE_LOGICAL) |
3170 ((INT_DELIVERY_MODE != dest_LowestPrio) ?
3171 MSI_ADDR_REDIRECTION_CPU:
3172 MSI_ADDR_REDIRECTION_LOWPRI) |
3173 MSI_ADDR_DEST_ID(dest);
3174
3175 msg->data =
3176 MSI_DATA_TRIGGER_EDGE |
3177 MSI_DATA_LEVEL_ASSERT |
3178 ((INT_DELIVERY_MODE != dest_LowestPrio) ?
3179 MSI_DATA_DELIVERY_FIXED:
3180 MSI_DATA_DELIVERY_LOWPRI) |
3181 MSI_DATA_VECTOR(cfg->vector);
3182 }
3183 return err;
3184 }
3185
3186 #ifdef CONFIG_SMP
3187 static void set_msi_irq_affinity(unsigned int irq, cpumask_t mask)
3188 {
3189 struct irq_cfg *cfg;
3190 struct msi_msg msg;
3191 unsigned int dest;
3192 cpumask_t tmp;
3193 struct irq_desc *desc;
3194
3195 cpus_and(tmp, mask, cpu_online_map);
3196 if (cpus_empty(tmp))
3197 return;
3198
3199 if (assign_irq_vector(irq, mask))
3200 return;
3201
3202 cfg = irq_cfg(irq);
3203 cpus_and(tmp, cfg->domain, mask);
3204 dest = cpu_mask_to_apicid(tmp);
3205
3206 read_msi_msg(irq, &msg);
3207
3208 msg.data &= ~MSI_DATA_VECTOR_MASK;
3209 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3210 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3211 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3212
3213 write_msi_msg(irq, &msg);
3214 desc = irq_to_desc(irq);
3215 desc->affinity = mask;
3216 }
3217
3218 #ifdef CONFIG_INTR_REMAP
3219 /*
3220 * Migrate the MSI irq to another cpumask. This migration is
3221 * done in the process context using interrupt-remapping hardware.
3222 */
3223 static void ir_set_msi_irq_affinity(unsigned int irq, cpumask_t mask)
3224 {
3225 struct irq_cfg *cfg;
3226 unsigned int dest;
3227 cpumask_t tmp, cleanup_mask;
3228 struct irte irte;
3229 struct irq_desc *desc;
3230
3231 cpus_and(tmp, mask, cpu_online_map);
3232 if (cpus_empty(tmp))
3233 return;
3234
3235 if (get_irte(irq, &irte))
3236 return;
3237
3238 if (assign_irq_vector(irq, mask))
3239 return;
3240
3241 cfg = irq_cfg(irq);
3242 cpus_and(tmp, cfg->domain, mask);
3243 dest = cpu_mask_to_apicid(tmp);
3244
3245 irte.vector = cfg->vector;
3246 irte.dest_id = IRTE_DEST(dest);
3247
3248 /*
3249 * atomically update the IRTE with the new destination and vector.
3250 */
3251 modify_irte(irq, &irte);
3252
3253 /*
3254 * After this point, all the interrupts will start arriving
3255 * at the new destination. So, time to cleanup the previous
3256 * vector allocation.
3257 */
3258 if (cfg->move_in_progress) {
3259 cpus_and(cleanup_mask, cfg->old_domain, cpu_online_map);
3260 cfg->move_cleanup_count = cpus_weight(cleanup_mask);
3261 send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
3262 cfg->move_in_progress = 0;
3263 }
3264
3265 desc = irq_to_desc(irq);
3266 desc->affinity = mask;
3267 }
3268 #endif
3269 #endif /* CONFIG_SMP */
3270
3271 /*
3272 * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
3273 * which implement the MSI or MSI-X Capability Structure.
3274 */
3275 static struct irq_chip msi_chip = {
3276 .name = "PCI-MSI",
3277 .unmask = unmask_msi_irq,
3278 .mask = mask_msi_irq,
3279 .ack = ack_apic_edge,
3280 #ifdef CONFIG_SMP
3281 .set_affinity = set_msi_irq_affinity,
3282 #endif
3283 .retrigger = ioapic_retrigger_irq,
3284 };
3285
3286 #ifdef CONFIG_INTR_REMAP
3287 static struct irq_chip msi_ir_chip = {
3288 .name = "IR-PCI-MSI",
3289 .unmask = unmask_msi_irq,
3290 .mask = mask_msi_irq,
3291 .ack = ack_x2apic_edge,
3292 #ifdef CONFIG_SMP
3293 .set_affinity = ir_set_msi_irq_affinity,
3294 #endif
3295 .retrigger = ioapic_retrigger_irq,
3296 };
3297
3298 /*
3299 * Map the PCI dev to the corresponding remapping hardware unit
3300 * and allocate 'nvec' consecutive interrupt-remapping table entries
3301 * in it.
3302 */
3303 static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec)
3304 {
3305 struct intel_iommu *iommu;
3306 int index;
3307
3308 iommu = map_dev_to_ir(dev);
3309 if (!iommu) {
3310 printk(KERN_ERR
3311 "Unable to map PCI %s to iommu\n", pci_name(dev));
3312 return -ENOENT;
3313 }
3314
3315 index = alloc_irte(iommu, irq, nvec);
3316 if (index < 0) {
3317 printk(KERN_ERR
3318 "Unable to allocate %d IRTE for PCI %s\n", nvec,
3319 pci_name(dev));
3320 return -ENOSPC;
3321 }
3322 return index;
3323 }
3324 #endif
3325
3326 static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc, int irq)
3327 {
3328 int ret;
3329 struct msi_msg msg;
3330
3331 ret = msi_compose_msg(dev, irq, &msg);
3332 if (ret < 0)
3333 return ret;
3334
3335 set_irq_msi(irq, desc);
3336 write_msi_msg(irq, &msg);
3337
3338 #ifdef CONFIG_INTR_REMAP
3339 if (irq_remapped(irq)) {
3340 struct irq_desc *desc = irq_to_desc(irq);
3341 /*
3342 * irq migration in process context
3343 */
3344 desc->status |= IRQ_MOVE_PCNTXT;
3345 set_irq_chip_and_handler_name(irq, &msi_ir_chip, handle_edge_irq, "edge");
3346 } else
3347 #endif
3348 set_irq_chip_and_handler_name(irq, &msi_chip, handle_edge_irq, "edge");
3349
3350 return 0;
3351 }
3352
3353 static unsigned int build_irq_for_pci_dev(struct pci_dev *dev)
3354 {
3355 unsigned int irq;
3356
3357 irq = dev->bus->number;
3358 irq <<= 8;
3359 irq |= dev->devfn;
3360 irq <<= 12;
3361
3362 return irq;
3363 }
3364
3365 int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
3366 {
3367 unsigned int irq;
3368 int ret;
3369 unsigned int irq_want;
3370
3371 irq_want = build_irq_for_pci_dev(dev) + 0x100;
3372
3373 irq = create_irq_nr(irq_want);
3374 if (irq == 0)
3375 return -1;
3376
3377 #ifdef CONFIG_INTR_REMAP
3378 if (!intr_remapping_enabled)
3379 goto no_ir;
3380
3381 ret = msi_alloc_irte(dev, irq, 1);
3382 if (ret < 0)
3383 goto error;
3384 no_ir:
3385 #endif
3386 ret = setup_msi_irq(dev, desc, irq);
3387 if (ret < 0) {
3388 destroy_irq(irq);
3389 return ret;
3390 }
3391 return 0;
3392
3393 #ifdef CONFIG_INTR_REMAP
3394 error:
3395 destroy_irq(irq);
3396 return ret;
3397 #endif
3398 }
3399
3400 int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
3401 {
3402 unsigned int irq;
3403 int ret, sub_handle;
3404 struct msi_desc *desc;
3405 unsigned int irq_want;
3406
3407 #ifdef CONFIG_INTR_REMAP
3408 struct intel_iommu *iommu = 0;
3409 int index = 0;
3410 #endif
3411
3412 irq_want = build_irq_for_pci_dev(dev) + 0x100;
3413 sub_handle = 0;
3414 list_for_each_entry(desc, &dev->msi_list, list) {
3415 irq = create_irq_nr(irq_want--);
3416 if (irq == 0)
3417 return -1;
3418 #ifdef CONFIG_INTR_REMAP
3419 if (!intr_remapping_enabled)
3420 goto no_ir;
3421
3422 if (!sub_handle) {
3423 /*
3424 * allocate the consecutive block of IRTE's
3425 * for 'nvec'
3426 */
3427 index = msi_alloc_irte(dev, irq, nvec);
3428 if (index < 0) {
3429 ret = index;
3430 goto error;
3431 }
3432 } else {
3433 iommu = map_dev_to_ir(dev);
3434 if (!iommu) {
3435 ret = -ENOENT;
3436 goto error;
3437 }
3438 /*
3439 * setup the mapping between the irq and the IRTE
3440 * base index, the sub_handle pointing to the
3441 * appropriate interrupt remap table entry.
3442 */
3443 set_irte_irq(irq, iommu, index, sub_handle);
3444 }
3445 no_ir:
3446 #endif
3447 ret = setup_msi_irq(dev, desc, irq);
3448 if (ret < 0)
3449 goto error;
3450 sub_handle++;
3451 }
3452 return 0;
3453
3454 error:
3455 destroy_irq(irq);
3456 return ret;
3457 }
3458
3459 void arch_teardown_msi_irq(unsigned int irq)
3460 {
3461 destroy_irq(irq);
3462 }
3463
3464 #ifdef CONFIG_DMAR
3465 #ifdef CONFIG_SMP
3466 static void dmar_msi_set_affinity(unsigned int irq, cpumask_t mask)
3467 {
3468 struct irq_cfg *cfg;
3469 struct msi_msg msg;
3470 unsigned int dest;
3471 cpumask_t tmp;
3472 struct irq_desc *desc;
3473
3474 cpus_and(tmp, mask, cpu_online_map);
3475 if (cpus_empty(tmp))
3476 return;
3477
3478 if (assign_irq_vector(irq, mask))
3479 return;
3480
3481 cfg = irq_cfg(irq);
3482 cpus_and(tmp, cfg->domain, mask);
3483 dest = cpu_mask_to_apicid(tmp);
3484
3485 dmar_msi_read(irq, &msg);
3486
3487 msg.data &= ~MSI_DATA_VECTOR_MASK;
3488 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3489 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3490 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3491
3492 dmar_msi_write(irq, &msg);
3493 desc = irq_to_desc(irq);
3494 desc->affinity = mask;
3495 }
3496 #endif /* CONFIG_SMP */
3497
3498 struct irq_chip dmar_msi_type = {
3499 .name = "DMAR_MSI",
3500 .unmask = dmar_msi_unmask,
3501 .mask = dmar_msi_mask,
3502 .ack = ack_apic_edge,
3503 #ifdef CONFIG_SMP
3504 .set_affinity = dmar_msi_set_affinity,
3505 #endif
3506 .retrigger = ioapic_retrigger_irq,
3507 };
3508
3509 int arch_setup_dmar_msi(unsigned int irq)
3510 {
3511 int ret;
3512 struct msi_msg msg;
3513
3514 ret = msi_compose_msg(NULL, irq, &msg);
3515 if (ret < 0)
3516 return ret;
3517 dmar_msi_write(irq, &msg);
3518 set_irq_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq,
3519 "edge");
3520 return 0;
3521 }
3522 #endif
3523
3524 #endif /* CONFIG_PCI_MSI */
3525 /*
3526 * Hypertransport interrupt support
3527 */
3528 #ifdef CONFIG_HT_IRQ
3529
3530 #ifdef CONFIG_SMP
3531
3532 static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector)
3533 {
3534 struct ht_irq_msg msg;
3535 fetch_ht_irq_msg(irq, &msg);
3536
3537 msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK);
3538 msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK);
3539
3540 msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest);
3541 msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest);
3542
3543 write_ht_irq_msg(irq, &msg);
3544 }
3545
3546 static void set_ht_irq_affinity(unsigned int irq, cpumask_t mask)
3547 {
3548 struct irq_cfg *cfg;
3549 unsigned int dest;
3550 cpumask_t tmp;
3551 struct irq_desc *desc;
3552
3553 cpus_and(tmp, mask, cpu_online_map);
3554 if (cpus_empty(tmp))
3555 return;
3556
3557 if (assign_irq_vector(irq, mask))
3558 return;
3559
3560 cfg = irq_cfg(irq);
3561 cpus_and(tmp, cfg->domain, mask);
3562 dest = cpu_mask_to_apicid(tmp);
3563
3564 target_ht_irq(irq, dest, cfg->vector);
3565 desc = irq_to_desc(irq);
3566 desc->affinity = mask;
3567 }
3568 #endif
3569
3570 static struct irq_chip ht_irq_chip = {
3571 .name = "PCI-HT",
3572 .mask = mask_ht_irq,
3573 .unmask = unmask_ht_irq,
3574 .ack = ack_apic_edge,
3575 #ifdef CONFIG_SMP
3576 .set_affinity = set_ht_irq_affinity,
3577 #endif
3578 .retrigger = ioapic_retrigger_irq,
3579 };
3580
3581 int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev)
3582 {
3583 struct irq_cfg *cfg;
3584 int err;
3585 cpumask_t tmp;
3586
3587 tmp = TARGET_CPUS;
3588 err = assign_irq_vector(irq, tmp);
3589 if (!err) {
3590 struct ht_irq_msg msg;
3591 unsigned dest;
3592
3593 cfg = irq_cfg(irq);
3594 cpus_and(tmp, cfg->domain, tmp);
3595 dest = cpu_mask_to_apicid(tmp);
3596
3597 msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest);
3598
3599 msg.address_lo =
3600 HT_IRQ_LOW_BASE |
3601 HT_IRQ_LOW_DEST_ID(dest) |
3602 HT_IRQ_LOW_VECTOR(cfg->vector) |
3603 ((INT_DEST_MODE == 0) ?
3604 HT_IRQ_LOW_DM_PHYSICAL :
3605 HT_IRQ_LOW_DM_LOGICAL) |
3606 HT_IRQ_LOW_RQEOI_EDGE |
3607 ((INT_DELIVERY_MODE != dest_LowestPrio) ?
3608 HT_IRQ_LOW_MT_FIXED :
3609 HT_IRQ_LOW_MT_ARBITRATED) |
3610 HT_IRQ_LOW_IRQ_MASKED;
3611
3612 write_ht_irq_msg(irq, &msg);
3613
3614 set_irq_chip_and_handler_name(irq, &ht_irq_chip,
3615 handle_edge_irq, "edge");
3616 }
3617 return err;
3618 }
3619 #endif /* CONFIG_HT_IRQ */
3620
3621 int __init io_apic_get_redir_entries (int ioapic)
3622 {
3623 union IO_APIC_reg_01 reg_01;
3624 unsigned long flags;
3625
3626 spin_lock_irqsave(&ioapic_lock, flags);
3627 reg_01.raw = io_apic_read(ioapic, 1);
3628 spin_unlock_irqrestore(&ioapic_lock, flags);
3629
3630 return reg_01.bits.entries;
3631 }
3632
3633 int __init probe_nr_irqs(void)
3634 {
3635 int idx;
3636 int nr = 0;
3637 #ifndef CONFIG_XEN
3638 int nr_min = 32;
3639 #else
3640 int nr_min = NR_IRQS;
3641 #endif
3642
3643 for (idx = 0; idx < nr_ioapics; idx++)
3644 nr += io_apic_get_redir_entries(idx) + 1;
3645
3646 /* double it for hotplug and msi and nmi */
3647 nr <<= 1;
3648
3649 /* something wrong ? */
3650 if (nr < nr_min)
3651 nr = nr_min;
3652
3653 return nr;
3654 }
3655
3656 /* --------------------------------------------------------------------------
3657 ACPI-based IOAPIC Configuration
3658 -------------------------------------------------------------------------- */
3659
3660 #ifdef CONFIG_ACPI
3661
3662 #ifdef CONFIG_X86_32
3663 int __init io_apic_get_unique_id(int ioapic, int apic_id)
3664 {
3665 union IO_APIC_reg_00 reg_00;
3666 static physid_mask_t apic_id_map = PHYSID_MASK_NONE;
3667 physid_mask_t tmp;
3668 unsigned long flags;
3669 int i = 0;
3670
3671 /*
3672 * The P4 platform supports up to 256 APIC IDs on two separate APIC
3673 * buses (one for LAPICs, one for IOAPICs), where predecessors only
3674 * supports up to 16 on one shared APIC bus.
3675 *
3676 * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full
3677 * advantage of new APIC bus architecture.
3678 */
3679
3680 if (physids_empty(apic_id_map))
3681 apic_id_map = ioapic_phys_id_map(phys_cpu_present_map);
3682
3683 spin_lock_irqsave(&ioapic_lock, flags);
3684 reg_00.raw = io_apic_read(ioapic, 0);
3685 spin_unlock_irqrestore(&ioapic_lock, flags);
3686
3687 if (apic_id >= get_physical_broadcast()) {
3688 printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying "
3689 "%d\n", ioapic, apic_id, reg_00.bits.ID);
3690 apic_id = reg_00.bits.ID;
3691 }
3692
3693 /*
3694 * Every APIC in a system must have a unique ID or we get lots of nice
3695 * 'stuck on smp_invalidate_needed IPI wait' messages.
3696 */
3697 if (check_apicid_used(apic_id_map, apic_id)) {
3698
3699 for (i = 0; i < get_physical_broadcast(); i++) {
3700 if (!check_apicid_used(apic_id_map, i))
3701 break;
3702 }
3703
3704 if (i == get_physical_broadcast())
3705 panic("Max apic_id exceeded!\n");
3706
3707 printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, "
3708 "trying %d\n", ioapic, apic_id, i);
3709
3710 apic_id = i;
3711 }
3712
3713 tmp = apicid_to_cpu_present(apic_id);
3714 physids_or(apic_id_map, apic_id_map, tmp);
3715
3716 if (reg_00.bits.ID != apic_id) {
3717 reg_00.bits.ID = apic_id;
3718
3719 spin_lock_irqsave(&ioapic_lock, flags);
3720 io_apic_write(ioapic, 0, reg_00.raw);
3721 reg_00.raw = io_apic_read(ioapic, 0);
3722 spin_unlock_irqrestore(&ioapic_lock, flags);
3723
3724 /* Sanity check */
3725 if (reg_00.bits.ID != apic_id) {
3726 printk("IOAPIC[%d]: Unable to change apic_id!\n", ioapic);
3727 return -1;
3728 }
3729 }
3730
3731 apic_printk(APIC_VERBOSE, KERN_INFO
3732 "IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id);
3733
3734 return apic_id;
3735 }
3736
3737 int __init io_apic_get_version(int ioapic)
3738 {
3739 union IO_APIC_reg_01 reg_01;
3740 unsigned long flags;
3741
3742 spin_lock_irqsave(&ioapic_lock, flags);
3743 reg_01.raw = io_apic_read(ioapic, 1);
3744 spin_unlock_irqrestore(&ioapic_lock, flags);
3745
3746 return reg_01.bits.version;
3747 }
3748 #endif
3749
3750 int io_apic_set_pci_routing (int ioapic, int pin, int irq, int triggering, int polarity)
3751 {
3752 if (!IO_APIC_IRQ(irq)) {
3753 apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n",
3754 ioapic);
3755 return -EINVAL;
3756 }
3757
3758 /*
3759 * IRQs < 16 are already in the irq_2_pin[] map
3760 */
3761 if (irq >= 16)
3762 add_pin_to_irq(irq, ioapic, pin);
3763
3764 setup_IO_APIC_irq(ioapic, pin, irq, triggering, polarity);
3765
3766 return 0;
3767 }
3768
3769
3770 int acpi_get_override_irq(int bus_irq, int *trigger, int *polarity)
3771 {
3772 int i;
3773
3774 if (skip_ioapic_setup)
3775 return -1;
3776
3777 for (i = 0; i < mp_irq_entries; i++)
3778 if (mp_irqs[i].mp_irqtype == mp_INT &&
3779 mp_irqs[i].mp_srcbusirq == bus_irq)
3780 break;
3781 if (i >= mp_irq_entries)
3782 return -1;
3783
3784 *trigger = irq_trigger(i);
3785 *polarity = irq_polarity(i);
3786 return 0;
3787 }
3788
3789 #endif /* CONFIG_ACPI */
3790
3791 /*
3792 * This function currently is only a helper for the i386 smp boot process where
3793 * we need to reprogram the ioredtbls to cater for the cpus which have come online
3794 * so mask in all cases should simply be TARGET_CPUS
3795 */
3796 #ifdef CONFIG_SMP
3797 void __init setup_ioapic_dest(void)
3798 {
3799 int pin, ioapic, irq, irq_entry;
3800 struct irq_cfg *cfg;
3801
3802 if (skip_ioapic_setup == 1)
3803 return;
3804
3805 for (ioapic = 0; ioapic < nr_ioapics; ioapic++) {
3806 for (pin = 0; pin < nr_ioapic_registers[ioapic]; pin++) {
3807 irq_entry = find_irq_entry(ioapic, pin, mp_INT);
3808 if (irq_entry == -1)
3809 continue;
3810 irq = pin_2_irq(irq_entry, ioapic, pin);
3811
3812 /* setup_IO_APIC_irqs could fail to get vector for some device
3813 * when you have too many devices, because at that time only boot
3814 * cpu is online.
3815 */
3816 cfg = irq_cfg(irq);
3817 if (!cfg->vector)
3818 setup_IO_APIC_irq(ioapic, pin, irq,
3819 irq_trigger(irq_entry),
3820 irq_polarity(irq_entry));
3821 #ifdef CONFIG_INTR_REMAP
3822 else if (intr_remapping_enabled)
3823 set_ir_ioapic_affinity_irq(irq, TARGET_CPUS);
3824 #endif
3825 else
3826 set_ioapic_affinity_irq(irq, TARGET_CPUS);
3827 }
3828
3829 }
3830 }
3831 #endif
3832
3833 #define IOAPIC_RESOURCE_NAME_SIZE 11
3834
3835 static struct resource *ioapic_resources;
3836
3837 static struct resource * __init ioapic_setup_resources(void)
3838 {
3839 unsigned long n;
3840 struct resource *res;
3841 char *mem;
3842 int i;
3843
3844 if (nr_ioapics <= 0)
3845 return NULL;
3846
3847 n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource);
3848 n *= nr_ioapics;
3849
3850 mem = alloc_bootmem(n);
3851 res = (void *)mem;
3852
3853 if (mem != NULL) {
3854 mem += sizeof(struct resource) * nr_ioapics;
3855
3856 for (i = 0; i < nr_ioapics; i++) {
3857 res[i].name = mem;
3858 res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY;
3859 sprintf(mem, "IOAPIC %u", i);
3860 mem += IOAPIC_RESOURCE_NAME_SIZE;
3861 }
3862 }
3863
3864 ioapic_resources = res;
3865
3866 return res;
3867 }
3868
3869 void __init ioapic_init_mappings(void)
3870 {
3871 unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0;
3872 int i;
3873 struct resource *ioapic_res;
3874
3875 ioapic_res = ioapic_setup_resources();
3876 for (i = 0; i < nr_ioapics; i++) {
3877 if (smp_found_config) {
3878 ioapic_phys = mp_ioapics[i].mp_apicaddr;
3879 #ifdef CONFIG_X86_32
3880 if (!ioapic_phys) {
3881 printk(KERN_ERR
3882 "WARNING: bogus zero IO-APIC "
3883 "address found in MPTABLE, "
3884 "disabling IO/APIC support!\n");
3885 smp_found_config = 0;
3886 skip_ioapic_setup = 1;
3887 goto fake_ioapic_page;
3888 }
3889 #endif
3890 } else {
3891 #ifdef CONFIG_X86_32
3892 fake_ioapic_page:
3893 #endif
3894 ioapic_phys = (unsigned long)
3895 alloc_bootmem_pages(PAGE_SIZE);
3896 ioapic_phys = __pa(ioapic_phys);
3897 }
3898 set_fixmap_nocache(idx, ioapic_phys);
3899 apic_printk(APIC_VERBOSE,
3900 "mapped IOAPIC to %08lx (%08lx)\n",
3901 __fix_to_virt(idx), ioapic_phys);
3902 idx++;
3903
3904 if (ioapic_res != NULL) {
3905 ioapic_res->start = ioapic_phys;
3906 ioapic_res->end = ioapic_phys + (4 * 1024) - 1;
3907 ioapic_res++;
3908 }
3909 }
3910 }
3911
3912 static int __init ioapic_insert_resources(void)
3913 {
3914 int i;
3915 struct resource *r = ioapic_resources;
3916
3917 if (!r) {
3918 printk(KERN_ERR
3919 "IO APIC resources could be not be allocated.\n");
3920 return -1;
3921 }
3922
3923 for (i = 0; i < nr_ioapics; i++) {
3924 insert_resource(&iomem_resource, r);
3925 r++;
3926 }
3927
3928 return 0;
3929 }
3930
3931 /* Insert the IO APIC resources after PCI initialization has occured to handle
3932 * IO APICS that are mapped in on a BAR in PCI space. */
3933 late_initcall(ioapic_insert_resources);
This page took 0.112355 seconds and 5 git commands to generate.