Merge branch 'irq/for-x86' into x86/apic
[deliverable/linux.git] / arch / x86 / kernel / irq.c
1 /*
2 * Common interrupt code for 32 and 64 bit
3 */
4 #include <linux/cpu.h>
5 #include <linux/interrupt.h>
6 #include <linux/kernel_stat.h>
7 #include <linux/of.h>
8 #include <linux/seq_file.h>
9 #include <linux/smp.h>
10 #include <linux/ftrace.h>
11 #include <linux/delay.h>
12 #include <linux/export.h>
13
14 #include <asm/apic.h>
15 #include <asm/io_apic.h>
16 #include <asm/irq.h>
17 #include <asm/idle.h>
18 #include <asm/mce.h>
19 #include <asm/hw_irq.h>
20 #include <asm/desc.h>
21
22 #define CREATE_TRACE_POINTS
23 #include <asm/trace/irq_vectors.h>
24
25 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
26 EXPORT_PER_CPU_SYMBOL(irq_stat);
27
28 DEFINE_PER_CPU(struct pt_regs *, irq_regs);
29 EXPORT_PER_CPU_SYMBOL(irq_regs);
30
31 atomic_t irq_err_count;
32
33 /* Function pointer for generic interrupt vector handling */
34 void (*x86_platform_ipi_callback)(void) = NULL;
35
36 /*
37 * 'what should we do if we get a hw irq event on an illegal vector'.
38 * each architecture has to answer this themselves.
39 */
40 void ack_bad_irq(unsigned int irq)
41 {
42 if (printk_ratelimit())
43 pr_err("unexpected IRQ trap at vector %02x\n", irq);
44
45 /*
46 * Currently unexpected vectors happen only on SMP and APIC.
47 * We _must_ ack these because every local APIC has only N
48 * irq slots per priority level, and a 'hanging, unacked' IRQ
49 * holds up an irq slot - in excessive cases (when multiple
50 * unexpected vectors occur) that might lock up the APIC
51 * completely.
52 * But only ack when the APIC is enabled -AK
53 */
54 ack_APIC_irq();
55 }
56
57 #define irq_stats(x) (&per_cpu(irq_stat, x))
58 /*
59 * /proc/interrupts printing for arch specific interrupts
60 */
61 int arch_show_interrupts(struct seq_file *p, int prec)
62 {
63 int j;
64
65 seq_printf(p, "%*s: ", prec, "NMI");
66 for_each_online_cpu(j)
67 seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
68 seq_puts(p, " Non-maskable interrupts\n");
69 #ifdef CONFIG_X86_LOCAL_APIC
70 seq_printf(p, "%*s: ", prec, "LOC");
71 for_each_online_cpu(j)
72 seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
73 seq_puts(p, " Local timer interrupts\n");
74
75 seq_printf(p, "%*s: ", prec, "SPU");
76 for_each_online_cpu(j)
77 seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
78 seq_puts(p, " Spurious interrupts\n");
79 seq_printf(p, "%*s: ", prec, "PMI");
80 for_each_online_cpu(j)
81 seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
82 seq_puts(p, " Performance monitoring interrupts\n");
83 seq_printf(p, "%*s: ", prec, "IWI");
84 for_each_online_cpu(j)
85 seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
86 seq_puts(p, " IRQ work interrupts\n");
87 seq_printf(p, "%*s: ", prec, "RTR");
88 for_each_online_cpu(j)
89 seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
90 seq_puts(p, " APIC ICR read retries\n");
91 #endif
92 if (x86_platform_ipi_callback) {
93 seq_printf(p, "%*s: ", prec, "PLT");
94 for_each_online_cpu(j)
95 seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
96 seq_puts(p, " Platform interrupts\n");
97 }
98 #ifdef CONFIG_SMP
99 seq_printf(p, "%*s: ", prec, "RES");
100 for_each_online_cpu(j)
101 seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
102 seq_puts(p, " Rescheduling interrupts\n");
103 seq_printf(p, "%*s: ", prec, "CAL");
104 for_each_online_cpu(j)
105 seq_printf(p, "%10u ", irq_stats(j)->irq_call_count -
106 irq_stats(j)->irq_tlb_count);
107 seq_puts(p, " Function call interrupts\n");
108 seq_printf(p, "%*s: ", prec, "TLB");
109 for_each_online_cpu(j)
110 seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
111 seq_puts(p, " TLB shootdowns\n");
112 #endif
113 #ifdef CONFIG_X86_THERMAL_VECTOR
114 seq_printf(p, "%*s: ", prec, "TRM");
115 for_each_online_cpu(j)
116 seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
117 seq_puts(p, " Thermal event interrupts\n");
118 #endif
119 #ifdef CONFIG_X86_MCE_THRESHOLD
120 seq_printf(p, "%*s: ", prec, "THR");
121 for_each_online_cpu(j)
122 seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
123 seq_puts(p, " Threshold APIC interrupts\n");
124 #endif
125 #ifdef CONFIG_X86_MCE
126 seq_printf(p, "%*s: ", prec, "MCE");
127 for_each_online_cpu(j)
128 seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
129 seq_puts(p, " Machine check exceptions\n");
130 seq_printf(p, "%*s: ", prec, "MCP");
131 for_each_online_cpu(j)
132 seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
133 seq_puts(p, " Machine check polls\n");
134 #endif
135 #if IS_ENABLED(CONFIG_HYPERV) || defined(CONFIG_XEN)
136 seq_printf(p, "%*s: ", prec, "HYP");
137 for_each_online_cpu(j)
138 seq_printf(p, "%10u ", irq_stats(j)->irq_hv_callback_count);
139 seq_puts(p, " Hypervisor callback interrupts\n");
140 #endif
141 seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
142 #if defined(CONFIG_X86_IO_APIC)
143 seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
144 #endif
145 return 0;
146 }
147
148 /*
149 * /proc/stat helpers
150 */
151 u64 arch_irq_stat_cpu(unsigned int cpu)
152 {
153 u64 sum = irq_stats(cpu)->__nmi_count;
154
155 #ifdef CONFIG_X86_LOCAL_APIC
156 sum += irq_stats(cpu)->apic_timer_irqs;
157 sum += irq_stats(cpu)->irq_spurious_count;
158 sum += irq_stats(cpu)->apic_perf_irqs;
159 sum += irq_stats(cpu)->apic_irq_work_irqs;
160 sum += irq_stats(cpu)->icr_read_retry_count;
161 #endif
162 if (x86_platform_ipi_callback)
163 sum += irq_stats(cpu)->x86_platform_ipis;
164 #ifdef CONFIG_SMP
165 sum += irq_stats(cpu)->irq_resched_count;
166 sum += irq_stats(cpu)->irq_call_count;
167 #endif
168 #ifdef CONFIG_X86_THERMAL_VECTOR
169 sum += irq_stats(cpu)->irq_thermal_count;
170 #endif
171 #ifdef CONFIG_X86_MCE_THRESHOLD
172 sum += irq_stats(cpu)->irq_threshold_count;
173 #endif
174 #ifdef CONFIG_X86_MCE
175 sum += per_cpu(mce_exception_count, cpu);
176 sum += per_cpu(mce_poll_count, cpu);
177 #endif
178 return sum;
179 }
180
181 u64 arch_irq_stat(void)
182 {
183 u64 sum = atomic_read(&irq_err_count);
184 return sum;
185 }
186
187
188 /*
189 * do_IRQ handles all normal device IRQ's (the special
190 * SMP cross-CPU interrupts have their own specific
191 * handlers).
192 */
193 __visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs)
194 {
195 struct pt_regs *old_regs = set_irq_regs(regs);
196
197 /* high bit used in ret_from_ code */
198 unsigned vector = ~regs->orig_ax;
199 unsigned irq;
200
201 entering_irq();
202
203 irq = __this_cpu_read(vector_irq[vector]);
204
205 if (!handle_irq(irq, regs)) {
206 ack_APIC_irq();
207
208 if (irq != VECTOR_RETRIGGERED) {
209 pr_emerg_ratelimited("%s: %d.%d No irq handler for vector (irq %d)\n",
210 __func__, smp_processor_id(),
211 vector, irq);
212 } else {
213 __this_cpu_write(vector_irq[vector], VECTOR_UNDEFINED);
214 }
215 }
216
217 exiting_irq();
218
219 set_irq_regs(old_regs);
220 return 1;
221 }
222
223 /*
224 * Handler for X86_PLATFORM_IPI_VECTOR.
225 */
226 void __smp_x86_platform_ipi(void)
227 {
228 inc_irq_stat(x86_platform_ipis);
229
230 if (x86_platform_ipi_callback)
231 x86_platform_ipi_callback();
232 }
233
234 __visible void smp_x86_platform_ipi(struct pt_regs *regs)
235 {
236 struct pt_regs *old_regs = set_irq_regs(regs);
237
238 entering_ack_irq();
239 __smp_x86_platform_ipi();
240 exiting_irq();
241 set_irq_regs(old_regs);
242 }
243
244 #ifdef CONFIG_HAVE_KVM
245 /*
246 * Handler for POSTED_INTERRUPT_VECTOR.
247 */
248 __visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs)
249 {
250 struct pt_regs *old_regs = set_irq_regs(regs);
251
252 entering_ack_irq();
253 inc_irq_stat(kvm_posted_intr_ipis);
254 exiting_irq();
255 set_irq_regs(old_regs);
256 }
257 #endif
258
259 __visible void smp_trace_x86_platform_ipi(struct pt_regs *regs)
260 {
261 struct pt_regs *old_regs = set_irq_regs(regs);
262
263 entering_ack_irq();
264 trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
265 __smp_x86_platform_ipi();
266 trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
267 exiting_irq();
268 set_irq_regs(old_regs);
269 }
270
271 EXPORT_SYMBOL_GPL(vector_used_by_percpu_irq);
272
273 #ifdef CONFIG_HOTPLUG_CPU
274
275 /* These two declarations are only used in check_irq_vectors_for_cpu_disable()
276 * below, which is protected by stop_machine(). Putting them on the stack
277 * results in a stack frame overflow. Dynamically allocating could result in a
278 * failure so declare these two cpumasks as global.
279 */
280 static struct cpumask affinity_new, online_new;
281
282 /*
283 * This cpu is going to be removed and its vectors migrated to the remaining
284 * online cpus. Check to see if there are enough vectors in the remaining cpus.
285 * This function is protected by stop_machine().
286 */
287 int check_irq_vectors_for_cpu_disable(void)
288 {
289 int irq, cpu;
290 unsigned int this_cpu, vector, this_count, count;
291 struct irq_desc *desc;
292 struct irq_data *data;
293
294 this_cpu = smp_processor_id();
295 cpumask_copy(&online_new, cpu_online_mask);
296 cpumask_clear_cpu(this_cpu, &online_new);
297
298 this_count = 0;
299 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
300 irq = __this_cpu_read(vector_irq[vector]);
301 if (irq >= 0) {
302 desc = irq_to_desc(irq);
303 if (!desc)
304 continue;
305
306 data = irq_desc_get_irq_data(desc);
307 cpumask_copy(&affinity_new, data->affinity);
308 cpumask_clear_cpu(this_cpu, &affinity_new);
309
310 /* Do not count inactive or per-cpu irqs. */
311 if (!irq_has_action(irq) || irqd_is_per_cpu(data))
312 continue;
313
314 /*
315 * A single irq may be mapped to multiple
316 * cpu's vector_irq[] (for example IOAPIC cluster
317 * mode). In this case we have two
318 * possibilities:
319 *
320 * 1) the resulting affinity mask is empty; that is
321 * this the down'd cpu is the last cpu in the irq's
322 * affinity mask, or
323 *
324 * 2) the resulting affinity mask is no longer
325 * a subset of the online cpus but the affinity
326 * mask is not zero; that is the down'd cpu is the
327 * last online cpu in a user set affinity mask.
328 */
329 if (cpumask_empty(&affinity_new) ||
330 !cpumask_subset(&affinity_new, &online_new))
331 this_count++;
332 }
333 }
334
335 count = 0;
336 for_each_online_cpu(cpu) {
337 if (cpu == this_cpu)
338 continue;
339 /*
340 * We scan from FIRST_EXTERNAL_VECTOR to first system
341 * vector. If the vector is marked in the used vectors
342 * bitmap or an irq is assigned to it, we don't count
343 * it as available.
344 */
345 for (vector = FIRST_EXTERNAL_VECTOR;
346 vector < first_system_vector; vector++) {
347 if (!test_bit(vector, used_vectors) &&
348 per_cpu(vector_irq, cpu)[vector] < 0)
349 count++;
350 }
351 }
352
353 if (count < this_count) {
354 pr_warn("CPU %d disable failed: CPU has %u vectors assigned and there are only %u available.\n",
355 this_cpu, this_count, count);
356 return -ERANGE;
357 }
358 return 0;
359 }
360
361 /* A cpu has been removed from cpu_online_mask. Reset irq affinities. */
362 void fixup_irqs(void)
363 {
364 unsigned int irq, vector;
365 static int warned;
366 struct irq_desc *desc;
367 struct irq_data *data;
368 struct irq_chip *chip;
369 int ret;
370
371 for_each_irq_desc(irq, desc) {
372 int break_affinity = 0;
373 int set_affinity = 1;
374 const struct cpumask *affinity;
375
376 if (!desc)
377 continue;
378 if (irq == 2)
379 continue;
380
381 /* interrupt's are disabled at this point */
382 raw_spin_lock(&desc->lock);
383
384 data = irq_desc_get_irq_data(desc);
385 affinity = data->affinity;
386 if (!irq_has_action(irq) || irqd_is_per_cpu(data) ||
387 cpumask_subset(affinity, cpu_online_mask)) {
388 raw_spin_unlock(&desc->lock);
389 continue;
390 }
391
392 /*
393 * Complete the irq move. This cpu is going down and for
394 * non intr-remapping case, we can't wait till this interrupt
395 * arrives at this cpu before completing the irq move.
396 */
397 irq_force_complete_move(irq);
398
399 if (cpumask_any_and(affinity, cpu_online_mask) >= nr_cpu_ids) {
400 break_affinity = 1;
401 affinity = cpu_online_mask;
402 }
403
404 chip = irq_data_get_irq_chip(data);
405 if (!irqd_can_move_in_process_context(data) && chip->irq_mask)
406 chip->irq_mask(data);
407
408 if (chip->irq_set_affinity) {
409 ret = chip->irq_set_affinity(data, affinity, true);
410 if (ret == -ENOSPC)
411 pr_crit("IRQ %d set affinity failed because there are no available vectors. The device assigned to this IRQ is unstable.\n", irq);
412 } else {
413 if (!(warned++))
414 set_affinity = 0;
415 }
416
417 /*
418 * We unmask if the irq was not marked masked by the
419 * core code. That respects the lazy irq disable
420 * behaviour.
421 */
422 if (!irqd_can_move_in_process_context(data) &&
423 !irqd_irq_masked(data) && chip->irq_unmask)
424 chip->irq_unmask(data);
425
426 raw_spin_unlock(&desc->lock);
427
428 if (break_affinity && set_affinity)
429 pr_notice("Broke affinity for irq %i\n", irq);
430 else if (!set_affinity)
431 pr_notice("Cannot set affinity for irq %i\n", irq);
432 }
433
434 /*
435 * We can remove mdelay() and then send spuriuous interrupts to
436 * new cpu targets for all the irqs that were handled previously by
437 * this cpu. While it works, I have seen spurious interrupt messages
438 * (nothing wrong but still...).
439 *
440 * So for now, retain mdelay(1) and check the IRR and then send those
441 * interrupts to new targets as this cpu is already offlined...
442 */
443 mdelay(1);
444
445 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
446 unsigned int irr;
447
448 if (__this_cpu_read(vector_irq[vector]) <= VECTOR_UNDEFINED)
449 continue;
450
451 irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
452 if (irr & (1 << (vector % 32))) {
453 irq = __this_cpu_read(vector_irq[vector]);
454
455 desc = irq_to_desc(irq);
456 data = irq_desc_get_irq_data(desc);
457 chip = irq_data_get_irq_chip(data);
458 raw_spin_lock(&desc->lock);
459 if (chip->irq_retrigger) {
460 chip->irq_retrigger(data);
461 __this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED);
462 }
463 raw_spin_unlock(&desc->lock);
464 }
465 if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED)
466 __this_cpu_write(vector_irq[vector], VECTOR_UNDEFINED);
467 }
468 }
469 #endif
This page took 0.042444 seconds and 6 git commands to generate.