x86: make 32 bit to use sparse_irq
[deliverable/linux.git] / arch / x86 / kernel / irq_32.c
1 /*
2 * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
3 *
4 * This file contains the lowest level x86-specific interrupt
5 * entry, irq-stacks and irq statistics code. All the remaining
6 * irq logic is done by the generic kernel/irq/ code and
7 * by the x86-specific irq controller code. (e.g. i8259.c and
8 * io_apic.c.)
9 */
10
11 #include <linux/module.h>
12 #include <linux/seq_file.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/notifier.h>
16 #include <linux/cpu.h>
17 #include <linux/delay.h>
18
19 #include <asm/apic.h>
20 #include <asm/uaccess.h>
21
22 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
23 EXPORT_PER_CPU_SYMBOL(irq_stat);
24
25 DEFINE_PER_CPU(struct pt_regs *, irq_regs);
26 EXPORT_PER_CPU_SYMBOL(irq_regs);
27
28 /*
29 * 'what should we do if we get a hw irq event on an illegal vector'.
30 * each architecture has to answer this themselves.
31 */
32 void ack_bad_irq(unsigned int irq)
33 {
34 printk(KERN_ERR "unexpected IRQ trap at vector %02x\n", irq);
35
36 #ifdef CONFIG_X86_LOCAL_APIC
37 /*
38 * Currently unexpected vectors happen only on SMP and APIC.
39 * We _must_ ack these because every local APIC has only N
40 * irq slots per priority level, and a 'hanging, unacked' IRQ
41 * holds up an irq slot - in excessive cases (when multiple
42 * unexpected vectors occur) that might lock up the APIC
43 * completely.
44 * But only ack when the APIC is enabled -AK
45 */
46 if (cpu_has_apic)
47 ack_APIC_irq();
48 #endif
49 }
50
51 #ifdef CONFIG_DEBUG_STACKOVERFLOW
52 /* Debugging check for stack overflow: is there less than 1KB free? */
53 static int check_stack_overflow(void)
54 {
55 long sp;
56
57 __asm__ __volatile__("andl %%esp,%0" :
58 "=r" (sp) : "0" (THREAD_SIZE - 1));
59
60 return sp < (sizeof(struct thread_info) + STACK_WARN);
61 }
62
63 static void print_stack_overflow(void)
64 {
65 printk(KERN_WARNING "low stack detected by irq handler\n");
66 dump_stack();
67 }
68
69 #else
70 static inline int check_stack_overflow(void) { return 0; }
71 static inline void print_stack_overflow(void) { }
72 #endif
73
74 #ifdef CONFIG_4KSTACKS
75 /*
76 * per-CPU IRQ handling contexts (thread information and stack)
77 */
78 union irq_ctx {
79 struct thread_info tinfo;
80 u32 stack[THREAD_SIZE/sizeof(u32)];
81 };
82
83 static union irq_ctx *hardirq_ctx[NR_CPUS] __read_mostly;
84 static union irq_ctx *softirq_ctx[NR_CPUS] __read_mostly;
85
86 static char softirq_stack[NR_CPUS * THREAD_SIZE] __page_aligned_bss;
87 static char hardirq_stack[NR_CPUS * THREAD_SIZE] __page_aligned_bss;
88
89 static void call_on_stack(void *func, void *stack)
90 {
91 asm volatile("xchgl %%ebx,%%esp \n"
92 "call *%%edi \n"
93 "movl %%ebx,%%esp \n"
94 : "=b" (stack)
95 : "0" (stack),
96 "D"(func)
97 : "memory", "cc", "edx", "ecx", "eax");
98 }
99
100 static inline int
101 execute_on_irq_stack(int overflow, struct irq_desc *desc, int irq)
102 {
103 union irq_ctx *curctx, *irqctx;
104 u32 *isp, arg1, arg2;
105
106 curctx = (union irq_ctx *) current_thread_info();
107 irqctx = hardirq_ctx[smp_processor_id()];
108
109 /*
110 * this is where we switch to the IRQ stack. However, if we are
111 * already using the IRQ stack (because we interrupted a hardirq
112 * handler) we can't do that and just have to keep using the
113 * current stack (which is the irq stack already after all)
114 */
115 if (unlikely(curctx == irqctx))
116 return 0;
117
118 /* build the stack frame on the IRQ stack */
119 isp = (u32 *) ((char*)irqctx + sizeof(*irqctx));
120 irqctx->tinfo.task = curctx->tinfo.task;
121 irqctx->tinfo.previous_esp = current_stack_pointer;
122
123 /*
124 * Copy the softirq bits in preempt_count so that the
125 * softirq checks work in the hardirq context.
126 */
127 irqctx->tinfo.preempt_count =
128 (irqctx->tinfo.preempt_count & ~SOFTIRQ_MASK) |
129 (curctx->tinfo.preempt_count & SOFTIRQ_MASK);
130
131 if (unlikely(overflow))
132 call_on_stack(print_stack_overflow, isp);
133
134 asm volatile("xchgl %%ebx,%%esp \n"
135 "call *%%edi \n"
136 "movl %%ebx,%%esp \n"
137 : "=a" (arg1), "=d" (arg2), "=b" (isp)
138 : "0" (irq), "1" (desc), "2" (isp),
139 "D" (desc->handle_irq)
140 : "memory", "cc", "ecx");
141 return 1;
142 }
143
144 /*
145 * allocate per-cpu stacks for hardirq and for softirq processing
146 */
147 void __cpuinit irq_ctx_init(int cpu)
148 {
149 union irq_ctx *irqctx;
150
151 if (hardirq_ctx[cpu])
152 return;
153
154 irqctx = (union irq_ctx*) &hardirq_stack[cpu*THREAD_SIZE];
155 irqctx->tinfo.task = NULL;
156 irqctx->tinfo.exec_domain = NULL;
157 irqctx->tinfo.cpu = cpu;
158 irqctx->tinfo.preempt_count = HARDIRQ_OFFSET;
159 irqctx->tinfo.addr_limit = MAKE_MM_SEG(0);
160
161 hardirq_ctx[cpu] = irqctx;
162
163 irqctx = (union irq_ctx*) &softirq_stack[cpu*THREAD_SIZE];
164 irqctx->tinfo.task = NULL;
165 irqctx->tinfo.exec_domain = NULL;
166 irqctx->tinfo.cpu = cpu;
167 irqctx->tinfo.preempt_count = 0;
168 irqctx->tinfo.addr_limit = MAKE_MM_SEG(0);
169
170 softirq_ctx[cpu] = irqctx;
171
172 printk(KERN_DEBUG "CPU %u irqstacks, hard=%p soft=%p\n",
173 cpu,hardirq_ctx[cpu],softirq_ctx[cpu]);
174 }
175
176 void irq_ctx_exit(int cpu)
177 {
178 hardirq_ctx[cpu] = NULL;
179 }
180
181 asmlinkage void do_softirq(void)
182 {
183 unsigned long flags;
184 struct thread_info *curctx;
185 union irq_ctx *irqctx;
186 u32 *isp;
187
188 if (in_interrupt())
189 return;
190
191 local_irq_save(flags);
192
193 if (local_softirq_pending()) {
194 curctx = current_thread_info();
195 irqctx = softirq_ctx[smp_processor_id()];
196 irqctx->tinfo.task = curctx->task;
197 irqctx->tinfo.previous_esp = current_stack_pointer;
198
199 /* build the stack frame on the softirq stack */
200 isp = (u32*) ((char*)irqctx + sizeof(*irqctx));
201
202 call_on_stack(__do_softirq, isp);
203 /*
204 * Shouldnt happen, we returned above if in_interrupt():
205 */
206 WARN_ON_ONCE(softirq_count());
207 }
208
209 local_irq_restore(flags);
210 }
211
212 #else
213 static inline int
214 execute_on_irq_stack(int overflow, struct irq_desc *desc, int irq) { return 0; }
215 #endif
216
217 /*
218 * do_IRQ handles all normal device IRQ's (the special
219 * SMP cross-CPU interrupts have their own specific
220 * handlers).
221 */
222 unsigned int do_IRQ(struct pt_regs *regs)
223 {
224 struct pt_regs *old_regs;
225 /* high bit used in ret_from_ code */
226 int overflow, irq = ~regs->orig_ax;
227 struct irq_desc *desc;
228
229 desc = irq_to_desc(irq);
230 if (unlikely(!desc)) {
231 printk(KERN_EMERG "%s: cannot handle IRQ %d\n",
232 __func__, irq);
233 BUG();
234 }
235
236 old_regs = set_irq_regs(regs);
237 irq_enter();
238
239 overflow = check_stack_overflow();
240
241 if (!execute_on_irq_stack(overflow, desc, irq)) {
242 if (unlikely(overflow))
243 print_stack_overflow();
244 desc->handle_irq(irq, desc);
245 }
246
247 irq_exit();
248 set_irq_regs(old_regs);
249 return 1;
250 }
251
252 /*
253 * Interrupt statistics:
254 */
255
256 atomic_t irq_err_count;
257
258 /*
259 * /proc/interrupts printing:
260 */
261
262 int show_interrupts(struct seq_file *p, void *v)
263 {
264 int i = *(loff_t *) v, j;
265 struct irqaction * action;
266 unsigned long flags;
267 unsigned int entries;
268 struct irq_desc *desc;
269 int tail = 0;
270
271 #ifdef CONFIG_HAVE_SPARSE_IRQ
272 desc = (struct irq_desc *)v;
273 entries = -1U;
274 i = desc->irq;
275 if (!desc->next)
276 tail = 1;
277 #else
278 entries = nr_irqs - 1;
279 i = *(loff_t *) v;
280 if (i == nr_irqs)
281 tail = 1;
282 else
283 desc = irq_to_desc(i);
284 #endif
285
286 if (i == 0) {
287 seq_printf(p, " ");
288 for_each_online_cpu(j)
289 seq_printf(p, "CPU%-8d",j);
290 seq_putc(p, '\n');
291 }
292
293 if (i <= entries) {
294 unsigned any_count = 0;
295
296 spin_lock_irqsave(&desc->lock, flags);
297 #ifndef CONFIG_SMP
298 any_count = kstat_irqs(i);
299 #else
300 for_each_online_cpu(j)
301 any_count |= kstat_irqs_cpu(i, j);
302 #endif
303 action = desc->action;
304 if (!action && !any_count)
305 goto skip;
306 seq_printf(p, "%#x: ",i);
307 #ifndef CONFIG_SMP
308 seq_printf(p, "%10u ", kstat_irqs(i));
309 #else
310 for_each_online_cpu(j)
311 seq_printf(p, "%10u ", kstat_irqs_cpu(i, j));
312 #endif
313 seq_printf(p, " %8s", desc->chip->name);
314 seq_printf(p, "-%-8s", desc->name);
315
316 if (action) {
317 seq_printf(p, " %s", action->name);
318 while ((action = action->next) != NULL)
319 seq_printf(p, ", %s", action->name);
320 }
321
322 seq_putc(p, '\n');
323 skip:
324 spin_unlock_irqrestore(&desc->lock, flags);
325 }
326
327 if (tail) {
328 seq_printf(p, "NMI: ");
329 for_each_online_cpu(j)
330 seq_printf(p, "%10u ", nmi_count(j));
331 seq_printf(p, " Non-maskable interrupts\n");
332 #ifdef CONFIG_X86_LOCAL_APIC
333 seq_printf(p, "LOC: ");
334 for_each_online_cpu(j)
335 seq_printf(p, "%10u ",
336 per_cpu(irq_stat,j).apic_timer_irqs);
337 seq_printf(p, " Local timer interrupts\n");
338 #endif
339 #ifdef CONFIG_SMP
340 seq_printf(p, "RES: ");
341 for_each_online_cpu(j)
342 seq_printf(p, "%10u ",
343 per_cpu(irq_stat,j).irq_resched_count);
344 seq_printf(p, " Rescheduling interrupts\n");
345 seq_printf(p, "CAL: ");
346 for_each_online_cpu(j)
347 seq_printf(p, "%10u ",
348 per_cpu(irq_stat,j).irq_call_count);
349 seq_printf(p, " Function call interrupts\n");
350 seq_printf(p, "TLB: ");
351 for_each_online_cpu(j)
352 seq_printf(p, "%10u ",
353 per_cpu(irq_stat,j).irq_tlb_count);
354 seq_printf(p, " TLB shootdowns\n");
355 #endif
356 #ifdef CONFIG_X86_MCE
357 seq_printf(p, "TRM: ");
358 for_each_online_cpu(j)
359 seq_printf(p, "%10u ",
360 per_cpu(irq_stat,j).irq_thermal_count);
361 seq_printf(p, " Thermal event interrupts\n");
362 #endif
363 #ifdef CONFIG_X86_LOCAL_APIC
364 seq_printf(p, "SPU: ");
365 for_each_online_cpu(j)
366 seq_printf(p, "%10u ",
367 per_cpu(irq_stat,j).irq_spurious_count);
368 seq_printf(p, " Spurious interrupts\n");
369 #endif
370 seq_printf(p, "ERR: %10u\n", atomic_read(&irq_err_count));
371 #if defined(CONFIG_X86_IO_APIC)
372 seq_printf(p, "MIS: %10u\n", atomic_read(&irq_mis_count));
373 #endif
374 }
375 return 0;
376 }
377
378 /*
379 * /proc/stat helpers
380 */
381 u64 arch_irq_stat_cpu(unsigned int cpu)
382 {
383 u64 sum = nmi_count(cpu);
384
385 #ifdef CONFIG_X86_LOCAL_APIC
386 sum += per_cpu(irq_stat, cpu).apic_timer_irqs;
387 #endif
388 #ifdef CONFIG_SMP
389 sum += per_cpu(irq_stat, cpu).irq_resched_count;
390 sum += per_cpu(irq_stat, cpu).irq_call_count;
391 sum += per_cpu(irq_stat, cpu).irq_tlb_count;
392 #endif
393 #ifdef CONFIG_X86_MCE
394 sum += per_cpu(irq_stat, cpu).irq_thermal_count;
395 #endif
396 #ifdef CONFIG_X86_LOCAL_APIC
397 sum += per_cpu(irq_stat, cpu).irq_spurious_count;
398 #endif
399 return sum;
400 }
401
402 u64 arch_irq_stat(void)
403 {
404 u64 sum = atomic_read(&irq_err_count);
405
406 #ifdef CONFIG_X86_IO_APIC
407 sum += atomic_read(&irq_mis_count);
408 #endif
409 return sum;
410 }
411
412 #ifdef CONFIG_HOTPLUG_CPU
413 #include <mach_apic.h>
414
415 void fixup_irqs(cpumask_t map)
416 {
417 unsigned int irq;
418 static int warned;
419 struct irq_desc *desc;
420
421 for_each_irq_desc(irq, desc) {
422 cpumask_t mask;
423
424 if (irq == 2)
425 continue;
426
427 cpus_and(mask, desc->affinity, map);
428 if (any_online_cpu(mask) == NR_CPUS) {
429 printk("Breaking affinity for irq %i\n", irq);
430 mask = map;
431 }
432 if (desc->chip->set_affinity)
433 desc->chip->set_affinity(irq, mask);
434 else if (desc->action && !(warned++))
435 printk("Cannot set affinity for irq %i\n", irq);
436 }
437
438 #if 0
439 barrier();
440 /* Ingo Molnar says: "after the IO-APIC masks have been redirected
441 [note the nop - the interrupt-enable boundary on x86 is two
442 instructions from sti] - to flush out pending hardirqs and
443 IPIs. After this point nothing is supposed to reach this CPU." */
444 __asm__ __volatile__("sti; nop; cli");
445 barrier();
446 #else
447 /* That doesn't seem sufficient. Give it 1ms. */
448 local_irq_enable();
449 mdelay(1);
450 local_irq_disable();
451 #endif
452 }
453 #endif
454
This page took 0.059251 seconds and 6 git commands to generate.