x86: add debug info for 32bit sparse_irq
[deliverable/linux.git] / arch / x86 / kernel / irq_32.c
1 /*
2 * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
3 *
4 * This file contains the lowest level x86-specific interrupt
5 * entry, irq-stacks and irq statistics code. All the remaining
6 * irq logic is done by the generic kernel/irq/ code and
7 * by the x86-specific irq controller code. (e.g. i8259.c and
8 * io_apic.c.)
9 */
10
11 #include <linux/module.h>
12 #include <linux/seq_file.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/notifier.h>
16 #include <linux/cpu.h>
17 #include <linux/delay.h>
18
19 #include <asm/apic.h>
20 #include <asm/uaccess.h>
21
22 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
23 EXPORT_PER_CPU_SYMBOL(irq_stat);
24
25 DEFINE_PER_CPU(struct pt_regs *, irq_regs);
26 EXPORT_PER_CPU_SYMBOL(irq_regs);
27
28 /*
29 * 'what should we do if we get a hw irq event on an illegal vector'.
30 * each architecture has to answer this themselves.
31 */
32 void ack_bad_irq(unsigned int irq)
33 {
34 printk(KERN_ERR "unexpected IRQ trap at vector %02x\n", irq);
35
36 #ifdef CONFIG_X86_LOCAL_APIC
37 /*
38 * Currently unexpected vectors happen only on SMP and APIC.
39 * We _must_ ack these because every local APIC has only N
40 * irq slots per priority level, and a 'hanging, unacked' IRQ
41 * holds up an irq slot - in excessive cases (when multiple
42 * unexpected vectors occur) that might lock up the APIC
43 * completely.
44 * But only ack when the APIC is enabled -AK
45 */
46 if (cpu_has_apic)
47 ack_APIC_irq();
48 #endif
49 }
50
51 #ifdef CONFIG_DEBUG_STACKOVERFLOW
52 /* Debugging check for stack overflow: is there less than 1KB free? */
53 static int check_stack_overflow(void)
54 {
55 long sp;
56
57 __asm__ __volatile__("andl %%esp,%0" :
58 "=r" (sp) : "0" (THREAD_SIZE - 1));
59
60 return sp < (sizeof(struct thread_info) + STACK_WARN);
61 }
62
63 static void print_stack_overflow(void)
64 {
65 printk(KERN_WARNING "low stack detected by irq handler\n");
66 dump_stack();
67 }
68
69 #else
70 static inline int check_stack_overflow(void) { return 0; }
71 static inline void print_stack_overflow(void) { }
72 #endif
73
74 #ifdef CONFIG_4KSTACKS
75 /*
76 * per-CPU IRQ handling contexts (thread information and stack)
77 */
78 union irq_ctx {
79 struct thread_info tinfo;
80 u32 stack[THREAD_SIZE/sizeof(u32)];
81 };
82
83 static union irq_ctx *hardirq_ctx[NR_CPUS] __read_mostly;
84 static union irq_ctx *softirq_ctx[NR_CPUS] __read_mostly;
85
86 static char softirq_stack[NR_CPUS * THREAD_SIZE] __page_aligned_bss;
87 static char hardirq_stack[NR_CPUS * THREAD_SIZE] __page_aligned_bss;
88
89 static void call_on_stack(void *func, void *stack)
90 {
91 asm volatile("xchgl %%ebx,%%esp \n"
92 "call *%%edi \n"
93 "movl %%ebx,%%esp \n"
94 : "=b" (stack)
95 : "0" (stack),
96 "D"(func)
97 : "memory", "cc", "edx", "ecx", "eax");
98 }
99
100 static inline int
101 execute_on_irq_stack(int overflow, struct irq_desc *desc, int irq)
102 {
103 union irq_ctx *curctx, *irqctx;
104 u32 *isp, arg1, arg2;
105
106 curctx = (union irq_ctx *) current_thread_info();
107 irqctx = hardirq_ctx[smp_processor_id()];
108
109 /*
110 * this is where we switch to the IRQ stack. However, if we are
111 * already using the IRQ stack (because we interrupted a hardirq
112 * handler) we can't do that and just have to keep using the
113 * current stack (which is the irq stack already after all)
114 */
115 if (unlikely(curctx == irqctx))
116 return 0;
117
118 /* build the stack frame on the IRQ stack */
119 isp = (u32 *) ((char*)irqctx + sizeof(*irqctx));
120 irqctx->tinfo.task = curctx->tinfo.task;
121 irqctx->tinfo.previous_esp = current_stack_pointer;
122
123 /*
124 * Copy the softirq bits in preempt_count so that the
125 * softirq checks work in the hardirq context.
126 */
127 irqctx->tinfo.preempt_count =
128 (irqctx->tinfo.preempt_count & ~SOFTIRQ_MASK) |
129 (curctx->tinfo.preempt_count & SOFTIRQ_MASK);
130
131 if (unlikely(overflow))
132 call_on_stack(print_stack_overflow, isp);
133
134 asm volatile("xchgl %%ebx,%%esp \n"
135 "call *%%edi \n"
136 "movl %%ebx,%%esp \n"
137 : "=a" (arg1), "=d" (arg2), "=b" (isp)
138 : "0" (irq), "1" (desc), "2" (isp),
139 "D" (desc->handle_irq)
140 : "memory", "cc", "ecx");
141 return 1;
142 }
143
144 /*
145 * allocate per-cpu stacks for hardirq and for softirq processing
146 */
147 void __cpuinit irq_ctx_init(int cpu)
148 {
149 union irq_ctx *irqctx;
150
151 if (hardirq_ctx[cpu])
152 return;
153
154 irqctx = (union irq_ctx*) &hardirq_stack[cpu*THREAD_SIZE];
155 irqctx->tinfo.task = NULL;
156 irqctx->tinfo.exec_domain = NULL;
157 irqctx->tinfo.cpu = cpu;
158 irqctx->tinfo.preempt_count = HARDIRQ_OFFSET;
159 irqctx->tinfo.addr_limit = MAKE_MM_SEG(0);
160
161 hardirq_ctx[cpu] = irqctx;
162
163 irqctx = (union irq_ctx*) &softirq_stack[cpu*THREAD_SIZE];
164 irqctx->tinfo.task = NULL;
165 irqctx->tinfo.exec_domain = NULL;
166 irqctx->tinfo.cpu = cpu;
167 irqctx->tinfo.preempt_count = 0;
168 irqctx->tinfo.addr_limit = MAKE_MM_SEG(0);
169
170 softirq_ctx[cpu] = irqctx;
171
172 printk(KERN_DEBUG "CPU %u irqstacks, hard=%p soft=%p\n",
173 cpu,hardirq_ctx[cpu],softirq_ctx[cpu]);
174 }
175
176 void irq_ctx_exit(int cpu)
177 {
178 hardirq_ctx[cpu] = NULL;
179 }
180
181 asmlinkage void do_softirq(void)
182 {
183 unsigned long flags;
184 struct thread_info *curctx;
185 union irq_ctx *irqctx;
186 u32 *isp;
187
188 if (in_interrupt())
189 return;
190
191 local_irq_save(flags);
192
193 if (local_softirq_pending()) {
194 curctx = current_thread_info();
195 irqctx = softirq_ctx[smp_processor_id()];
196 irqctx->tinfo.task = curctx->task;
197 irqctx->tinfo.previous_esp = current_stack_pointer;
198
199 /* build the stack frame on the softirq stack */
200 isp = (u32*) ((char*)irqctx + sizeof(*irqctx));
201
202 call_on_stack(__do_softirq, isp);
203 /*
204 * Shouldnt happen, we returned above if in_interrupt():
205 */
206 WARN_ON_ONCE(softirq_count());
207 }
208
209 local_irq_restore(flags);
210 }
211
212 #else
213 static inline int
214 execute_on_irq_stack(int overflow, struct irq_desc *desc, int irq) { return 0; }
215 #endif
216
217 /*
218 * do_IRQ handles all normal device IRQ's (the special
219 * SMP cross-CPU interrupts have their own specific
220 * handlers).
221 */
222 unsigned int do_IRQ(struct pt_regs *regs)
223 {
224 struct pt_regs *old_regs;
225 /* high bit used in ret_from_ code */
226 int overflow;
227 unsigned vector = ~regs->orig_ax;
228 struct irq_desc *desc;
229 unsigned irq;
230
231
232 old_regs = set_irq_regs(regs);
233 irq_enter();
234 irq = __get_cpu_var(vector_irq)[vector];
235
236 overflow = check_stack_overflow();
237
238 desc = irq_to_desc(irq);
239 if (unlikely(!desc)) {
240 printk(KERN_EMERG "%s: cannot handle IRQ %d vector %#x cpu %d\n",
241 __func__, irq, vector, smp_processor_id());
242 BUG();
243 }
244
245 if (!execute_on_irq_stack(overflow, desc, irq)) {
246 if (unlikely(overflow))
247 print_stack_overflow();
248 desc->handle_irq(irq, desc);
249 }
250
251 irq_exit();
252 set_irq_regs(old_regs);
253 return 1;
254 }
255
256 /*
257 * Interrupt statistics:
258 */
259
260 atomic_t irq_err_count;
261
262 /*
263 * /proc/interrupts printing:
264 */
265
266 int show_interrupts(struct seq_file *p, void *v)
267 {
268 int i = *(loff_t *) v, j;
269 struct irqaction * action;
270 unsigned long flags;
271 unsigned int entries;
272 struct irq_desc *desc;
273 int tail = 0;
274
275 #ifdef CONFIG_HAVE_SPARSE_IRQ
276 desc = (struct irq_desc *)v;
277 entries = -1U;
278 i = desc->irq;
279 if (!desc->next)
280 tail = 1;
281 #else
282 entries = nr_irqs - 1;
283 i = *(loff_t *) v;
284 if (i == nr_irqs)
285 tail = 1;
286 else
287 desc = irq_to_desc(i);
288 #endif
289
290 if (i == 0) {
291 seq_printf(p, " ");
292 for_each_online_cpu(j)
293 seq_printf(p, "CPU%-8d",j);
294 seq_putc(p, '\n');
295 }
296
297 if (i <= entries) {
298 unsigned any_count = 0;
299
300 spin_lock_irqsave(&desc->lock, flags);
301 #ifndef CONFIG_SMP
302 any_count = kstat_irqs(i);
303 #else
304 for_each_online_cpu(j)
305 any_count |= kstat_irqs_cpu(i, j);
306 #endif
307 action = desc->action;
308 if (!action && !any_count)
309 goto skip;
310 seq_printf(p, "%#x: ",i);
311 #ifndef CONFIG_SMP
312 seq_printf(p, "%10u ", kstat_irqs(i));
313 #else
314 for_each_online_cpu(j)
315 seq_printf(p, "%10u ", kstat_irqs_cpu(i, j));
316 #endif
317 seq_printf(p, " %8s", desc->chip->name);
318 seq_printf(p, "-%-8s", desc->name);
319
320 if (action) {
321 seq_printf(p, " %s", action->name);
322 while ((action = action->next) != NULL)
323 seq_printf(p, ", %s", action->name);
324 }
325
326 seq_putc(p, '\n');
327 skip:
328 spin_unlock_irqrestore(&desc->lock, flags);
329 }
330
331 if (tail) {
332 seq_printf(p, "NMI: ");
333 for_each_online_cpu(j)
334 seq_printf(p, "%10u ", nmi_count(j));
335 seq_printf(p, " Non-maskable interrupts\n");
336 #ifdef CONFIG_X86_LOCAL_APIC
337 seq_printf(p, "LOC: ");
338 for_each_online_cpu(j)
339 seq_printf(p, "%10u ",
340 per_cpu(irq_stat,j).apic_timer_irqs);
341 seq_printf(p, " Local timer interrupts\n");
342 #endif
343 #ifdef CONFIG_SMP
344 seq_printf(p, "RES: ");
345 for_each_online_cpu(j)
346 seq_printf(p, "%10u ",
347 per_cpu(irq_stat,j).irq_resched_count);
348 seq_printf(p, " Rescheduling interrupts\n");
349 seq_printf(p, "CAL: ");
350 for_each_online_cpu(j)
351 seq_printf(p, "%10u ",
352 per_cpu(irq_stat,j).irq_call_count);
353 seq_printf(p, " Function call interrupts\n");
354 seq_printf(p, "TLB: ");
355 for_each_online_cpu(j)
356 seq_printf(p, "%10u ",
357 per_cpu(irq_stat,j).irq_tlb_count);
358 seq_printf(p, " TLB shootdowns\n");
359 #endif
360 #ifdef CONFIG_X86_MCE
361 seq_printf(p, "TRM: ");
362 for_each_online_cpu(j)
363 seq_printf(p, "%10u ",
364 per_cpu(irq_stat,j).irq_thermal_count);
365 seq_printf(p, " Thermal event interrupts\n");
366 #endif
367 #ifdef CONFIG_X86_LOCAL_APIC
368 seq_printf(p, "SPU: ");
369 for_each_online_cpu(j)
370 seq_printf(p, "%10u ",
371 per_cpu(irq_stat,j).irq_spurious_count);
372 seq_printf(p, " Spurious interrupts\n");
373 #endif
374 seq_printf(p, "ERR: %10u\n", atomic_read(&irq_err_count));
375 #if defined(CONFIG_X86_IO_APIC)
376 seq_printf(p, "MIS: %10u\n", atomic_read(&irq_mis_count));
377 #endif
378 }
379 return 0;
380 }
381
382 /*
383 * /proc/stat helpers
384 */
385 u64 arch_irq_stat_cpu(unsigned int cpu)
386 {
387 u64 sum = nmi_count(cpu);
388
389 #ifdef CONFIG_X86_LOCAL_APIC
390 sum += per_cpu(irq_stat, cpu).apic_timer_irqs;
391 #endif
392 #ifdef CONFIG_SMP
393 sum += per_cpu(irq_stat, cpu).irq_resched_count;
394 sum += per_cpu(irq_stat, cpu).irq_call_count;
395 sum += per_cpu(irq_stat, cpu).irq_tlb_count;
396 #endif
397 #ifdef CONFIG_X86_MCE
398 sum += per_cpu(irq_stat, cpu).irq_thermal_count;
399 #endif
400 #ifdef CONFIG_X86_LOCAL_APIC
401 sum += per_cpu(irq_stat, cpu).irq_spurious_count;
402 #endif
403 return sum;
404 }
405
406 u64 arch_irq_stat(void)
407 {
408 u64 sum = atomic_read(&irq_err_count);
409
410 #ifdef CONFIG_X86_IO_APIC
411 sum += atomic_read(&irq_mis_count);
412 #endif
413 return sum;
414 }
415
416 #ifdef CONFIG_HOTPLUG_CPU
417 #include <mach_apic.h>
418
419 void fixup_irqs(cpumask_t map)
420 {
421 unsigned int irq;
422 static int warned;
423 struct irq_desc *desc;
424
425 for_each_irq_desc(irq, desc) {
426 cpumask_t mask;
427
428 if (irq == 2)
429 continue;
430
431 cpus_and(mask, desc->affinity, map);
432 if (any_online_cpu(mask) == NR_CPUS) {
433 printk("Breaking affinity for irq %i\n", irq);
434 mask = map;
435 }
436 if (desc->chip->set_affinity)
437 desc->chip->set_affinity(irq, mask);
438 else if (desc->action && !(warned++))
439 printk("Cannot set affinity for irq %i\n", irq);
440 }
441
442 #if 0
443 barrier();
444 /* Ingo Molnar says: "after the IO-APIC masks have been redirected
445 [note the nop - the interrupt-enable boundary on x86 is two
446 instructions from sti] - to flush out pending hardirqs and
447 IPIs. After this point nothing is supposed to reach this CPU." */
448 __asm__ __volatile__("sti; nop; cli");
449 barrier();
450 #else
451 /* That doesn't seem sufficient. Give it 1ms. */
452 local_irq_enable();
453 mdelay(1);
454 local_irq_disable();
455 #endif
456 }
457 #endif
458
This page took 0.039651 seconds and 6 git commands to generate.