x86: move kstat_irqs from kstat to irq_desc
[deliverable/linux.git] / arch / x86 / kernel / irq_32.c
1 /*
2 * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
3 *
4 * This file contains the lowest level x86-specific interrupt
5 * entry, irq-stacks and irq statistics code. All the remaining
6 * irq logic is done by the generic kernel/irq/ code and
7 * by the x86-specific irq controller code. (e.g. i8259.c and
8 * io_apic.c.)
9 */
10
11 #include <linux/module.h>
12 #include <linux/seq_file.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/notifier.h>
16 #include <linux/cpu.h>
17 #include <linux/delay.h>
18
19 #include <asm/apic.h>
20 #include <asm/uaccess.h>
21
22 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
23 EXPORT_PER_CPU_SYMBOL(irq_stat);
24
25 DEFINE_PER_CPU(struct pt_regs *, irq_regs);
26 EXPORT_PER_CPU_SYMBOL(irq_regs);
27
28 /*
29 * 'what should we do if we get a hw irq event on an illegal vector'.
30 * each architecture has to answer this themselves.
31 */
32 void ack_bad_irq(unsigned int irq)
33 {
34 printk(KERN_ERR "unexpected IRQ trap at vector %02x\n", irq);
35
36 #ifdef CONFIG_X86_LOCAL_APIC
37 /*
38 * Currently unexpected vectors happen only on SMP and APIC.
39 * We _must_ ack these because every local APIC has only N
40 * irq slots per priority level, and a 'hanging, unacked' IRQ
41 * holds up an irq slot - in excessive cases (when multiple
42 * unexpected vectors occur) that might lock up the APIC
43 * completely.
44 * But only ack when the APIC is enabled -AK
45 */
46 if (cpu_has_apic)
47 ack_APIC_irq();
48 #endif
49 }
50
51 #ifdef CONFIG_DEBUG_STACKOVERFLOW
52 /* Debugging check for stack overflow: is there less than 1KB free? */
53 static int check_stack_overflow(void)
54 {
55 long sp;
56
57 __asm__ __volatile__("andl %%esp,%0" :
58 "=r" (sp) : "0" (THREAD_SIZE - 1));
59
60 return sp < (sizeof(struct thread_info) + STACK_WARN);
61 }
62
63 static void print_stack_overflow(void)
64 {
65 printk(KERN_WARNING "low stack detected by irq handler\n");
66 dump_stack();
67 }
68
69 #else
70 static inline int check_stack_overflow(void) { return 0; }
71 static inline void print_stack_overflow(void) { }
72 #endif
73
74 #ifdef CONFIG_4KSTACKS
75 /*
76 * per-CPU IRQ handling contexts (thread information and stack)
77 */
78 union irq_ctx {
79 struct thread_info tinfo;
80 u32 stack[THREAD_SIZE/sizeof(u32)];
81 };
82
83 static union irq_ctx *hardirq_ctx[NR_CPUS] __read_mostly;
84 static union irq_ctx *softirq_ctx[NR_CPUS] __read_mostly;
85
86 static char softirq_stack[NR_CPUS * THREAD_SIZE] __page_aligned_bss;
87 static char hardirq_stack[NR_CPUS * THREAD_SIZE] __page_aligned_bss;
88
89 static void call_on_stack(void *func, void *stack)
90 {
91 asm volatile("xchgl %%ebx,%%esp \n"
92 "call *%%edi \n"
93 "movl %%ebx,%%esp \n"
94 : "=b" (stack)
95 : "0" (stack),
96 "D"(func)
97 : "memory", "cc", "edx", "ecx", "eax");
98 }
99
100 static inline int
101 execute_on_irq_stack(int overflow, struct irq_desc *desc, int irq)
102 {
103 union irq_ctx *curctx, *irqctx;
104 u32 *isp, arg1, arg2;
105
106 curctx = (union irq_ctx *) current_thread_info();
107 irqctx = hardirq_ctx[smp_processor_id()];
108
109 /*
110 * this is where we switch to the IRQ stack. However, if we are
111 * already using the IRQ stack (because we interrupted a hardirq
112 * handler) we can't do that and just have to keep using the
113 * current stack (which is the irq stack already after all)
114 */
115 if (unlikely(curctx == irqctx))
116 return 0;
117
118 /* build the stack frame on the IRQ stack */
119 isp = (u32 *) ((char*)irqctx + sizeof(*irqctx));
120 irqctx->tinfo.task = curctx->tinfo.task;
121 irqctx->tinfo.previous_esp = current_stack_pointer;
122
123 /*
124 * Copy the softirq bits in preempt_count so that the
125 * softirq checks work in the hardirq context.
126 */
127 irqctx->tinfo.preempt_count =
128 (irqctx->tinfo.preempt_count & ~SOFTIRQ_MASK) |
129 (curctx->tinfo.preempt_count & SOFTIRQ_MASK);
130
131 if (unlikely(overflow))
132 call_on_stack(print_stack_overflow, isp);
133
134 asm volatile("xchgl %%ebx,%%esp \n"
135 "call *%%edi \n"
136 "movl %%ebx,%%esp \n"
137 : "=a" (arg1), "=d" (arg2), "=b" (isp)
138 : "0" (irq), "1" (desc), "2" (isp),
139 "D" (desc->handle_irq)
140 : "memory", "cc", "ecx");
141 return 1;
142 }
143
144 /*
145 * allocate per-cpu stacks for hardirq and for softirq processing
146 */
147 void __cpuinit irq_ctx_init(int cpu)
148 {
149 union irq_ctx *irqctx;
150
151 if (hardirq_ctx[cpu])
152 return;
153
154 irqctx = (union irq_ctx*) &hardirq_stack[cpu*THREAD_SIZE];
155 irqctx->tinfo.task = NULL;
156 irqctx->tinfo.exec_domain = NULL;
157 irqctx->tinfo.cpu = cpu;
158 irqctx->tinfo.preempt_count = HARDIRQ_OFFSET;
159 irqctx->tinfo.addr_limit = MAKE_MM_SEG(0);
160
161 hardirq_ctx[cpu] = irqctx;
162
163 irqctx = (union irq_ctx*) &softirq_stack[cpu*THREAD_SIZE];
164 irqctx->tinfo.task = NULL;
165 irqctx->tinfo.exec_domain = NULL;
166 irqctx->tinfo.cpu = cpu;
167 irqctx->tinfo.preempt_count = 0;
168 irqctx->tinfo.addr_limit = MAKE_MM_SEG(0);
169
170 softirq_ctx[cpu] = irqctx;
171
172 printk(KERN_DEBUG "CPU %u irqstacks, hard=%p soft=%p\n",
173 cpu,hardirq_ctx[cpu],softirq_ctx[cpu]);
174 }
175
176 void irq_ctx_exit(int cpu)
177 {
178 hardirq_ctx[cpu] = NULL;
179 }
180
181 asmlinkage void do_softirq(void)
182 {
183 unsigned long flags;
184 struct thread_info *curctx;
185 union irq_ctx *irqctx;
186 u32 *isp;
187
188 if (in_interrupt())
189 return;
190
191 local_irq_save(flags);
192
193 if (local_softirq_pending()) {
194 curctx = current_thread_info();
195 irqctx = softirq_ctx[smp_processor_id()];
196 irqctx->tinfo.task = curctx->task;
197 irqctx->tinfo.previous_esp = current_stack_pointer;
198
199 /* build the stack frame on the softirq stack */
200 isp = (u32*) ((char*)irqctx + sizeof(*irqctx));
201
202 call_on_stack(__do_softirq, isp);
203 /*
204 * Shouldnt happen, we returned above if in_interrupt():
205 */
206 WARN_ON_ONCE(softirq_count());
207 }
208
209 local_irq_restore(flags);
210 }
211
212 #else
213 static inline int
214 execute_on_irq_stack(int overflow, struct irq_desc *desc, int irq) { return 0; }
215 #endif
216
217 /*
218 * do_IRQ handles all normal device IRQ's (the special
219 * SMP cross-CPU interrupts have their own specific
220 * handlers).
221 */
222 unsigned int do_IRQ(struct pt_regs *regs)
223 {
224 struct pt_regs *old_regs;
225 /* high bit used in ret_from_ code */
226 int overflow, irq = ~regs->orig_ax;
227 struct irq_desc *desc = irq_to_desc(irq);
228
229 if (unlikely((unsigned)irq >= nr_irqs)) {
230 printk(KERN_EMERG "%s: cannot handle IRQ %d\n",
231 __func__, irq);
232 BUG();
233 }
234
235 old_regs = set_irq_regs(regs);
236 irq_enter();
237
238 overflow = check_stack_overflow();
239
240 if (!execute_on_irq_stack(overflow, desc, irq)) {
241 if (unlikely(overflow))
242 print_stack_overflow();
243 desc->handle_irq(irq, desc);
244 }
245
246 irq_exit();
247 set_irq_regs(old_regs);
248 return 1;
249 }
250
251 /*
252 * Interrupt statistics:
253 */
254
255 atomic_t irq_err_count;
256
257 /*
258 * /proc/interrupts printing:
259 */
260
261 int show_interrupts(struct seq_file *p, void *v)
262 {
263 int i = *(loff_t *) v, j;
264 struct irqaction * action;
265 unsigned long flags;
266
267 if (i == 0) {
268 seq_printf(p, " ");
269 for_each_online_cpu(j)
270 seq_printf(p, "CPU%-8d",j);
271 seq_putc(p, '\n');
272 }
273
274 if (i < nr_irqs) {
275 unsigned any_count = 0;
276 struct irq_desc *desc = irq_to_desc(i);
277
278 spin_lock_irqsave(&desc->lock, flags);
279 #ifndef CONFIG_SMP
280 any_count = kstat_irqs(i);
281 #else
282 for_each_online_cpu(j)
283 any_count |= kstat_irqs_cpu(i, j);
284 #endif
285 action = desc->action;
286 if (!action && !any_count)
287 goto skip;
288 seq_printf(p, "%3d: ",i);
289 #ifndef CONFIG_SMP
290 seq_printf(p, "%10u ", kstat_irqs(i));
291 #else
292 for_each_online_cpu(j)
293 seq_printf(p, "%10u ", kstat_irqs_cpu(i, j));
294 #endif
295 seq_printf(p, " %8s", desc->chip->name);
296 seq_printf(p, "-%-8s", desc->name);
297
298 if (action) {
299 seq_printf(p, " %s", action->name);
300 while ((action = action->next) != NULL)
301 seq_printf(p, ", %s", action->name);
302 }
303
304 seq_putc(p, '\n');
305 skip:
306 spin_unlock_irqrestore(&desc->lock, flags);
307 } else if (i == nr_irqs) {
308 seq_printf(p, "NMI: ");
309 for_each_online_cpu(j)
310 seq_printf(p, "%10u ", nmi_count(j));
311 seq_printf(p, " Non-maskable interrupts\n");
312 #ifdef CONFIG_X86_LOCAL_APIC
313 seq_printf(p, "LOC: ");
314 for_each_online_cpu(j)
315 seq_printf(p, "%10u ",
316 per_cpu(irq_stat,j).apic_timer_irqs);
317 seq_printf(p, " Local timer interrupts\n");
318 #endif
319 #ifdef CONFIG_SMP
320 seq_printf(p, "RES: ");
321 for_each_online_cpu(j)
322 seq_printf(p, "%10u ",
323 per_cpu(irq_stat,j).irq_resched_count);
324 seq_printf(p, " Rescheduling interrupts\n");
325 seq_printf(p, "CAL: ");
326 for_each_online_cpu(j)
327 seq_printf(p, "%10u ",
328 per_cpu(irq_stat,j).irq_call_count);
329 seq_printf(p, " Function call interrupts\n");
330 seq_printf(p, "TLB: ");
331 for_each_online_cpu(j)
332 seq_printf(p, "%10u ",
333 per_cpu(irq_stat,j).irq_tlb_count);
334 seq_printf(p, " TLB shootdowns\n");
335 #endif
336 #ifdef CONFIG_X86_MCE
337 seq_printf(p, "TRM: ");
338 for_each_online_cpu(j)
339 seq_printf(p, "%10u ",
340 per_cpu(irq_stat,j).irq_thermal_count);
341 seq_printf(p, " Thermal event interrupts\n");
342 #endif
343 #ifdef CONFIG_X86_LOCAL_APIC
344 seq_printf(p, "SPU: ");
345 for_each_online_cpu(j)
346 seq_printf(p, "%10u ",
347 per_cpu(irq_stat,j).irq_spurious_count);
348 seq_printf(p, " Spurious interrupts\n");
349 #endif
350 seq_printf(p, "ERR: %10u\n", atomic_read(&irq_err_count));
351 #if defined(CONFIG_X86_IO_APIC)
352 seq_printf(p, "MIS: %10u\n", atomic_read(&irq_mis_count));
353 #endif
354 }
355 return 0;
356 }
357
358 /*
359 * /proc/stat helpers
360 */
361 u64 arch_irq_stat_cpu(unsigned int cpu)
362 {
363 u64 sum = nmi_count(cpu);
364
365 #ifdef CONFIG_X86_LOCAL_APIC
366 sum += per_cpu(irq_stat, cpu).apic_timer_irqs;
367 #endif
368 #ifdef CONFIG_SMP
369 sum += per_cpu(irq_stat, cpu).irq_resched_count;
370 sum += per_cpu(irq_stat, cpu).irq_call_count;
371 sum += per_cpu(irq_stat, cpu).irq_tlb_count;
372 #endif
373 #ifdef CONFIG_X86_MCE
374 sum += per_cpu(irq_stat, cpu).irq_thermal_count;
375 #endif
376 #ifdef CONFIG_X86_LOCAL_APIC
377 sum += per_cpu(irq_stat, cpu).irq_spurious_count;
378 #endif
379 return sum;
380 }
381
382 u64 arch_irq_stat(void)
383 {
384 u64 sum = atomic_read(&irq_err_count);
385
386 #ifdef CONFIG_X86_IO_APIC
387 sum += atomic_read(&irq_mis_count);
388 #endif
389 return sum;
390 }
391
392 #ifdef CONFIG_HOTPLUG_CPU
393 #include <mach_apic.h>
394
395 void fixup_irqs(cpumask_t map)
396 {
397 unsigned int irq;
398 static int warned;
399
400 for (irq = 0; irq < nr_irqs; irq++) {
401 cpumask_t mask;
402 struct irq_desc *desc;
403
404 if (irq == 2)
405 continue;
406
407 desc = irq_to_desc(irq);
408 cpus_and(mask, desc->affinity, map);
409 if (any_online_cpu(mask) == NR_CPUS) {
410 printk("Breaking affinity for irq %i\n", irq);
411 mask = map;
412 }
413 if (desc->chip->set_affinity)
414 desc->chip->set_affinity(irq, mask);
415 else if (desc->action && !(warned++))
416 printk("Cannot set affinity for irq %i\n", irq);
417 }
418
419 #if 0
420 barrier();
421 /* Ingo Molnar says: "after the IO-APIC masks have been redirected
422 [note the nop - the interrupt-enable boundary on x86 is two
423 instructions from sti] - to flush out pending hardirqs and
424 IPIs. After this point nothing is supposed to reach this CPU." */
425 __asm__ __volatile__("sti; nop; cli");
426 barrier();
427 #else
428 /* That doesn't seem sufficient. Give it 1ms. */
429 local_irq_enable();
430 mdelay(1);
431 local_irq_disable();
432 #endif
433 }
434 #endif
435
This page took 0.070112 seconds and 6 git commands to generate.