Merge branch 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / arch / x86 / kernel / irqinit.c
1 #include <linux/linkage.h>
2 #include <linux/errno.h>
3 #include <linux/signal.h>
4 #include <linux/sched.h>
5 #include <linux/ioport.h>
6 #include <linux/interrupt.h>
7 #include <linux/timex.h>
8 #include <linux/random.h>
9 #include <linux/kprobes.h>
10 #include <linux/init.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/sysdev.h>
13 #include <linux/bitops.h>
14 #include <linux/acpi.h>
15 #include <linux/io.h>
16 #include <linux/delay.h>
17
18 #include <asm/atomic.h>
19 #include <asm/system.h>
20 #include <asm/timer.h>
21 #include <asm/hw_irq.h>
22 #include <asm/pgtable.h>
23 #include <asm/desc.h>
24 #include <asm/apic.h>
25 #include <asm/setup.h>
26 #include <asm/i8259.h>
27 #include <asm/traps.h>
28
29 /*
30 * ISA PIC or low IO-APIC triggered (INTA-cycle or APIC) interrupts:
31 * (these are usually mapped to vectors 0x30-0x3f)
32 */
33
34 /*
35 * The IO-APIC gives us many more interrupt sources. Most of these
36 * are unused but an SMP system is supposed to have enough memory ...
37 * sometimes (mostly wrt. hw bugs) we get corrupted vectors all
38 * across the spectrum, so we really want to be prepared to get all
39 * of these. Plus, more powerful systems might have more than 64
40 * IO-APIC registers.
41 *
42 * (these are usually mapped into the 0x30-0xff vector range)
43 */
44
45 #ifdef CONFIG_X86_32
46 /*
47 * Note that on a 486, we don't want to do a SIGFPE on an irq13
48 * as the irq is unreliable, and exception 16 works correctly
49 * (ie as explained in the intel literature). On a 386, you
50 * can't use exception 16 due to bad IBM design, so we have to
51 * rely on the less exact irq13.
52 *
53 * Careful.. Not only is IRQ13 unreliable, but it is also
54 * leads to races. IBM designers who came up with it should
55 * be shot.
56 */
57
58 static irqreturn_t math_error_irq(int cpl, void *dev_id)
59 {
60 outb(0, 0xF0);
61 if (ignore_fpu_irq || !boot_cpu_data.hard_math)
62 return IRQ_NONE;
63 math_error(get_irq_regs(), 0, 16);
64 return IRQ_HANDLED;
65 }
66
67 /*
68 * New motherboards sometimes make IRQ 13 be a PCI interrupt,
69 * so allow interrupt sharing.
70 */
71 static struct irqaction fpu_irq = {
72 .handler = math_error_irq,
73 .name = "fpu",
74 };
75 #endif
76
77 /*
78 * IRQ2 is cascade interrupt to second interrupt controller
79 */
80 static struct irqaction irq2 = {
81 .handler = no_action,
82 .name = "cascade",
83 };
84
85 DEFINE_PER_CPU(vector_irq_t, vector_irq) = {
86 [0 ... NR_VECTORS - 1] = -1,
87 };
88
89 int vector_used_by_percpu_irq(unsigned int vector)
90 {
91 int cpu;
92
93 for_each_online_cpu(cpu) {
94 if (per_cpu(vector_irq, cpu)[vector] != -1)
95 return 1;
96 }
97
98 return 0;
99 }
100
101 void __init init_ISA_irqs(void)
102 {
103 struct irq_chip *chip = legacy_pic->chip;
104 const char *name = chip->name;
105 int i;
106
107 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC)
108 init_bsp_APIC();
109 #endif
110 legacy_pic->init(0);
111
112 for (i = 0; i < legacy_pic->nr_legacy_irqs; i++)
113 set_irq_chip_and_handler_name(i, chip, handle_level_irq, name);
114 }
115
116 void __init init_IRQ(void)
117 {
118 int i;
119
120 /*
121 * On cpu 0, Assign IRQ0_VECTOR..IRQ15_VECTOR's to IRQ 0..15.
122 * If these IRQ's are handled by legacy interrupt-controllers like PIC,
123 * then this configuration will likely be static after the boot. If
124 * these IRQ's are handled by more mordern controllers like IO-APIC,
125 * then this vector space can be freed and re-used dynamically as the
126 * irq's migrate etc.
127 */
128 for (i = 0; i < legacy_pic->nr_legacy_irqs; i++)
129 per_cpu(vector_irq, 0)[IRQ0_VECTOR + i] = i;
130
131 x86_init.irqs.intr_init();
132 }
133
134 /*
135 * Setup the vector to irq mappings.
136 */
137 void setup_vector_irq(int cpu)
138 {
139 #ifndef CONFIG_X86_IO_APIC
140 int irq;
141
142 /*
143 * On most of the platforms, legacy PIC delivers the interrupts on the
144 * boot cpu. But there are certain platforms where PIC interrupts are
145 * delivered to multiple cpu's. If the legacy IRQ is handled by the
146 * legacy PIC, for the new cpu that is coming online, setup the static
147 * legacy vector to irq mapping:
148 */
149 for (irq = 0; irq < legacy_pic->nr_legacy_irqs; irq++)
150 per_cpu(vector_irq, cpu)[IRQ0_VECTOR + irq] = irq;
151 #endif
152
153 __setup_vector_irq(cpu);
154 }
155
156 static void __init smp_intr_init(void)
157 {
158 #ifdef CONFIG_SMP
159 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC)
160 /*
161 * The reschedule interrupt is a CPU-to-CPU reschedule-helper
162 * IPI, driven by wakeup.
163 */
164 alloc_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt);
165
166 /* IPIs for invalidation */
167 alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+0, invalidate_interrupt0);
168 alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+1, invalidate_interrupt1);
169 alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+2, invalidate_interrupt2);
170 alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+3, invalidate_interrupt3);
171 alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+4, invalidate_interrupt4);
172 alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+5, invalidate_interrupt5);
173 alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+6, invalidate_interrupt6);
174 alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+7, invalidate_interrupt7);
175
176 /* IPI for generic function call */
177 alloc_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt);
178
179 /* IPI for generic single function call */
180 alloc_intr_gate(CALL_FUNCTION_SINGLE_VECTOR,
181 call_function_single_interrupt);
182
183 /* Low priority IPI to cleanup after moving an irq */
184 set_intr_gate(IRQ_MOVE_CLEANUP_VECTOR, irq_move_cleanup_interrupt);
185 set_bit(IRQ_MOVE_CLEANUP_VECTOR, used_vectors);
186
187 /* IPI used for rebooting/stopping */
188 alloc_intr_gate(REBOOT_VECTOR, reboot_interrupt);
189 #endif
190 #endif /* CONFIG_SMP */
191 }
192
193 static void __init apic_intr_init(void)
194 {
195 smp_intr_init();
196
197 #ifdef CONFIG_X86_THERMAL_VECTOR
198 alloc_intr_gate(THERMAL_APIC_VECTOR, thermal_interrupt);
199 #endif
200 #ifdef CONFIG_X86_MCE_THRESHOLD
201 alloc_intr_gate(THRESHOLD_APIC_VECTOR, threshold_interrupt);
202 #endif
203 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_LOCAL_APIC)
204 alloc_intr_gate(MCE_SELF_VECTOR, mce_self_interrupt);
205 #endif
206
207 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC)
208 /* self generated IPI for local APIC timer */
209 alloc_intr_gate(LOCAL_TIMER_VECTOR, apic_timer_interrupt);
210
211 /* IPI for X86 platform specific use */
212 alloc_intr_gate(X86_PLATFORM_IPI_VECTOR, x86_platform_ipi);
213
214 /* IPI vectors for APIC spurious and error interrupts */
215 alloc_intr_gate(SPURIOUS_APIC_VECTOR, spurious_interrupt);
216 alloc_intr_gate(ERROR_APIC_VECTOR, error_interrupt);
217
218 /* IRQ work interrupts: */
219 # ifdef CONFIG_IRQ_WORK
220 alloc_intr_gate(IRQ_WORK_VECTOR, irq_work_interrupt);
221 # endif
222
223 #endif
224 }
225
226 void __init native_init_IRQ(void)
227 {
228 int i;
229
230 /* Execute any quirks before the call gates are initialised: */
231 x86_init.irqs.pre_vector_init();
232
233 apic_intr_init();
234
235 /*
236 * Cover the whole vector space, no vector can escape
237 * us. (some of these will be overridden and become
238 * 'special' SMP interrupts)
239 */
240 for (i = FIRST_EXTERNAL_VECTOR; i < NR_VECTORS; i++) {
241 /* IA32_SYSCALL_VECTOR could be used in trap_init already. */
242 if (!test_bit(i, used_vectors))
243 set_intr_gate(i, interrupt[i-FIRST_EXTERNAL_VECTOR]);
244 }
245
246 if (!acpi_ioapic)
247 setup_irq(2, &irq2);
248
249 #ifdef CONFIG_X86_32
250 /*
251 * External FPU? Set up irq13 if so, for
252 * original braindamaged IBM FERR coupling.
253 */
254 if (boot_cpu_data.hard_math && !cpu_has_fpu)
255 setup_irq(FPU_IRQ, &fpu_irq);
256
257 irq_ctx_init(smp_processor_id());
258 #endif
259 }
This page took 0.039551 seconds and 5 git commands to generate.