Merge tag 'at91-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/nferre/linux...
[deliverable/linux.git] / arch / x86 / kernel / kprobes / core.c
1 /*
2 * Kernel Probes (KProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2002, 2004
19 *
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
26 * <prasanna@in.ibm.com> adapted for x86_64 from i386.
27 * 2005-Mar Roland McGrath <roland@redhat.com>
28 * Fixed to handle %rip-relative addressing mode correctly.
29 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
30 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
31 * <prasanna@in.ibm.com> added function-return probes.
32 * 2005-May Rusty Lynch <rusty.lynch@intel.com>
33 * Added function return probes functionality
34 * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
35 * kprobe-booster and kretprobe-booster for i386.
36 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
37 * and kretprobe-booster for x86-64
38 * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
39 * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
40 * unified x86 kprobes code.
41 */
42 #include <linux/kprobes.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/slab.h>
46 #include <linux/hardirq.h>
47 #include <linux/preempt.h>
48 #include <linux/module.h>
49 #include <linux/kdebug.h>
50 #include <linux/kallsyms.h>
51 #include <linux/ftrace.h>
52
53 #include <asm/cacheflush.h>
54 #include <asm/desc.h>
55 #include <asm/pgtable.h>
56 #include <asm/uaccess.h>
57 #include <asm/alternative.h>
58 #include <asm/insn.h>
59 #include <asm/debugreg.h>
60
61 #include "common.h"
62
63 void jprobe_return_end(void);
64
65 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
66 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
67
68 #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
69
70 #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
71 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
72 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
73 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
74 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
75 << (row % 32))
76 /*
77 * Undefined/reserved opcodes, conditional jump, Opcode Extension
78 * Groups, and some special opcodes can not boost.
79 * This is non-const and volatile to keep gcc from statically
80 * optimizing it out, as variable_test_bit makes gcc think only
81 * *(unsigned long*) is used.
82 */
83 static volatile u32 twobyte_is_boostable[256 / 32] = {
84 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
85 /* ---------------------------------------------- */
86 W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
87 W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
88 W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
89 W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
90 W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
91 W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
92 W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
93 W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
94 W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
95 W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
96 W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
97 W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
98 W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
99 W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
100 W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
101 W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */
102 /* ----------------------------------------------- */
103 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
104 };
105 #undef W
106
107 struct kretprobe_blackpoint kretprobe_blacklist[] = {
108 {"__switch_to", }, /* This function switches only current task, but
109 doesn't switch kernel stack.*/
110 {NULL, NULL} /* Terminator */
111 };
112
113 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
114
115 static nokprobe_inline void
116 __synthesize_relative_insn(void *from, void *to, u8 op)
117 {
118 struct __arch_relative_insn {
119 u8 op;
120 s32 raddr;
121 } __packed *insn;
122
123 insn = (struct __arch_relative_insn *)from;
124 insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
125 insn->op = op;
126 }
127
128 /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
129 void synthesize_reljump(void *from, void *to)
130 {
131 __synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
132 }
133 NOKPROBE_SYMBOL(synthesize_reljump);
134
135 /* Insert a call instruction at address 'from', which calls address 'to'.*/
136 void synthesize_relcall(void *from, void *to)
137 {
138 __synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
139 }
140 NOKPROBE_SYMBOL(synthesize_relcall);
141
142 /*
143 * Skip the prefixes of the instruction.
144 */
145 static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
146 {
147 insn_attr_t attr;
148
149 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
150 while (inat_is_legacy_prefix(attr)) {
151 insn++;
152 attr = inat_get_opcode_attribute((insn_byte_t)*insn);
153 }
154 #ifdef CONFIG_X86_64
155 if (inat_is_rex_prefix(attr))
156 insn++;
157 #endif
158 return insn;
159 }
160 NOKPROBE_SYMBOL(skip_prefixes);
161
162 /*
163 * Returns non-zero if opcode is boostable.
164 * RIP relative instructions are adjusted at copying time in 64 bits mode
165 */
166 int can_boost(kprobe_opcode_t *opcodes)
167 {
168 kprobe_opcode_t opcode;
169 kprobe_opcode_t *orig_opcodes = opcodes;
170
171 if (search_exception_tables((unsigned long)opcodes))
172 return 0; /* Page fault may occur on this address. */
173
174 retry:
175 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
176 return 0;
177 opcode = *(opcodes++);
178
179 /* 2nd-byte opcode */
180 if (opcode == 0x0f) {
181 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
182 return 0;
183 return test_bit(*opcodes,
184 (unsigned long *)twobyte_is_boostable);
185 }
186
187 switch (opcode & 0xf0) {
188 #ifdef CONFIG_X86_64
189 case 0x40:
190 goto retry; /* REX prefix is boostable */
191 #endif
192 case 0x60:
193 if (0x63 < opcode && opcode < 0x67)
194 goto retry; /* prefixes */
195 /* can't boost Address-size override and bound */
196 return (opcode != 0x62 && opcode != 0x67);
197 case 0x70:
198 return 0; /* can't boost conditional jump */
199 case 0xc0:
200 /* can't boost software-interruptions */
201 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
202 case 0xd0:
203 /* can boost AA* and XLAT */
204 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
205 case 0xe0:
206 /* can boost in/out and absolute jmps */
207 return ((opcode & 0x04) || opcode == 0xea);
208 case 0xf0:
209 if ((opcode & 0x0c) == 0 && opcode != 0xf1)
210 goto retry; /* lock/rep(ne) prefix */
211 /* clear and set flags are boostable */
212 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
213 default:
214 /* segment override prefixes are boostable */
215 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
216 goto retry; /* prefixes */
217 /* CS override prefix and call are not boostable */
218 return (opcode != 0x2e && opcode != 0x9a);
219 }
220 }
221
222 static unsigned long
223 __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
224 {
225 struct kprobe *kp;
226 unsigned long faddr;
227
228 kp = get_kprobe((void *)addr);
229 faddr = ftrace_location(addr);
230 /*
231 * Addresses inside the ftrace location are refused by
232 * arch_check_ftrace_location(). Something went terribly wrong
233 * if such an address is checked here.
234 */
235 if (WARN_ON(faddr && faddr != addr))
236 return 0UL;
237 /*
238 * Use the current code if it is not modified by Kprobe
239 * and it cannot be modified by ftrace.
240 */
241 if (!kp && !faddr)
242 return addr;
243
244 /*
245 * Basically, kp->ainsn.insn has an original instruction.
246 * However, RIP-relative instruction can not do single-stepping
247 * at different place, __copy_instruction() tweaks the displacement of
248 * that instruction. In that case, we can't recover the instruction
249 * from the kp->ainsn.insn.
250 *
251 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
252 * of the first byte of the probed instruction, which is overwritten
253 * by int3. And the instruction at kp->addr is not modified by kprobes
254 * except for the first byte, we can recover the original instruction
255 * from it and kp->opcode.
256 *
257 * In case of Kprobes using ftrace, we do not have a copy of
258 * the original instruction. In fact, the ftrace location might
259 * be modified at anytime and even could be in an inconsistent state.
260 * Fortunately, we know that the original code is the ideal 5-byte
261 * long NOP.
262 */
263 memcpy(buf, (void *)addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
264 if (faddr)
265 memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
266 else
267 buf[0] = kp->opcode;
268 return (unsigned long)buf;
269 }
270
271 /*
272 * Recover the probed instruction at addr for further analysis.
273 * Caller must lock kprobes by kprobe_mutex, or disable preemption
274 * for preventing to release referencing kprobes.
275 * Returns zero if the instruction can not get recovered.
276 */
277 unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
278 {
279 unsigned long __addr;
280
281 __addr = __recover_optprobed_insn(buf, addr);
282 if (__addr != addr)
283 return __addr;
284
285 return __recover_probed_insn(buf, addr);
286 }
287
288 /* Check if paddr is at an instruction boundary */
289 static int can_probe(unsigned long paddr)
290 {
291 unsigned long addr, __addr, offset = 0;
292 struct insn insn;
293 kprobe_opcode_t buf[MAX_INSN_SIZE];
294
295 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
296 return 0;
297
298 /* Decode instructions */
299 addr = paddr - offset;
300 while (addr < paddr) {
301 /*
302 * Check if the instruction has been modified by another
303 * kprobe, in which case we replace the breakpoint by the
304 * original instruction in our buffer.
305 * Also, jump optimization will change the breakpoint to
306 * relative-jump. Since the relative-jump itself is
307 * normally used, we just go through if there is no kprobe.
308 */
309 __addr = recover_probed_instruction(buf, addr);
310 if (!__addr)
311 return 0;
312 kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
313 insn_get_length(&insn);
314
315 /*
316 * Another debugging subsystem might insert this breakpoint.
317 * In that case, we can't recover it.
318 */
319 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
320 return 0;
321 addr += insn.length;
322 }
323
324 return (addr == paddr);
325 }
326
327 /*
328 * Returns non-zero if opcode modifies the interrupt flag.
329 */
330 static int is_IF_modifier(kprobe_opcode_t *insn)
331 {
332 /* Skip prefixes */
333 insn = skip_prefixes(insn);
334
335 switch (*insn) {
336 case 0xfa: /* cli */
337 case 0xfb: /* sti */
338 case 0xcf: /* iret/iretd */
339 case 0x9d: /* popf/popfd */
340 return 1;
341 }
342
343 return 0;
344 }
345
346 /*
347 * Copy an instruction and adjust the displacement if the instruction
348 * uses the %rip-relative addressing mode.
349 * If it does, Return the address of the 32-bit displacement word.
350 * If not, return null.
351 * Only applicable to 64-bit x86.
352 */
353 int __copy_instruction(u8 *dest, u8 *src)
354 {
355 struct insn insn;
356 kprobe_opcode_t buf[MAX_INSN_SIZE];
357 unsigned long recovered_insn =
358 recover_probed_instruction(buf, (unsigned long)src);
359
360 if (!recovered_insn)
361 return 0;
362 kernel_insn_init(&insn, (void *)recovered_insn, MAX_INSN_SIZE);
363 insn_get_length(&insn);
364 /* Another subsystem puts a breakpoint, failed to recover */
365 if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
366 return 0;
367 memcpy(dest, insn.kaddr, insn.length);
368
369 #ifdef CONFIG_X86_64
370 if (insn_rip_relative(&insn)) {
371 s64 newdisp;
372 u8 *disp;
373 kernel_insn_init(&insn, dest, insn.length);
374 insn_get_displacement(&insn);
375 /*
376 * The copied instruction uses the %rip-relative addressing
377 * mode. Adjust the displacement for the difference between
378 * the original location of this instruction and the location
379 * of the copy that will actually be run. The tricky bit here
380 * is making sure that the sign extension happens correctly in
381 * this calculation, since we need a signed 32-bit result to
382 * be sign-extended to 64 bits when it's added to the %rip
383 * value and yield the same 64-bit result that the sign-
384 * extension of the original signed 32-bit displacement would
385 * have given.
386 */
387 newdisp = (u8 *) src + (s64) insn.displacement.value - (u8 *) dest;
388 if ((s64) (s32) newdisp != newdisp) {
389 pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
390 pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", src, dest, insn.displacement.value);
391 return 0;
392 }
393 disp = (u8 *) dest + insn_offset_displacement(&insn);
394 *(s32 *) disp = (s32) newdisp;
395 }
396 #endif
397 return insn.length;
398 }
399
400 static int arch_copy_kprobe(struct kprobe *p)
401 {
402 int ret;
403
404 /* Copy an instruction with recovering if other optprobe modifies it.*/
405 ret = __copy_instruction(p->ainsn.insn, p->addr);
406 if (!ret)
407 return -EINVAL;
408
409 /*
410 * __copy_instruction can modify the displacement of the instruction,
411 * but it doesn't affect boostable check.
412 */
413 if (can_boost(p->ainsn.insn))
414 p->ainsn.boostable = 0;
415 else
416 p->ainsn.boostable = -1;
417
418 /* Check whether the instruction modifies Interrupt Flag or not */
419 p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn);
420
421 /* Also, displacement change doesn't affect the first byte */
422 p->opcode = p->ainsn.insn[0];
423
424 return 0;
425 }
426
427 int arch_prepare_kprobe(struct kprobe *p)
428 {
429 if (alternatives_text_reserved(p->addr, p->addr))
430 return -EINVAL;
431
432 if (!can_probe((unsigned long)p->addr))
433 return -EILSEQ;
434 /* insn: must be on special executable page on x86. */
435 p->ainsn.insn = get_insn_slot();
436 if (!p->ainsn.insn)
437 return -ENOMEM;
438
439 return arch_copy_kprobe(p);
440 }
441
442 void arch_arm_kprobe(struct kprobe *p)
443 {
444 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
445 }
446
447 void arch_disarm_kprobe(struct kprobe *p)
448 {
449 text_poke(p->addr, &p->opcode, 1);
450 }
451
452 void arch_remove_kprobe(struct kprobe *p)
453 {
454 if (p->ainsn.insn) {
455 free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
456 p->ainsn.insn = NULL;
457 }
458 }
459
460 static nokprobe_inline void
461 save_previous_kprobe(struct kprobe_ctlblk *kcb)
462 {
463 kcb->prev_kprobe.kp = kprobe_running();
464 kcb->prev_kprobe.status = kcb->kprobe_status;
465 kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
466 kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
467 }
468
469 static nokprobe_inline void
470 restore_previous_kprobe(struct kprobe_ctlblk *kcb)
471 {
472 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
473 kcb->kprobe_status = kcb->prev_kprobe.status;
474 kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
475 kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
476 }
477
478 static nokprobe_inline void
479 set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
480 struct kprobe_ctlblk *kcb)
481 {
482 __this_cpu_write(current_kprobe, p);
483 kcb->kprobe_saved_flags = kcb->kprobe_old_flags
484 = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
485 if (p->ainsn.if_modifier)
486 kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
487 }
488
489 static nokprobe_inline void clear_btf(void)
490 {
491 if (test_thread_flag(TIF_BLOCKSTEP)) {
492 unsigned long debugctl = get_debugctlmsr();
493
494 debugctl &= ~DEBUGCTLMSR_BTF;
495 update_debugctlmsr(debugctl);
496 }
497 }
498
499 static nokprobe_inline void restore_btf(void)
500 {
501 if (test_thread_flag(TIF_BLOCKSTEP)) {
502 unsigned long debugctl = get_debugctlmsr();
503
504 debugctl |= DEBUGCTLMSR_BTF;
505 update_debugctlmsr(debugctl);
506 }
507 }
508
509 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
510 {
511 unsigned long *sara = stack_addr(regs);
512
513 ri->ret_addr = (kprobe_opcode_t *) *sara;
514
515 /* Replace the return addr with trampoline addr */
516 *sara = (unsigned long) &kretprobe_trampoline;
517 }
518 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
519
520 static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
521 struct kprobe_ctlblk *kcb, int reenter)
522 {
523 if (setup_detour_execution(p, regs, reenter))
524 return;
525
526 #if !defined(CONFIG_PREEMPT)
527 if (p->ainsn.boostable == 1 && !p->post_handler) {
528 /* Boost up -- we can execute copied instructions directly */
529 if (!reenter)
530 reset_current_kprobe();
531 /*
532 * Reentering boosted probe doesn't reset current_kprobe,
533 * nor set current_kprobe, because it doesn't use single
534 * stepping.
535 */
536 regs->ip = (unsigned long)p->ainsn.insn;
537 preempt_enable_no_resched();
538 return;
539 }
540 #endif
541 if (reenter) {
542 save_previous_kprobe(kcb);
543 set_current_kprobe(p, regs, kcb);
544 kcb->kprobe_status = KPROBE_REENTER;
545 } else
546 kcb->kprobe_status = KPROBE_HIT_SS;
547 /* Prepare real single stepping */
548 clear_btf();
549 regs->flags |= X86_EFLAGS_TF;
550 regs->flags &= ~X86_EFLAGS_IF;
551 /* single step inline if the instruction is an int3 */
552 if (p->opcode == BREAKPOINT_INSTRUCTION)
553 regs->ip = (unsigned long)p->addr;
554 else
555 regs->ip = (unsigned long)p->ainsn.insn;
556 }
557 NOKPROBE_SYMBOL(setup_singlestep);
558
559 /*
560 * We have reentered the kprobe_handler(), since another probe was hit while
561 * within the handler. We save the original kprobes variables and just single
562 * step on the instruction of the new probe without calling any user handlers.
563 */
564 static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
565 struct kprobe_ctlblk *kcb)
566 {
567 switch (kcb->kprobe_status) {
568 case KPROBE_HIT_SSDONE:
569 case KPROBE_HIT_ACTIVE:
570 case KPROBE_HIT_SS:
571 kprobes_inc_nmissed_count(p);
572 setup_singlestep(p, regs, kcb, 1);
573 break;
574 case KPROBE_REENTER:
575 /* A probe has been hit in the codepath leading up to, or just
576 * after, single-stepping of a probed instruction. This entire
577 * codepath should strictly reside in .kprobes.text section.
578 * Raise a BUG or we'll continue in an endless reentering loop
579 * and eventually a stack overflow.
580 */
581 printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
582 p->addr);
583 dump_kprobe(p);
584 BUG();
585 default:
586 /* impossible cases */
587 WARN_ON(1);
588 return 0;
589 }
590
591 return 1;
592 }
593 NOKPROBE_SYMBOL(reenter_kprobe);
594
595 /*
596 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
597 * remain disabled throughout this function.
598 */
599 int kprobe_int3_handler(struct pt_regs *regs)
600 {
601 kprobe_opcode_t *addr;
602 struct kprobe *p;
603 struct kprobe_ctlblk *kcb;
604
605 if (user_mode_vm(regs))
606 return 0;
607
608 addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
609 /*
610 * We don't want to be preempted for the entire
611 * duration of kprobe processing. We conditionally
612 * re-enable preemption at the end of this function,
613 * and also in reenter_kprobe() and setup_singlestep().
614 */
615 preempt_disable();
616
617 kcb = get_kprobe_ctlblk();
618 p = get_kprobe(addr);
619
620 if (p) {
621 if (kprobe_running()) {
622 if (reenter_kprobe(p, regs, kcb))
623 return 1;
624 } else {
625 set_current_kprobe(p, regs, kcb);
626 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
627
628 /*
629 * If we have no pre-handler or it returned 0, we
630 * continue with normal processing. If we have a
631 * pre-handler and it returned non-zero, it prepped
632 * for calling the break_handler below on re-entry
633 * for jprobe processing, so get out doing nothing
634 * more here.
635 */
636 if (!p->pre_handler || !p->pre_handler(p, regs))
637 setup_singlestep(p, regs, kcb, 0);
638 return 1;
639 }
640 } else if (*addr != BREAKPOINT_INSTRUCTION) {
641 /*
642 * The breakpoint instruction was removed right
643 * after we hit it. Another cpu has removed
644 * either a probepoint or a debugger breakpoint
645 * at this address. In either case, no further
646 * handling of this interrupt is appropriate.
647 * Back up over the (now missing) int3 and run
648 * the original instruction.
649 */
650 regs->ip = (unsigned long)addr;
651 preempt_enable_no_resched();
652 return 1;
653 } else if (kprobe_running()) {
654 p = __this_cpu_read(current_kprobe);
655 if (p->break_handler && p->break_handler(p, regs)) {
656 if (!skip_singlestep(p, regs, kcb))
657 setup_singlestep(p, regs, kcb, 0);
658 return 1;
659 }
660 } /* else: not a kprobe fault; let the kernel handle it */
661
662 preempt_enable_no_resched();
663 return 0;
664 }
665 NOKPROBE_SYMBOL(kprobe_int3_handler);
666
667 /*
668 * When a retprobed function returns, this code saves registers and
669 * calls trampoline_handler() runs, which calls the kretprobe's handler.
670 */
671 static void __used kretprobe_trampoline_holder(void)
672 {
673 asm volatile (
674 ".global kretprobe_trampoline\n"
675 "kretprobe_trampoline: \n"
676 #ifdef CONFIG_X86_64
677 /* We don't bother saving the ss register */
678 " pushq %rsp\n"
679 " pushfq\n"
680 SAVE_REGS_STRING
681 " movq %rsp, %rdi\n"
682 " call trampoline_handler\n"
683 /* Replace saved sp with true return address. */
684 " movq %rax, 152(%rsp)\n"
685 RESTORE_REGS_STRING
686 " popfq\n"
687 #else
688 " pushf\n"
689 SAVE_REGS_STRING
690 " movl %esp, %eax\n"
691 " call trampoline_handler\n"
692 /* Move flags to cs */
693 " movl 56(%esp), %edx\n"
694 " movl %edx, 52(%esp)\n"
695 /* Replace saved flags with true return address. */
696 " movl %eax, 56(%esp)\n"
697 RESTORE_REGS_STRING
698 " popf\n"
699 #endif
700 " ret\n");
701 }
702 NOKPROBE_SYMBOL(kretprobe_trampoline_holder);
703 NOKPROBE_SYMBOL(kretprobe_trampoline);
704
705 /*
706 * Called from kretprobe_trampoline
707 */
708 __visible __used void *trampoline_handler(struct pt_regs *regs)
709 {
710 struct kretprobe_instance *ri = NULL;
711 struct hlist_head *head, empty_rp;
712 struct hlist_node *tmp;
713 unsigned long flags, orig_ret_address = 0;
714 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
715 kprobe_opcode_t *correct_ret_addr = NULL;
716
717 INIT_HLIST_HEAD(&empty_rp);
718 kretprobe_hash_lock(current, &head, &flags);
719 /* fixup registers */
720 #ifdef CONFIG_X86_64
721 regs->cs = __KERNEL_CS;
722 #else
723 regs->cs = __KERNEL_CS | get_kernel_rpl();
724 regs->gs = 0;
725 #endif
726 regs->ip = trampoline_address;
727 regs->orig_ax = ~0UL;
728
729 /*
730 * It is possible to have multiple instances associated with a given
731 * task either because multiple functions in the call path have
732 * return probes installed on them, and/or more than one
733 * return probe was registered for a target function.
734 *
735 * We can handle this because:
736 * - instances are always pushed into the head of the list
737 * - when multiple return probes are registered for the same
738 * function, the (chronologically) first instance's ret_addr
739 * will be the real return address, and all the rest will
740 * point to kretprobe_trampoline.
741 */
742 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
743 if (ri->task != current)
744 /* another task is sharing our hash bucket */
745 continue;
746
747 orig_ret_address = (unsigned long)ri->ret_addr;
748
749 if (orig_ret_address != trampoline_address)
750 /*
751 * This is the real return address. Any other
752 * instances associated with this task are for
753 * other calls deeper on the call stack
754 */
755 break;
756 }
757
758 kretprobe_assert(ri, orig_ret_address, trampoline_address);
759
760 correct_ret_addr = ri->ret_addr;
761 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
762 if (ri->task != current)
763 /* another task is sharing our hash bucket */
764 continue;
765
766 orig_ret_address = (unsigned long)ri->ret_addr;
767 if (ri->rp && ri->rp->handler) {
768 __this_cpu_write(current_kprobe, &ri->rp->kp);
769 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
770 ri->ret_addr = correct_ret_addr;
771 ri->rp->handler(ri, regs);
772 __this_cpu_write(current_kprobe, NULL);
773 }
774
775 recycle_rp_inst(ri, &empty_rp);
776
777 if (orig_ret_address != trampoline_address)
778 /*
779 * This is the real return address. Any other
780 * instances associated with this task are for
781 * other calls deeper on the call stack
782 */
783 break;
784 }
785
786 kretprobe_hash_unlock(current, &flags);
787
788 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
789 hlist_del(&ri->hlist);
790 kfree(ri);
791 }
792 return (void *)orig_ret_address;
793 }
794 NOKPROBE_SYMBOL(trampoline_handler);
795
796 /*
797 * Called after single-stepping. p->addr is the address of the
798 * instruction whose first byte has been replaced by the "int 3"
799 * instruction. To avoid the SMP problems that can occur when we
800 * temporarily put back the original opcode to single-step, we
801 * single-stepped a copy of the instruction. The address of this
802 * copy is p->ainsn.insn.
803 *
804 * This function prepares to return from the post-single-step
805 * interrupt. We have to fix up the stack as follows:
806 *
807 * 0) Except in the case of absolute or indirect jump or call instructions,
808 * the new ip is relative to the copied instruction. We need to make
809 * it relative to the original instruction.
810 *
811 * 1) If the single-stepped instruction was pushfl, then the TF and IF
812 * flags are set in the just-pushed flags, and may need to be cleared.
813 *
814 * 2) If the single-stepped instruction was a call, the return address
815 * that is atop the stack is the address following the copied instruction.
816 * We need to make it the address following the original instruction.
817 *
818 * If this is the first time we've single-stepped the instruction at
819 * this probepoint, and the instruction is boostable, boost it: add a
820 * jump instruction after the copied instruction, that jumps to the next
821 * instruction after the probepoint.
822 */
823 static void resume_execution(struct kprobe *p, struct pt_regs *regs,
824 struct kprobe_ctlblk *kcb)
825 {
826 unsigned long *tos = stack_addr(regs);
827 unsigned long copy_ip = (unsigned long)p->ainsn.insn;
828 unsigned long orig_ip = (unsigned long)p->addr;
829 kprobe_opcode_t *insn = p->ainsn.insn;
830
831 /* Skip prefixes */
832 insn = skip_prefixes(insn);
833
834 regs->flags &= ~X86_EFLAGS_TF;
835 switch (*insn) {
836 case 0x9c: /* pushfl */
837 *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
838 *tos |= kcb->kprobe_old_flags;
839 break;
840 case 0xc2: /* iret/ret/lret */
841 case 0xc3:
842 case 0xca:
843 case 0xcb:
844 case 0xcf:
845 case 0xea: /* jmp absolute -- ip is correct */
846 /* ip is already adjusted, no more changes required */
847 p->ainsn.boostable = 1;
848 goto no_change;
849 case 0xe8: /* call relative - Fix return addr */
850 *tos = orig_ip + (*tos - copy_ip);
851 break;
852 #ifdef CONFIG_X86_32
853 case 0x9a: /* call absolute -- same as call absolute, indirect */
854 *tos = orig_ip + (*tos - copy_ip);
855 goto no_change;
856 #endif
857 case 0xff:
858 if ((insn[1] & 0x30) == 0x10) {
859 /*
860 * call absolute, indirect
861 * Fix return addr; ip is correct.
862 * But this is not boostable
863 */
864 *tos = orig_ip + (*tos - copy_ip);
865 goto no_change;
866 } else if (((insn[1] & 0x31) == 0x20) ||
867 ((insn[1] & 0x31) == 0x21)) {
868 /*
869 * jmp near and far, absolute indirect
870 * ip is correct. And this is boostable
871 */
872 p->ainsn.boostable = 1;
873 goto no_change;
874 }
875 default:
876 break;
877 }
878
879 if (p->ainsn.boostable == 0) {
880 if ((regs->ip > copy_ip) &&
881 (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
882 /*
883 * These instructions can be executed directly if it
884 * jumps back to correct address.
885 */
886 synthesize_reljump((void *)regs->ip,
887 (void *)orig_ip + (regs->ip - copy_ip));
888 p->ainsn.boostable = 1;
889 } else {
890 p->ainsn.boostable = -1;
891 }
892 }
893
894 regs->ip += orig_ip - copy_ip;
895
896 no_change:
897 restore_btf();
898 }
899 NOKPROBE_SYMBOL(resume_execution);
900
901 /*
902 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
903 * remain disabled throughout this function.
904 */
905 int kprobe_debug_handler(struct pt_regs *regs)
906 {
907 struct kprobe *cur = kprobe_running();
908 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
909
910 if (!cur)
911 return 0;
912
913 resume_execution(cur, regs, kcb);
914 regs->flags |= kcb->kprobe_saved_flags;
915
916 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
917 kcb->kprobe_status = KPROBE_HIT_SSDONE;
918 cur->post_handler(cur, regs, 0);
919 }
920
921 /* Restore back the original saved kprobes variables and continue. */
922 if (kcb->kprobe_status == KPROBE_REENTER) {
923 restore_previous_kprobe(kcb);
924 goto out;
925 }
926 reset_current_kprobe();
927 out:
928 preempt_enable_no_resched();
929
930 /*
931 * if somebody else is singlestepping across a probe point, flags
932 * will have TF set, in which case, continue the remaining processing
933 * of do_debug, as if this is not a probe hit.
934 */
935 if (regs->flags & X86_EFLAGS_TF)
936 return 0;
937
938 return 1;
939 }
940 NOKPROBE_SYMBOL(kprobe_debug_handler);
941
942 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
943 {
944 struct kprobe *cur = kprobe_running();
945 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
946
947 if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
948 /* This must happen on single-stepping */
949 WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
950 kcb->kprobe_status != KPROBE_REENTER);
951 /*
952 * We are here because the instruction being single
953 * stepped caused a page fault. We reset the current
954 * kprobe and the ip points back to the probe address
955 * and allow the page fault handler to continue as a
956 * normal page fault.
957 */
958 regs->ip = (unsigned long)cur->addr;
959 regs->flags |= kcb->kprobe_old_flags;
960 if (kcb->kprobe_status == KPROBE_REENTER)
961 restore_previous_kprobe(kcb);
962 else
963 reset_current_kprobe();
964 preempt_enable_no_resched();
965 } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
966 kcb->kprobe_status == KPROBE_HIT_SSDONE) {
967 /*
968 * We increment the nmissed count for accounting,
969 * we can also use npre/npostfault count for accounting
970 * these specific fault cases.
971 */
972 kprobes_inc_nmissed_count(cur);
973
974 /*
975 * We come here because instructions in the pre/post
976 * handler caused the page_fault, this could happen
977 * if handler tries to access user space by
978 * copy_from_user(), get_user() etc. Let the
979 * user-specified handler try to fix it first.
980 */
981 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
982 return 1;
983
984 /*
985 * In case the user-specified fault handler returned
986 * zero, try to fix up.
987 */
988 if (fixup_exception(regs))
989 return 1;
990
991 /*
992 * fixup routine could not handle it,
993 * Let do_page_fault() fix it.
994 */
995 }
996
997 return 0;
998 }
999 NOKPROBE_SYMBOL(kprobe_fault_handler);
1000
1001 /*
1002 * Wrapper routine for handling exceptions.
1003 */
1004 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
1005 void *data)
1006 {
1007 struct die_args *args = data;
1008 int ret = NOTIFY_DONE;
1009
1010 if (args->regs && user_mode_vm(args->regs))
1011 return ret;
1012
1013 if (val == DIE_GPF) {
1014 /*
1015 * To be potentially processing a kprobe fault and to
1016 * trust the result from kprobe_running(), we have
1017 * be non-preemptible.
1018 */
1019 if (!preemptible() && kprobe_running() &&
1020 kprobe_fault_handler(args->regs, args->trapnr))
1021 ret = NOTIFY_STOP;
1022 }
1023 return ret;
1024 }
1025 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1026
1027 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1028 {
1029 struct jprobe *jp = container_of(p, struct jprobe, kp);
1030 unsigned long addr;
1031 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1032
1033 kcb->jprobe_saved_regs = *regs;
1034 kcb->jprobe_saved_sp = stack_addr(regs);
1035 addr = (unsigned long)(kcb->jprobe_saved_sp);
1036
1037 /*
1038 * As Linus pointed out, gcc assumes that the callee
1039 * owns the argument space and could overwrite it, e.g.
1040 * tailcall optimization. So, to be absolutely safe
1041 * we also save and restore enough stack bytes to cover
1042 * the argument area.
1043 */
1044 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
1045 MIN_STACK_SIZE(addr));
1046 regs->flags &= ~X86_EFLAGS_IF;
1047 trace_hardirqs_off();
1048 regs->ip = (unsigned long)(jp->entry);
1049
1050 /*
1051 * jprobes use jprobe_return() which skips the normal return
1052 * path of the function, and this messes up the accounting of the
1053 * function graph tracer to get messed up.
1054 *
1055 * Pause function graph tracing while performing the jprobe function.
1056 */
1057 pause_graph_tracing();
1058 return 1;
1059 }
1060 NOKPROBE_SYMBOL(setjmp_pre_handler);
1061
1062 void jprobe_return(void)
1063 {
1064 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1065
1066 asm volatile (
1067 #ifdef CONFIG_X86_64
1068 " xchg %%rbx,%%rsp \n"
1069 #else
1070 " xchgl %%ebx,%%esp \n"
1071 #endif
1072 " int3 \n"
1073 " .globl jprobe_return_end\n"
1074 " jprobe_return_end: \n"
1075 " nop \n"::"b"
1076 (kcb->jprobe_saved_sp):"memory");
1077 }
1078 NOKPROBE_SYMBOL(jprobe_return);
1079 NOKPROBE_SYMBOL(jprobe_return_end);
1080
1081 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1082 {
1083 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1084 u8 *addr = (u8 *) (regs->ip - 1);
1085 struct jprobe *jp = container_of(p, struct jprobe, kp);
1086 void *saved_sp = kcb->jprobe_saved_sp;
1087
1088 if ((addr > (u8 *) jprobe_return) &&
1089 (addr < (u8 *) jprobe_return_end)) {
1090 if (stack_addr(regs) != saved_sp) {
1091 struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
1092 printk(KERN_ERR
1093 "current sp %p does not match saved sp %p\n",
1094 stack_addr(regs), saved_sp);
1095 printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
1096 show_regs(saved_regs);
1097 printk(KERN_ERR "Current registers\n");
1098 show_regs(regs);
1099 BUG();
1100 }
1101 /* It's OK to start function graph tracing again */
1102 unpause_graph_tracing();
1103 *regs = kcb->jprobe_saved_regs;
1104 memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp));
1105 preempt_enable_no_resched();
1106 return 1;
1107 }
1108 return 0;
1109 }
1110 NOKPROBE_SYMBOL(longjmp_break_handler);
1111
1112 bool arch_within_kprobe_blacklist(unsigned long addr)
1113 {
1114 return (addr >= (unsigned long)__kprobes_text_start &&
1115 addr < (unsigned long)__kprobes_text_end) ||
1116 (addr >= (unsigned long)__entry_text_start &&
1117 addr < (unsigned long)__entry_text_end);
1118 }
1119
1120 int __init arch_init_kprobes(void)
1121 {
1122 return 0;
1123 }
1124
1125 int arch_trampoline_kprobe(struct kprobe *p)
1126 {
1127 return 0;
1128 }
This page took 0.056678 seconds and 6 git commands to generate.