kprobes: support kretprobe blacklist
[deliverable/linux.git] / arch / x86 / kernel / kprobes_32.c
1 /*
2 * Kernel Probes (KProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2002, 2004
19 *
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
26 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
27 * <prasanna@in.ibm.com> added function-return probes.
28 */
29
30 #include <linux/kprobes.h>
31 #include <linux/ptrace.h>
32 #include <linux/preempt.h>
33 #include <linux/kdebug.h>
34 #include <asm/cacheflush.h>
35 #include <asm/desc.h>
36 #include <asm/uaccess.h>
37 #include <asm/alternative.h>
38
39 void jprobe_return_end(void);
40
41 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
42 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
43
44 struct kretprobe_blackpoint kretprobe_blacklist[] = {
45 {"__switch_to", }, /* This function switches only current task, but
46 doesn't switch kernel stack.*/
47 {NULL, NULL} /* Terminator */
48 };
49 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
50
51 /* insert a jmp code */
52 static __always_inline void set_jmp_op(void *from, void *to)
53 {
54 struct __arch_jmp_op {
55 char op;
56 long raddr;
57 } __attribute__((packed)) *jop;
58 jop = (struct __arch_jmp_op *)from;
59 jop->raddr = (long)(to) - ((long)(from) + 5);
60 jop->op = RELATIVEJUMP_INSTRUCTION;
61 }
62
63 /*
64 * returns non-zero if opcodes can be boosted.
65 */
66 static __always_inline int can_boost(kprobe_opcode_t *opcodes)
67 {
68 #define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf) \
69 (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
70 (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
71 (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
72 (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
73 << (row % 32))
74 /*
75 * Undefined/reserved opcodes, conditional jump, Opcode Extension
76 * Groups, and some special opcodes can not be boost.
77 */
78 static const unsigned long twobyte_is_boostable[256 / 32] = {
79 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
80 /* ------------------------------- */
81 W(0x00, 0,0,1,1,0,0,1,0,1,1,0,0,0,0,0,0)| /* 00 */
82 W(0x10, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 10 */
83 W(0x20, 1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0)| /* 20 */
84 W(0x30, 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 30 */
85 W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 40 */
86 W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 50 */
87 W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1)| /* 60 */
88 W(0x70, 0,0,0,0,1,1,1,1,0,0,0,0,0,0,1,1), /* 70 */
89 W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 80 */
90 W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1), /* 90 */
91 W(0xa0, 1,1,0,1,1,1,0,0,1,1,0,1,1,1,0,1)| /* a0 */
92 W(0xb0, 1,1,1,1,1,1,1,1,0,0,0,1,1,1,1,1), /* b0 */
93 W(0xc0, 1,1,0,0,0,0,0,0,1,1,1,1,1,1,1,1)| /* c0 */
94 W(0xd0, 0,1,1,1,0,1,0,0,1,1,0,1,1,1,0,1), /* d0 */
95 W(0xe0, 0,1,1,0,0,1,0,0,1,1,0,1,1,1,0,1)| /* e0 */
96 W(0xf0, 0,1,1,1,0,1,0,0,1,1,1,0,1,1,1,0) /* f0 */
97 /* ------------------------------- */
98 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
99 };
100 #undef W
101 kprobe_opcode_t opcode;
102 kprobe_opcode_t *orig_opcodes = opcodes;
103 retry:
104 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
105 return 0;
106 opcode = *(opcodes++);
107
108 /* 2nd-byte opcode */
109 if (opcode == 0x0f) {
110 if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
111 return 0;
112 return test_bit(*opcodes, twobyte_is_boostable);
113 }
114
115 switch (opcode & 0xf0) {
116 case 0x60:
117 if (0x63 < opcode && opcode < 0x67)
118 goto retry; /* prefixes */
119 /* can't boost Address-size override and bound */
120 return (opcode != 0x62 && opcode != 0x67);
121 case 0x70:
122 return 0; /* can't boost conditional jump */
123 case 0xc0:
124 /* can't boost software-interruptions */
125 return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
126 case 0xd0:
127 /* can boost AA* and XLAT */
128 return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
129 case 0xe0:
130 /* can boost in/out and absolute jmps */
131 return ((opcode & 0x04) || opcode == 0xea);
132 case 0xf0:
133 if ((opcode & 0x0c) == 0 && opcode != 0xf1)
134 goto retry; /* lock/rep(ne) prefix */
135 /* clear and set flags can be boost */
136 return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
137 default:
138 if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
139 goto retry; /* prefixes */
140 /* can't boost CS override and call */
141 return (opcode != 0x2e && opcode != 0x9a);
142 }
143 }
144
145 /*
146 * returns non-zero if opcode modifies the interrupt flag.
147 */
148 static int __kprobes is_IF_modifier(kprobe_opcode_t opcode)
149 {
150 switch (opcode) {
151 case 0xfa: /* cli */
152 case 0xfb: /* sti */
153 case 0xcf: /* iret/iretd */
154 case 0x9d: /* popf/popfd */
155 return 1;
156 }
157 return 0;
158 }
159
160 int __kprobes arch_prepare_kprobe(struct kprobe *p)
161 {
162 /* insn: must be on special executable page on i386. */
163 p->ainsn.insn = get_insn_slot();
164 if (!p->ainsn.insn)
165 return -ENOMEM;
166
167 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
168 p->opcode = *p->addr;
169 if (can_boost(p->addr)) {
170 p->ainsn.boostable = 0;
171 } else {
172 p->ainsn.boostable = -1;
173 }
174 return 0;
175 }
176
177 void __kprobes arch_arm_kprobe(struct kprobe *p)
178 {
179 text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
180 }
181
182 void __kprobes arch_disarm_kprobe(struct kprobe *p)
183 {
184 text_poke(p->addr, &p->opcode, 1);
185 }
186
187 void __kprobes arch_remove_kprobe(struct kprobe *p)
188 {
189 mutex_lock(&kprobe_mutex);
190 free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
191 mutex_unlock(&kprobe_mutex);
192 }
193
194 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
195 {
196 kcb->prev_kprobe.kp = kprobe_running();
197 kcb->prev_kprobe.status = kcb->kprobe_status;
198 kcb->prev_kprobe.old_eflags = kcb->kprobe_old_eflags;
199 kcb->prev_kprobe.saved_eflags = kcb->kprobe_saved_eflags;
200 }
201
202 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
203 {
204 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
205 kcb->kprobe_status = kcb->prev_kprobe.status;
206 kcb->kprobe_old_eflags = kcb->prev_kprobe.old_eflags;
207 kcb->kprobe_saved_eflags = kcb->prev_kprobe.saved_eflags;
208 }
209
210 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
211 struct kprobe_ctlblk *kcb)
212 {
213 __get_cpu_var(current_kprobe) = p;
214 kcb->kprobe_saved_eflags = kcb->kprobe_old_eflags
215 = (regs->eflags & (TF_MASK | IF_MASK));
216 if (is_IF_modifier(p->opcode))
217 kcb->kprobe_saved_eflags &= ~IF_MASK;
218 }
219
220 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
221 {
222 regs->eflags |= TF_MASK;
223 regs->eflags &= ~IF_MASK;
224 /*single step inline if the instruction is an int3*/
225 if (p->opcode == BREAKPOINT_INSTRUCTION)
226 regs->eip = (unsigned long)p->addr;
227 else
228 regs->eip = (unsigned long)p->ainsn.insn;
229 }
230
231 /* Called with kretprobe_lock held */
232 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
233 struct pt_regs *regs)
234 {
235 unsigned long *sara = (unsigned long *)&regs->esp;
236
237 ri->ret_addr = (kprobe_opcode_t *) *sara;
238
239 /* Replace the return addr with trampoline addr */
240 *sara = (unsigned long) &kretprobe_trampoline;
241 }
242
243 /*
244 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
245 * remain disabled thorough out this function.
246 */
247 static int __kprobes kprobe_handler(struct pt_regs *regs)
248 {
249 struct kprobe *p;
250 int ret = 0;
251 kprobe_opcode_t *addr;
252 struct kprobe_ctlblk *kcb;
253
254 addr = (kprobe_opcode_t *)(regs->eip - sizeof(kprobe_opcode_t));
255
256 /*
257 * We don't want to be preempted for the entire
258 * duration of kprobe processing
259 */
260 preempt_disable();
261 kcb = get_kprobe_ctlblk();
262
263 /* Check we're not actually recursing */
264 if (kprobe_running()) {
265 p = get_kprobe(addr);
266 if (p) {
267 if (kcb->kprobe_status == KPROBE_HIT_SS &&
268 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
269 regs->eflags &= ~TF_MASK;
270 regs->eflags |= kcb->kprobe_saved_eflags;
271 goto no_kprobe;
272 }
273 /* We have reentered the kprobe_handler(), since
274 * another probe was hit while within the handler.
275 * We here save the original kprobes variables and
276 * just single step on the instruction of the new probe
277 * without calling any user handlers.
278 */
279 save_previous_kprobe(kcb);
280 set_current_kprobe(p, regs, kcb);
281 kprobes_inc_nmissed_count(p);
282 prepare_singlestep(p, regs);
283 kcb->kprobe_status = KPROBE_REENTER;
284 return 1;
285 } else {
286 if (*addr != BREAKPOINT_INSTRUCTION) {
287 /* The breakpoint instruction was removed by
288 * another cpu right after we hit, no further
289 * handling of this interrupt is appropriate
290 */
291 regs->eip -= sizeof(kprobe_opcode_t);
292 ret = 1;
293 goto no_kprobe;
294 }
295 p = __get_cpu_var(current_kprobe);
296 if (p->break_handler && p->break_handler(p, regs)) {
297 goto ss_probe;
298 }
299 }
300 goto no_kprobe;
301 }
302
303 p = get_kprobe(addr);
304 if (!p) {
305 if (*addr != BREAKPOINT_INSTRUCTION) {
306 /*
307 * The breakpoint instruction was removed right
308 * after we hit it. Another cpu has removed
309 * either a probepoint or a debugger breakpoint
310 * at this address. In either case, no further
311 * handling of this interrupt is appropriate.
312 * Back up over the (now missing) int3 and run
313 * the original instruction.
314 */
315 regs->eip -= sizeof(kprobe_opcode_t);
316 ret = 1;
317 }
318 /* Not one of ours: let kernel handle it */
319 goto no_kprobe;
320 }
321
322 set_current_kprobe(p, regs, kcb);
323 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
324
325 if (p->pre_handler && p->pre_handler(p, regs))
326 /* handler has already set things up, so skip ss setup */
327 return 1;
328
329 ss_probe:
330 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PM)
331 if (p->ainsn.boostable == 1 && !p->post_handler){
332 /* Boost up -- we can execute copied instructions directly */
333 reset_current_kprobe();
334 regs->eip = (unsigned long)p->ainsn.insn;
335 preempt_enable_no_resched();
336 return 1;
337 }
338 #endif
339 prepare_singlestep(p, regs);
340 kcb->kprobe_status = KPROBE_HIT_SS;
341 return 1;
342
343 no_kprobe:
344 preempt_enable_no_resched();
345 return ret;
346 }
347
348 /*
349 * For function-return probes, init_kprobes() establishes a probepoint
350 * here. When a retprobed function returns, this probe is hit and
351 * trampoline_probe_handler() runs, calling the kretprobe's handler.
352 */
353 void __kprobes kretprobe_trampoline_holder(void)
354 {
355 asm volatile ( ".global kretprobe_trampoline\n"
356 "kretprobe_trampoline: \n"
357 " pushf\n"
358 /* skip cs, eip, orig_eax */
359 " subl $12, %esp\n"
360 " pushl %fs\n"
361 " pushl %ds\n"
362 " pushl %es\n"
363 " pushl %eax\n"
364 " pushl %ebp\n"
365 " pushl %edi\n"
366 " pushl %esi\n"
367 " pushl %edx\n"
368 " pushl %ecx\n"
369 " pushl %ebx\n"
370 " movl %esp, %eax\n"
371 " call trampoline_handler\n"
372 /* move eflags to cs */
373 " movl 52(%esp), %edx\n"
374 " movl %edx, 48(%esp)\n"
375 /* save true return address on eflags */
376 " movl %eax, 52(%esp)\n"
377 " popl %ebx\n"
378 " popl %ecx\n"
379 " popl %edx\n"
380 " popl %esi\n"
381 " popl %edi\n"
382 " popl %ebp\n"
383 " popl %eax\n"
384 /* skip eip, orig_eax, es, ds, fs */
385 " addl $20, %esp\n"
386 " popf\n"
387 " ret\n");
388 }
389
390 /*
391 * Called from kretprobe_trampoline
392 */
393 fastcall void *__kprobes trampoline_handler(struct pt_regs *regs)
394 {
395 struct kretprobe_instance *ri = NULL;
396 struct hlist_head *head, empty_rp;
397 struct hlist_node *node, *tmp;
398 unsigned long flags, orig_ret_address = 0;
399 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
400
401 INIT_HLIST_HEAD(&empty_rp);
402 spin_lock_irqsave(&kretprobe_lock, flags);
403 head = kretprobe_inst_table_head(current);
404 /* fixup registers */
405 regs->xcs = __KERNEL_CS | get_kernel_rpl();
406 regs->eip = trampoline_address;
407 regs->orig_eax = 0xffffffff;
408
409 /*
410 * It is possible to have multiple instances associated with a given
411 * task either because an multiple functions in the call path
412 * have a return probe installed on them, and/or more then one return
413 * return probe was registered for a target function.
414 *
415 * We can handle this because:
416 * - instances are always inserted at the head of the list
417 * - when multiple return probes are registered for the same
418 * function, the first instance's ret_addr will point to the
419 * real return address, and all the rest will point to
420 * kretprobe_trampoline
421 */
422 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
423 if (ri->task != current)
424 /* another task is sharing our hash bucket */
425 continue;
426
427 if (ri->rp && ri->rp->handler){
428 __get_cpu_var(current_kprobe) = &ri->rp->kp;
429 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
430 ri->rp->handler(ri, regs);
431 __get_cpu_var(current_kprobe) = NULL;
432 }
433
434 orig_ret_address = (unsigned long)ri->ret_addr;
435 recycle_rp_inst(ri, &empty_rp);
436
437 if (orig_ret_address != trampoline_address)
438 /*
439 * This is the real return address. Any other
440 * instances associated with this task are for
441 * other calls deeper on the call stack
442 */
443 break;
444 }
445
446 kretprobe_assert(ri, orig_ret_address, trampoline_address);
447 spin_unlock_irqrestore(&kretprobe_lock, flags);
448
449 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
450 hlist_del(&ri->hlist);
451 kfree(ri);
452 }
453 return (void*)orig_ret_address;
454 }
455
456 /*
457 * Called after single-stepping. p->addr is the address of the
458 * instruction whose first byte has been replaced by the "int 3"
459 * instruction. To avoid the SMP problems that can occur when we
460 * temporarily put back the original opcode to single-step, we
461 * single-stepped a copy of the instruction. The address of this
462 * copy is p->ainsn.insn.
463 *
464 * This function prepares to return from the post-single-step
465 * interrupt. We have to fix up the stack as follows:
466 *
467 * 0) Except in the case of absolute or indirect jump or call instructions,
468 * the new eip is relative to the copied instruction. We need to make
469 * it relative to the original instruction.
470 *
471 * 1) If the single-stepped instruction was pushfl, then the TF and IF
472 * flags are set in the just-pushed eflags, and may need to be cleared.
473 *
474 * 2) If the single-stepped instruction was a call, the return address
475 * that is atop the stack is the address following the copied instruction.
476 * We need to make it the address following the original instruction.
477 *
478 * This function also checks instruction size for preparing direct execution.
479 */
480 static void __kprobes resume_execution(struct kprobe *p,
481 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
482 {
483 unsigned long *tos = (unsigned long *)&regs->esp;
484 unsigned long copy_eip = (unsigned long)p->ainsn.insn;
485 unsigned long orig_eip = (unsigned long)p->addr;
486
487 regs->eflags &= ~TF_MASK;
488 switch (p->ainsn.insn[0]) {
489 case 0x9c: /* pushfl */
490 *tos &= ~(TF_MASK | IF_MASK);
491 *tos |= kcb->kprobe_old_eflags;
492 break;
493 case 0xc2: /* iret/ret/lret */
494 case 0xc3:
495 case 0xca:
496 case 0xcb:
497 case 0xcf:
498 case 0xea: /* jmp absolute -- eip is correct */
499 /* eip is already adjusted, no more changes required */
500 p->ainsn.boostable = 1;
501 goto no_change;
502 case 0xe8: /* call relative - Fix return addr */
503 *tos = orig_eip + (*tos - copy_eip);
504 break;
505 case 0x9a: /* call absolute -- same as call absolute, indirect */
506 *tos = orig_eip + (*tos - copy_eip);
507 goto no_change;
508 case 0xff:
509 if ((p->ainsn.insn[1] & 0x30) == 0x10) {
510 /*
511 * call absolute, indirect
512 * Fix return addr; eip is correct.
513 * But this is not boostable
514 */
515 *tos = orig_eip + (*tos - copy_eip);
516 goto no_change;
517 } else if (((p->ainsn.insn[1] & 0x31) == 0x20) || /* jmp near, absolute indirect */
518 ((p->ainsn.insn[1] & 0x31) == 0x21)) { /* jmp far, absolute indirect */
519 /* eip is correct. And this is boostable */
520 p->ainsn.boostable = 1;
521 goto no_change;
522 }
523 default:
524 break;
525 }
526
527 if (p->ainsn.boostable == 0) {
528 if ((regs->eip > copy_eip) &&
529 (regs->eip - copy_eip) + 5 < MAX_INSN_SIZE) {
530 /*
531 * These instructions can be executed directly if it
532 * jumps back to correct address.
533 */
534 set_jmp_op((void *)regs->eip,
535 (void *)orig_eip + (regs->eip - copy_eip));
536 p->ainsn.boostable = 1;
537 } else {
538 p->ainsn.boostable = -1;
539 }
540 }
541
542 regs->eip = orig_eip + (regs->eip - copy_eip);
543
544 no_change:
545 return;
546 }
547
548 /*
549 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
550 * remain disabled thoroughout this function.
551 */
552 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
553 {
554 struct kprobe *cur = kprobe_running();
555 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
556
557 if (!cur)
558 return 0;
559
560 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
561 kcb->kprobe_status = KPROBE_HIT_SSDONE;
562 cur->post_handler(cur, regs, 0);
563 }
564
565 resume_execution(cur, regs, kcb);
566 regs->eflags |= kcb->kprobe_saved_eflags;
567 #ifdef CONFIG_TRACE_IRQFLAGS_SUPPORT
568 if (raw_irqs_disabled_flags(regs->eflags))
569 trace_hardirqs_off();
570 else
571 trace_hardirqs_on();
572 #endif
573
574 /*Restore back the original saved kprobes variables and continue. */
575 if (kcb->kprobe_status == KPROBE_REENTER) {
576 restore_previous_kprobe(kcb);
577 goto out;
578 }
579 reset_current_kprobe();
580 out:
581 preempt_enable_no_resched();
582
583 /*
584 * if somebody else is singlestepping across a probe point, eflags
585 * will have TF set, in which case, continue the remaining processing
586 * of do_debug, as if this is not a probe hit.
587 */
588 if (regs->eflags & TF_MASK)
589 return 0;
590
591 return 1;
592 }
593
594 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
595 {
596 struct kprobe *cur = kprobe_running();
597 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
598
599 switch(kcb->kprobe_status) {
600 case KPROBE_HIT_SS:
601 case KPROBE_REENTER:
602 /*
603 * We are here because the instruction being single
604 * stepped caused a page fault. We reset the current
605 * kprobe and the eip points back to the probe address
606 * and allow the page fault handler to continue as a
607 * normal page fault.
608 */
609 regs->eip = (unsigned long)cur->addr;
610 regs->eflags |= kcb->kprobe_old_eflags;
611 if (kcb->kprobe_status == KPROBE_REENTER)
612 restore_previous_kprobe(kcb);
613 else
614 reset_current_kprobe();
615 preempt_enable_no_resched();
616 break;
617 case KPROBE_HIT_ACTIVE:
618 case KPROBE_HIT_SSDONE:
619 /*
620 * We increment the nmissed count for accounting,
621 * we can also use npre/npostfault count for accouting
622 * these specific fault cases.
623 */
624 kprobes_inc_nmissed_count(cur);
625
626 /*
627 * We come here because instructions in the pre/post
628 * handler caused the page_fault, this could happen
629 * if handler tries to access user space by
630 * copy_from_user(), get_user() etc. Let the
631 * user-specified handler try to fix it first.
632 */
633 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
634 return 1;
635
636 /*
637 * In case the user-specified fault handler returned
638 * zero, try to fix up.
639 */
640 if (fixup_exception(regs))
641 return 1;
642
643 /*
644 * fixup_exception() could not handle it,
645 * Let do_page_fault() fix it.
646 */
647 break;
648 default:
649 break;
650 }
651 return 0;
652 }
653
654 /*
655 * Wrapper routine to for handling exceptions.
656 */
657 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
658 unsigned long val, void *data)
659 {
660 struct die_args *args = (struct die_args *)data;
661 int ret = NOTIFY_DONE;
662
663 if (args->regs && user_mode_vm(args->regs))
664 return ret;
665
666 switch (val) {
667 case DIE_INT3:
668 if (kprobe_handler(args->regs))
669 ret = NOTIFY_STOP;
670 break;
671 case DIE_DEBUG:
672 if (post_kprobe_handler(args->regs))
673 ret = NOTIFY_STOP;
674 break;
675 case DIE_GPF:
676 /* kprobe_running() needs smp_processor_id() */
677 preempt_disable();
678 if (kprobe_running() &&
679 kprobe_fault_handler(args->regs, args->trapnr))
680 ret = NOTIFY_STOP;
681 preempt_enable();
682 break;
683 default:
684 break;
685 }
686 return ret;
687 }
688
689 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
690 {
691 struct jprobe *jp = container_of(p, struct jprobe, kp);
692 unsigned long addr;
693 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
694
695 kcb->jprobe_saved_regs = *regs;
696 kcb->jprobe_saved_esp = &regs->esp;
697 addr = (unsigned long)(kcb->jprobe_saved_esp);
698
699 /*
700 * TBD: As Linus pointed out, gcc assumes that the callee
701 * owns the argument space and could overwrite it, e.g.
702 * tailcall optimization. So, to be absolutely safe
703 * we also save and restore enough stack bytes to cover
704 * the argument area.
705 */
706 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
707 MIN_STACK_SIZE(addr));
708 regs->eflags &= ~IF_MASK;
709 trace_hardirqs_off();
710 regs->eip = (unsigned long)(jp->entry);
711 return 1;
712 }
713
714 void __kprobes jprobe_return(void)
715 {
716 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
717
718 asm volatile (" xchgl %%ebx,%%esp \n"
719 " int3 \n"
720 " .globl jprobe_return_end \n"
721 " jprobe_return_end: \n"
722 " nop \n"::"b"
723 (kcb->jprobe_saved_esp):"memory");
724 }
725
726 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
727 {
728 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
729 u8 *addr = (u8 *) (regs->eip - 1);
730 unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_esp);
731 struct jprobe *jp = container_of(p, struct jprobe, kp);
732
733 if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
734 if (&regs->esp != kcb->jprobe_saved_esp) {
735 struct pt_regs *saved_regs =
736 container_of(kcb->jprobe_saved_esp,
737 struct pt_regs, esp);
738 printk("current esp %p does not match saved esp %p\n",
739 &regs->esp, kcb->jprobe_saved_esp);
740 printk("Saved registers for jprobe %p\n", jp);
741 show_registers(saved_regs);
742 printk("Current registers\n");
743 show_registers(regs);
744 BUG();
745 }
746 *regs = kcb->jprobe_saved_regs;
747 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
748 MIN_STACK_SIZE(stack_addr));
749 preempt_enable_no_resched();
750 return 1;
751 }
752 return 0;
753 }
754
755 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
756 {
757 return 0;
758 }
759
760 int __init arch_init_kprobes(void)
761 {
762 return 0;
763 }
This page took 0.062582 seconds and 5 git commands to generate.