Merge master.kernel.org:/home/rmk/linux-2.6-arm
[deliverable/linux.git] / arch / x86 / kernel / process.c
1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <linux/user-return-notifier.h>
13 #include <linux/dmi.h>
14 #include <linux/utsname.h>
15 #include <trace/events/power.h>
16 #include <linux/hw_breakpoint.h>
17 #include <asm/system.h>
18 #include <asm/apic.h>
19 #include <asm/syscalls.h>
20 #include <asm/idle.h>
21 #include <asm/uaccess.h>
22 #include <asm/i387.h>
23 #include <asm/ds.h>
24 #include <asm/debugreg.h>
25
26 unsigned long idle_halt;
27 EXPORT_SYMBOL(idle_halt);
28 unsigned long idle_nomwait;
29 EXPORT_SYMBOL(idle_nomwait);
30
31 struct kmem_cache *task_xstate_cachep;
32
33 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
34 {
35 *dst = *src;
36 if (src->thread.xstate) {
37 dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep,
38 GFP_KERNEL);
39 if (!dst->thread.xstate)
40 return -ENOMEM;
41 WARN_ON((unsigned long)dst->thread.xstate & 15);
42 memcpy(dst->thread.xstate, src->thread.xstate, xstate_size);
43 }
44 return 0;
45 }
46
47 void free_thread_xstate(struct task_struct *tsk)
48 {
49 if (tsk->thread.xstate) {
50 kmem_cache_free(task_xstate_cachep, tsk->thread.xstate);
51 tsk->thread.xstate = NULL;
52 }
53
54 WARN(tsk->thread.ds_ctx, "leaking DS context\n");
55 }
56
57 void free_thread_info(struct thread_info *ti)
58 {
59 free_thread_xstate(ti->task);
60 free_pages((unsigned long)ti, get_order(THREAD_SIZE));
61 }
62
63 void arch_task_cache_init(void)
64 {
65 task_xstate_cachep =
66 kmem_cache_create("task_xstate", xstate_size,
67 __alignof__(union thread_xstate),
68 SLAB_PANIC | SLAB_NOTRACK, NULL);
69 }
70
71 /*
72 * Free current thread data structures etc..
73 */
74 void exit_thread(void)
75 {
76 struct task_struct *me = current;
77 struct thread_struct *t = &me->thread;
78 unsigned long *bp = t->io_bitmap_ptr;
79
80 if (bp) {
81 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
82
83 t->io_bitmap_ptr = NULL;
84 clear_thread_flag(TIF_IO_BITMAP);
85 /*
86 * Careful, clear this in the TSS too:
87 */
88 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
89 t->io_bitmap_max = 0;
90 put_cpu();
91 kfree(bp);
92 }
93 }
94
95 void show_regs_common(void)
96 {
97 const char *board, *product;
98
99 board = dmi_get_system_info(DMI_BOARD_NAME);
100 if (!board)
101 board = "";
102 product = dmi_get_system_info(DMI_PRODUCT_NAME);
103 if (!product)
104 product = "";
105
106 printk(KERN_CONT "\n");
107 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s/%s\n",
108 current->pid, current->comm, print_tainted(),
109 init_utsname()->release,
110 (int)strcspn(init_utsname()->version, " "),
111 init_utsname()->version, board, product);
112 }
113
114 void flush_thread(void)
115 {
116 struct task_struct *tsk = current;
117
118 #ifdef CONFIG_X86_64
119 if (test_tsk_thread_flag(tsk, TIF_ABI_PENDING)) {
120 clear_tsk_thread_flag(tsk, TIF_ABI_PENDING);
121 if (test_tsk_thread_flag(tsk, TIF_IA32)) {
122 clear_tsk_thread_flag(tsk, TIF_IA32);
123 } else {
124 set_tsk_thread_flag(tsk, TIF_IA32);
125 current_thread_info()->status |= TS_COMPAT;
126 }
127 }
128 #endif
129
130 flush_ptrace_hw_breakpoint(tsk);
131 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
132 /*
133 * Forget coprocessor state..
134 */
135 tsk->fpu_counter = 0;
136 clear_fpu(tsk);
137 clear_used_math();
138 }
139
140 static void hard_disable_TSC(void)
141 {
142 write_cr4(read_cr4() | X86_CR4_TSD);
143 }
144
145 void disable_TSC(void)
146 {
147 preempt_disable();
148 if (!test_and_set_thread_flag(TIF_NOTSC))
149 /*
150 * Must flip the CPU state synchronously with
151 * TIF_NOTSC in the current running context.
152 */
153 hard_disable_TSC();
154 preempt_enable();
155 }
156
157 static void hard_enable_TSC(void)
158 {
159 write_cr4(read_cr4() & ~X86_CR4_TSD);
160 }
161
162 static void enable_TSC(void)
163 {
164 preempt_disable();
165 if (test_and_clear_thread_flag(TIF_NOTSC))
166 /*
167 * Must flip the CPU state synchronously with
168 * TIF_NOTSC in the current running context.
169 */
170 hard_enable_TSC();
171 preempt_enable();
172 }
173
174 int get_tsc_mode(unsigned long adr)
175 {
176 unsigned int val;
177
178 if (test_thread_flag(TIF_NOTSC))
179 val = PR_TSC_SIGSEGV;
180 else
181 val = PR_TSC_ENABLE;
182
183 return put_user(val, (unsigned int __user *)adr);
184 }
185
186 int set_tsc_mode(unsigned int val)
187 {
188 if (val == PR_TSC_SIGSEGV)
189 disable_TSC();
190 else if (val == PR_TSC_ENABLE)
191 enable_TSC();
192 else
193 return -EINVAL;
194
195 return 0;
196 }
197
198 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
199 struct tss_struct *tss)
200 {
201 struct thread_struct *prev, *next;
202
203 prev = &prev_p->thread;
204 next = &next_p->thread;
205
206 if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) ||
207 test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR))
208 ds_switch_to(prev_p, next_p);
209 else if (next->debugctlmsr != prev->debugctlmsr)
210 update_debugctlmsr(next->debugctlmsr);
211
212 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
213 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
214 /* prev and next are different */
215 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
216 hard_disable_TSC();
217 else
218 hard_enable_TSC();
219 }
220
221 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
222 /*
223 * Copy the relevant range of the IO bitmap.
224 * Normally this is 128 bytes or less:
225 */
226 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
227 max(prev->io_bitmap_max, next->io_bitmap_max));
228 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
229 /*
230 * Clear any possible leftover bits:
231 */
232 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
233 }
234 propagate_user_return_notify(prev_p, next_p);
235 }
236
237 int sys_fork(struct pt_regs *regs)
238 {
239 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
240 }
241
242 /*
243 * This is trivial, and on the face of it looks like it
244 * could equally well be done in user mode.
245 *
246 * Not so, for quite unobvious reasons - register pressure.
247 * In user mode vfork() cannot have a stack frame, and if
248 * done by calling the "clone()" system call directly, you
249 * do not have enough call-clobbered registers to hold all
250 * the information you need.
251 */
252 int sys_vfork(struct pt_regs *regs)
253 {
254 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
255 NULL, NULL);
256 }
257
258 long
259 sys_clone(unsigned long clone_flags, unsigned long newsp,
260 void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
261 {
262 if (!newsp)
263 newsp = regs->sp;
264 return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
265 }
266
267 /*
268 * This gets run with %si containing the
269 * function to call, and %di containing
270 * the "args".
271 */
272 extern void kernel_thread_helper(void);
273
274 /*
275 * Create a kernel thread
276 */
277 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
278 {
279 struct pt_regs regs;
280
281 memset(&regs, 0, sizeof(regs));
282
283 regs.si = (unsigned long) fn;
284 regs.di = (unsigned long) arg;
285
286 #ifdef CONFIG_X86_32
287 regs.ds = __USER_DS;
288 regs.es = __USER_DS;
289 regs.fs = __KERNEL_PERCPU;
290 regs.gs = __KERNEL_STACK_CANARY;
291 #else
292 regs.ss = __KERNEL_DS;
293 #endif
294
295 regs.orig_ax = -1;
296 regs.ip = (unsigned long) kernel_thread_helper;
297 regs.cs = __KERNEL_CS | get_kernel_rpl();
298 regs.flags = X86_EFLAGS_IF | 0x2;
299
300 /* Ok, create the new process.. */
301 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
302 }
303 EXPORT_SYMBOL(kernel_thread);
304
305 /*
306 * sys_execve() executes a new program.
307 */
308 long sys_execve(char __user *name, char __user * __user *argv,
309 char __user * __user *envp, struct pt_regs *regs)
310 {
311 long error;
312 char *filename;
313
314 filename = getname(name);
315 error = PTR_ERR(filename);
316 if (IS_ERR(filename))
317 return error;
318 error = do_execve(filename, argv, envp, regs);
319
320 #ifdef CONFIG_X86_32
321 if (error == 0) {
322 /* Make sure we don't return using sysenter.. */
323 set_thread_flag(TIF_IRET);
324 }
325 #endif
326
327 putname(filename);
328 return error;
329 }
330
331 /*
332 * Idle related variables and functions
333 */
334 unsigned long boot_option_idle_override = 0;
335 EXPORT_SYMBOL(boot_option_idle_override);
336
337 /*
338 * Powermanagement idle function, if any..
339 */
340 void (*pm_idle)(void);
341 EXPORT_SYMBOL(pm_idle);
342
343 #ifdef CONFIG_X86_32
344 /*
345 * This halt magic was a workaround for ancient floppy DMA
346 * wreckage. It should be safe to remove.
347 */
348 static int hlt_counter;
349 void disable_hlt(void)
350 {
351 hlt_counter++;
352 }
353 EXPORT_SYMBOL(disable_hlt);
354
355 void enable_hlt(void)
356 {
357 hlt_counter--;
358 }
359 EXPORT_SYMBOL(enable_hlt);
360
361 static inline int hlt_use_halt(void)
362 {
363 return (!hlt_counter && boot_cpu_data.hlt_works_ok);
364 }
365 #else
366 static inline int hlt_use_halt(void)
367 {
368 return 1;
369 }
370 #endif
371
372 /*
373 * We use this if we don't have any better
374 * idle routine..
375 */
376 void default_idle(void)
377 {
378 if (hlt_use_halt()) {
379 trace_power_start(POWER_CSTATE, 1);
380 current_thread_info()->status &= ~TS_POLLING;
381 /*
382 * TS_POLLING-cleared state must be visible before we
383 * test NEED_RESCHED:
384 */
385 smp_mb();
386
387 if (!need_resched())
388 safe_halt(); /* enables interrupts racelessly */
389 else
390 local_irq_enable();
391 current_thread_info()->status |= TS_POLLING;
392 } else {
393 local_irq_enable();
394 /* loop is done by the caller */
395 cpu_relax();
396 }
397 }
398 #ifdef CONFIG_APM_MODULE
399 EXPORT_SYMBOL(default_idle);
400 #endif
401
402 void stop_this_cpu(void *dummy)
403 {
404 local_irq_disable();
405 /*
406 * Remove this CPU:
407 */
408 set_cpu_online(smp_processor_id(), false);
409 disable_local_APIC();
410
411 for (;;) {
412 if (hlt_works(smp_processor_id()))
413 halt();
414 }
415 }
416
417 static void do_nothing(void *unused)
418 {
419 }
420
421 /*
422 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
423 * pm_idle and update to new pm_idle value. Required while changing pm_idle
424 * handler on SMP systems.
425 *
426 * Caller must have changed pm_idle to the new value before the call. Old
427 * pm_idle value will not be used by any CPU after the return of this function.
428 */
429 void cpu_idle_wait(void)
430 {
431 smp_mb();
432 /* kick all the CPUs so that they exit out of pm_idle */
433 smp_call_function(do_nothing, NULL, 1);
434 }
435 EXPORT_SYMBOL_GPL(cpu_idle_wait);
436
437 /*
438 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
439 * which can obviate IPI to trigger checking of need_resched.
440 * We execute MONITOR against need_resched and enter optimized wait state
441 * through MWAIT. Whenever someone changes need_resched, we would be woken
442 * up from MWAIT (without an IPI).
443 *
444 * New with Core Duo processors, MWAIT can take some hints based on CPU
445 * capability.
446 */
447 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
448 {
449 trace_power_start(POWER_CSTATE, (ax>>4)+1);
450 if (!need_resched()) {
451 if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
452 clflush((void *)&current_thread_info()->flags);
453
454 __monitor((void *)&current_thread_info()->flags, 0, 0);
455 smp_mb();
456 if (!need_resched())
457 __mwait(ax, cx);
458 }
459 }
460
461 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
462 static void mwait_idle(void)
463 {
464 if (!need_resched()) {
465 trace_power_start(POWER_CSTATE, 1);
466 if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
467 clflush((void *)&current_thread_info()->flags);
468
469 __monitor((void *)&current_thread_info()->flags, 0, 0);
470 smp_mb();
471 if (!need_resched())
472 __sti_mwait(0, 0);
473 else
474 local_irq_enable();
475 } else
476 local_irq_enable();
477 }
478
479 /*
480 * On SMP it's slightly faster (but much more power-consuming!)
481 * to poll the ->work.need_resched flag instead of waiting for the
482 * cross-CPU IPI to arrive. Use this option with caution.
483 */
484 static void poll_idle(void)
485 {
486 trace_power_start(POWER_CSTATE, 0);
487 local_irq_enable();
488 while (!need_resched())
489 cpu_relax();
490 trace_power_end(0);
491 }
492
493 /*
494 * mwait selection logic:
495 *
496 * It depends on the CPU. For AMD CPUs that support MWAIT this is
497 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
498 * then depend on a clock divisor and current Pstate of the core. If
499 * all cores of a processor are in halt state (C1) the processor can
500 * enter the C1E (C1 enhanced) state. If mwait is used this will never
501 * happen.
502 *
503 * idle=mwait overrides this decision and forces the usage of mwait.
504 */
505 static int __cpuinitdata force_mwait;
506
507 #define MWAIT_INFO 0x05
508 #define MWAIT_ECX_EXTENDED_INFO 0x01
509 #define MWAIT_EDX_C1 0xf0
510
511 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
512 {
513 u32 eax, ebx, ecx, edx;
514
515 if (force_mwait)
516 return 1;
517
518 if (c->cpuid_level < MWAIT_INFO)
519 return 0;
520
521 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
522 /* Check, whether EDX has extended info about MWAIT */
523 if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
524 return 1;
525
526 /*
527 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
528 * C1 supports MWAIT
529 */
530 return (edx & MWAIT_EDX_C1);
531 }
532
533 /*
534 * Check for AMD CPUs, which have potentially C1E support
535 */
536 static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c)
537 {
538 if (c->x86_vendor != X86_VENDOR_AMD)
539 return 0;
540
541 if (c->x86 < 0x0F)
542 return 0;
543
544 /* Family 0x0f models < rev F do not have C1E */
545 if (c->x86 == 0x0f && c->x86_model < 0x40)
546 return 0;
547
548 return 1;
549 }
550
551 static cpumask_var_t c1e_mask;
552 static int c1e_detected;
553
554 void c1e_remove_cpu(int cpu)
555 {
556 if (c1e_mask != NULL)
557 cpumask_clear_cpu(cpu, c1e_mask);
558 }
559
560 /*
561 * C1E aware idle routine. We check for C1E active in the interrupt
562 * pending message MSR. If we detect C1E, then we handle it the same
563 * way as C3 power states (local apic timer and TSC stop)
564 */
565 static void c1e_idle(void)
566 {
567 if (need_resched())
568 return;
569
570 if (!c1e_detected) {
571 u32 lo, hi;
572
573 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
574 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
575 c1e_detected = 1;
576 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
577 mark_tsc_unstable("TSC halt in AMD C1E");
578 printk(KERN_INFO "System has AMD C1E enabled\n");
579 set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E);
580 }
581 }
582
583 if (c1e_detected) {
584 int cpu = smp_processor_id();
585
586 if (!cpumask_test_cpu(cpu, c1e_mask)) {
587 cpumask_set_cpu(cpu, c1e_mask);
588 /*
589 * Force broadcast so ACPI can not interfere.
590 */
591 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
592 &cpu);
593 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
594 cpu);
595 }
596 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
597
598 default_idle();
599
600 /*
601 * The switch back from broadcast mode needs to be
602 * called with interrupts disabled.
603 */
604 local_irq_disable();
605 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
606 local_irq_enable();
607 } else
608 default_idle();
609 }
610
611 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
612 {
613 #ifdef CONFIG_SMP
614 if (pm_idle == poll_idle && smp_num_siblings > 1) {
615 printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
616 " performance may degrade.\n");
617 }
618 #endif
619 if (pm_idle)
620 return;
621
622 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
623 /*
624 * One CPU supports mwait => All CPUs supports mwait
625 */
626 printk(KERN_INFO "using mwait in idle threads.\n");
627 pm_idle = mwait_idle;
628 } else if (check_c1e_idle(c)) {
629 printk(KERN_INFO "using C1E aware idle routine\n");
630 pm_idle = c1e_idle;
631 } else
632 pm_idle = default_idle;
633 }
634
635 void __init init_c1e_mask(void)
636 {
637 /* If we're using c1e_idle, we need to allocate c1e_mask. */
638 if (pm_idle == c1e_idle)
639 zalloc_cpumask_var(&c1e_mask, GFP_KERNEL);
640 }
641
642 static int __init idle_setup(char *str)
643 {
644 if (!str)
645 return -EINVAL;
646
647 if (!strcmp(str, "poll")) {
648 printk("using polling idle threads.\n");
649 pm_idle = poll_idle;
650 } else if (!strcmp(str, "mwait"))
651 force_mwait = 1;
652 else if (!strcmp(str, "halt")) {
653 /*
654 * When the boot option of idle=halt is added, halt is
655 * forced to be used for CPU idle. In such case CPU C2/C3
656 * won't be used again.
657 * To continue to load the CPU idle driver, don't touch
658 * the boot_option_idle_override.
659 */
660 pm_idle = default_idle;
661 idle_halt = 1;
662 return 0;
663 } else if (!strcmp(str, "nomwait")) {
664 /*
665 * If the boot option of "idle=nomwait" is added,
666 * it means that mwait will be disabled for CPU C2/C3
667 * states. In such case it won't touch the variable
668 * of boot_option_idle_override.
669 */
670 idle_nomwait = 1;
671 return 0;
672 } else
673 return -1;
674
675 boot_option_idle_override = 1;
676 return 0;
677 }
678 early_param("idle", idle_setup);
679
680 unsigned long arch_align_stack(unsigned long sp)
681 {
682 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
683 sp -= get_random_int() % 8192;
684 return sp & ~0xf;
685 }
686
687 unsigned long arch_randomize_brk(struct mm_struct *mm)
688 {
689 unsigned long range_end = mm->brk + 0x02000000;
690 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
691 }
692
This page took 0.060657 seconds and 5 git commands to generate.