cpumask: use zalloc_cpumask_var() where possible
[deliverable/linux.git] / arch / x86 / kernel / process.c
1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <trace/events/power.h>
13 #include <asm/system.h>
14 #include <asm/apic.h>
15 #include <asm/syscalls.h>
16 #include <asm/idle.h>
17 #include <asm/uaccess.h>
18 #include <asm/i387.h>
19 #include <asm/ds.h>
20
21 unsigned long idle_halt;
22 EXPORT_SYMBOL(idle_halt);
23 unsigned long idle_nomwait;
24 EXPORT_SYMBOL(idle_nomwait);
25
26 struct kmem_cache *task_xstate_cachep;
27
28 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
29 {
30 *dst = *src;
31 if (src->thread.xstate) {
32 dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep,
33 GFP_KERNEL);
34 if (!dst->thread.xstate)
35 return -ENOMEM;
36 WARN_ON((unsigned long)dst->thread.xstate & 15);
37 memcpy(dst->thread.xstate, src->thread.xstate, xstate_size);
38 }
39 return 0;
40 }
41
42 void free_thread_xstate(struct task_struct *tsk)
43 {
44 if (tsk->thread.xstate) {
45 kmem_cache_free(task_xstate_cachep, tsk->thread.xstate);
46 tsk->thread.xstate = NULL;
47 }
48
49 WARN(tsk->thread.ds_ctx, "leaking DS context\n");
50 }
51
52 void free_thread_info(struct thread_info *ti)
53 {
54 free_thread_xstate(ti->task);
55 free_pages((unsigned long)ti, get_order(THREAD_SIZE));
56 }
57
58 void arch_task_cache_init(void)
59 {
60 task_xstate_cachep =
61 kmem_cache_create("task_xstate", xstate_size,
62 __alignof__(union thread_xstate),
63 SLAB_PANIC | SLAB_NOTRACK, NULL);
64 }
65
66 /*
67 * Free current thread data structures etc..
68 */
69 void exit_thread(void)
70 {
71 struct task_struct *me = current;
72 struct thread_struct *t = &me->thread;
73 unsigned long *bp = t->io_bitmap_ptr;
74
75 if (bp) {
76 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
77
78 t->io_bitmap_ptr = NULL;
79 clear_thread_flag(TIF_IO_BITMAP);
80 /*
81 * Careful, clear this in the TSS too:
82 */
83 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
84 t->io_bitmap_max = 0;
85 put_cpu();
86 kfree(bp);
87 }
88 }
89
90 void flush_thread(void)
91 {
92 struct task_struct *tsk = current;
93
94 #ifdef CONFIG_X86_64
95 if (test_tsk_thread_flag(tsk, TIF_ABI_PENDING)) {
96 clear_tsk_thread_flag(tsk, TIF_ABI_PENDING);
97 if (test_tsk_thread_flag(tsk, TIF_IA32)) {
98 clear_tsk_thread_flag(tsk, TIF_IA32);
99 } else {
100 set_tsk_thread_flag(tsk, TIF_IA32);
101 current_thread_info()->status |= TS_COMPAT;
102 }
103 }
104 #endif
105
106 clear_tsk_thread_flag(tsk, TIF_DEBUG);
107
108 tsk->thread.debugreg0 = 0;
109 tsk->thread.debugreg1 = 0;
110 tsk->thread.debugreg2 = 0;
111 tsk->thread.debugreg3 = 0;
112 tsk->thread.debugreg6 = 0;
113 tsk->thread.debugreg7 = 0;
114 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
115 /*
116 * Forget coprocessor state..
117 */
118 tsk->fpu_counter = 0;
119 clear_fpu(tsk);
120 clear_used_math();
121 }
122
123 static void hard_disable_TSC(void)
124 {
125 write_cr4(read_cr4() | X86_CR4_TSD);
126 }
127
128 void disable_TSC(void)
129 {
130 preempt_disable();
131 if (!test_and_set_thread_flag(TIF_NOTSC))
132 /*
133 * Must flip the CPU state synchronously with
134 * TIF_NOTSC in the current running context.
135 */
136 hard_disable_TSC();
137 preempt_enable();
138 }
139
140 static void hard_enable_TSC(void)
141 {
142 write_cr4(read_cr4() & ~X86_CR4_TSD);
143 }
144
145 static void enable_TSC(void)
146 {
147 preempt_disable();
148 if (test_and_clear_thread_flag(TIF_NOTSC))
149 /*
150 * Must flip the CPU state synchronously with
151 * TIF_NOTSC in the current running context.
152 */
153 hard_enable_TSC();
154 preempt_enable();
155 }
156
157 int get_tsc_mode(unsigned long adr)
158 {
159 unsigned int val;
160
161 if (test_thread_flag(TIF_NOTSC))
162 val = PR_TSC_SIGSEGV;
163 else
164 val = PR_TSC_ENABLE;
165
166 return put_user(val, (unsigned int __user *)adr);
167 }
168
169 int set_tsc_mode(unsigned int val)
170 {
171 if (val == PR_TSC_SIGSEGV)
172 disable_TSC();
173 else if (val == PR_TSC_ENABLE)
174 enable_TSC();
175 else
176 return -EINVAL;
177
178 return 0;
179 }
180
181 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
182 struct tss_struct *tss)
183 {
184 struct thread_struct *prev, *next;
185
186 prev = &prev_p->thread;
187 next = &next_p->thread;
188
189 if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) ||
190 test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR))
191 ds_switch_to(prev_p, next_p);
192 else if (next->debugctlmsr != prev->debugctlmsr)
193 update_debugctlmsr(next->debugctlmsr);
194
195 if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
196 set_debugreg(next->debugreg0, 0);
197 set_debugreg(next->debugreg1, 1);
198 set_debugreg(next->debugreg2, 2);
199 set_debugreg(next->debugreg3, 3);
200 /* no 4 and 5 */
201 set_debugreg(next->debugreg6, 6);
202 set_debugreg(next->debugreg7, 7);
203 }
204
205 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
206 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
207 /* prev and next are different */
208 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
209 hard_disable_TSC();
210 else
211 hard_enable_TSC();
212 }
213
214 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
215 /*
216 * Copy the relevant range of the IO bitmap.
217 * Normally this is 128 bytes or less:
218 */
219 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
220 max(prev->io_bitmap_max, next->io_bitmap_max));
221 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
222 /*
223 * Clear any possible leftover bits:
224 */
225 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
226 }
227 }
228
229 int sys_fork(struct pt_regs *regs)
230 {
231 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
232 }
233
234 /*
235 * This is trivial, and on the face of it looks like it
236 * could equally well be done in user mode.
237 *
238 * Not so, for quite unobvious reasons - register pressure.
239 * In user mode vfork() cannot have a stack frame, and if
240 * done by calling the "clone()" system call directly, you
241 * do not have enough call-clobbered registers to hold all
242 * the information you need.
243 */
244 int sys_vfork(struct pt_regs *regs)
245 {
246 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
247 NULL, NULL);
248 }
249
250
251 /*
252 * Idle related variables and functions
253 */
254 unsigned long boot_option_idle_override = 0;
255 EXPORT_SYMBOL(boot_option_idle_override);
256
257 /*
258 * Powermanagement idle function, if any..
259 */
260 void (*pm_idle)(void);
261 EXPORT_SYMBOL(pm_idle);
262
263 #ifdef CONFIG_X86_32
264 /*
265 * This halt magic was a workaround for ancient floppy DMA
266 * wreckage. It should be safe to remove.
267 */
268 static int hlt_counter;
269 void disable_hlt(void)
270 {
271 hlt_counter++;
272 }
273 EXPORT_SYMBOL(disable_hlt);
274
275 void enable_hlt(void)
276 {
277 hlt_counter--;
278 }
279 EXPORT_SYMBOL(enable_hlt);
280
281 static inline int hlt_use_halt(void)
282 {
283 return (!hlt_counter && boot_cpu_data.hlt_works_ok);
284 }
285 #else
286 static inline int hlt_use_halt(void)
287 {
288 return 1;
289 }
290 #endif
291
292 /*
293 * We use this if we don't have any better
294 * idle routine..
295 */
296 void default_idle(void)
297 {
298 if (hlt_use_halt()) {
299 trace_power_start(POWER_CSTATE, 1);
300 current_thread_info()->status &= ~TS_POLLING;
301 /*
302 * TS_POLLING-cleared state must be visible before we
303 * test NEED_RESCHED:
304 */
305 smp_mb();
306
307 if (!need_resched())
308 safe_halt(); /* enables interrupts racelessly */
309 else
310 local_irq_enable();
311 current_thread_info()->status |= TS_POLLING;
312 } else {
313 local_irq_enable();
314 /* loop is done by the caller */
315 cpu_relax();
316 }
317 }
318 #ifdef CONFIG_APM_MODULE
319 EXPORT_SYMBOL(default_idle);
320 #endif
321
322 void stop_this_cpu(void *dummy)
323 {
324 local_irq_disable();
325 /*
326 * Remove this CPU:
327 */
328 set_cpu_online(smp_processor_id(), false);
329 disable_local_APIC();
330
331 for (;;) {
332 if (hlt_works(smp_processor_id()))
333 halt();
334 }
335 }
336
337 static void do_nothing(void *unused)
338 {
339 }
340
341 /*
342 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
343 * pm_idle and update to new pm_idle value. Required while changing pm_idle
344 * handler on SMP systems.
345 *
346 * Caller must have changed pm_idle to the new value before the call. Old
347 * pm_idle value will not be used by any CPU after the return of this function.
348 */
349 void cpu_idle_wait(void)
350 {
351 smp_mb();
352 /* kick all the CPUs so that they exit out of pm_idle */
353 smp_call_function(do_nothing, NULL, 1);
354 }
355 EXPORT_SYMBOL_GPL(cpu_idle_wait);
356
357 /*
358 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
359 * which can obviate IPI to trigger checking of need_resched.
360 * We execute MONITOR against need_resched and enter optimized wait state
361 * through MWAIT. Whenever someone changes need_resched, we would be woken
362 * up from MWAIT (without an IPI).
363 *
364 * New with Core Duo processors, MWAIT can take some hints based on CPU
365 * capability.
366 */
367 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
368 {
369 trace_power_start(POWER_CSTATE, (ax>>4)+1);
370 if (!need_resched()) {
371 if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
372 clflush((void *)&current_thread_info()->flags);
373
374 __monitor((void *)&current_thread_info()->flags, 0, 0);
375 smp_mb();
376 if (!need_resched())
377 __mwait(ax, cx);
378 }
379 }
380
381 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
382 static void mwait_idle(void)
383 {
384 if (!need_resched()) {
385 trace_power_start(POWER_CSTATE, 1);
386 if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
387 clflush((void *)&current_thread_info()->flags);
388
389 __monitor((void *)&current_thread_info()->flags, 0, 0);
390 smp_mb();
391 if (!need_resched())
392 __sti_mwait(0, 0);
393 else
394 local_irq_enable();
395 } else
396 local_irq_enable();
397 }
398
399 /*
400 * On SMP it's slightly faster (but much more power-consuming!)
401 * to poll the ->work.need_resched flag instead of waiting for the
402 * cross-CPU IPI to arrive. Use this option with caution.
403 */
404 static void poll_idle(void)
405 {
406 trace_power_start(POWER_CSTATE, 0);
407 local_irq_enable();
408 while (!need_resched())
409 cpu_relax();
410 trace_power_end(0);
411 }
412
413 /*
414 * mwait selection logic:
415 *
416 * It depends on the CPU. For AMD CPUs that support MWAIT this is
417 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
418 * then depend on a clock divisor and current Pstate of the core. If
419 * all cores of a processor are in halt state (C1) the processor can
420 * enter the C1E (C1 enhanced) state. If mwait is used this will never
421 * happen.
422 *
423 * idle=mwait overrides this decision and forces the usage of mwait.
424 */
425 static int __cpuinitdata force_mwait;
426
427 #define MWAIT_INFO 0x05
428 #define MWAIT_ECX_EXTENDED_INFO 0x01
429 #define MWAIT_EDX_C1 0xf0
430
431 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
432 {
433 u32 eax, ebx, ecx, edx;
434
435 if (force_mwait)
436 return 1;
437
438 if (c->cpuid_level < MWAIT_INFO)
439 return 0;
440
441 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
442 /* Check, whether EDX has extended info about MWAIT */
443 if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
444 return 1;
445
446 /*
447 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
448 * C1 supports MWAIT
449 */
450 return (edx & MWAIT_EDX_C1);
451 }
452
453 /*
454 * Check for AMD CPUs, which have potentially C1E support
455 */
456 static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c)
457 {
458 if (c->x86_vendor != X86_VENDOR_AMD)
459 return 0;
460
461 if (c->x86 < 0x0F)
462 return 0;
463
464 /* Family 0x0f models < rev F do not have C1E */
465 if (c->x86 == 0x0f && c->x86_model < 0x40)
466 return 0;
467
468 return 1;
469 }
470
471 static cpumask_var_t c1e_mask;
472 static int c1e_detected;
473
474 void c1e_remove_cpu(int cpu)
475 {
476 if (c1e_mask != NULL)
477 cpumask_clear_cpu(cpu, c1e_mask);
478 }
479
480 /*
481 * C1E aware idle routine. We check for C1E active in the interrupt
482 * pending message MSR. If we detect C1E, then we handle it the same
483 * way as C3 power states (local apic timer and TSC stop)
484 */
485 static void c1e_idle(void)
486 {
487 if (need_resched())
488 return;
489
490 if (!c1e_detected) {
491 u32 lo, hi;
492
493 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
494 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
495 c1e_detected = 1;
496 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
497 mark_tsc_unstable("TSC halt in AMD C1E");
498 printk(KERN_INFO "System has AMD C1E enabled\n");
499 set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E);
500 }
501 }
502
503 if (c1e_detected) {
504 int cpu = smp_processor_id();
505
506 if (!cpumask_test_cpu(cpu, c1e_mask)) {
507 cpumask_set_cpu(cpu, c1e_mask);
508 /*
509 * Force broadcast so ACPI can not interfere.
510 */
511 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
512 &cpu);
513 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
514 cpu);
515 }
516 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
517
518 default_idle();
519
520 /*
521 * The switch back from broadcast mode needs to be
522 * called with interrupts disabled.
523 */
524 local_irq_disable();
525 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
526 local_irq_enable();
527 } else
528 default_idle();
529 }
530
531 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
532 {
533 #ifdef CONFIG_SMP
534 if (pm_idle == poll_idle && smp_num_siblings > 1) {
535 printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
536 " performance may degrade.\n");
537 }
538 #endif
539 if (pm_idle)
540 return;
541
542 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
543 /*
544 * One CPU supports mwait => All CPUs supports mwait
545 */
546 printk(KERN_INFO "using mwait in idle threads.\n");
547 pm_idle = mwait_idle;
548 } else if (check_c1e_idle(c)) {
549 printk(KERN_INFO "using C1E aware idle routine\n");
550 pm_idle = c1e_idle;
551 } else
552 pm_idle = default_idle;
553 }
554
555 void __init init_c1e_mask(void)
556 {
557 /* If we're using c1e_idle, we need to allocate c1e_mask. */
558 if (pm_idle == c1e_idle)
559 zalloc_cpumask_var(&c1e_mask, GFP_KERNEL);
560 }
561
562 static int __init idle_setup(char *str)
563 {
564 if (!str)
565 return -EINVAL;
566
567 if (!strcmp(str, "poll")) {
568 printk("using polling idle threads.\n");
569 pm_idle = poll_idle;
570 } else if (!strcmp(str, "mwait"))
571 force_mwait = 1;
572 else if (!strcmp(str, "halt")) {
573 /*
574 * When the boot option of idle=halt is added, halt is
575 * forced to be used for CPU idle. In such case CPU C2/C3
576 * won't be used again.
577 * To continue to load the CPU idle driver, don't touch
578 * the boot_option_idle_override.
579 */
580 pm_idle = default_idle;
581 idle_halt = 1;
582 return 0;
583 } else if (!strcmp(str, "nomwait")) {
584 /*
585 * If the boot option of "idle=nomwait" is added,
586 * it means that mwait will be disabled for CPU C2/C3
587 * states. In such case it won't touch the variable
588 * of boot_option_idle_override.
589 */
590 idle_nomwait = 1;
591 return 0;
592 } else
593 return -1;
594
595 boot_option_idle_override = 1;
596 return 0;
597 }
598 early_param("idle", idle_setup);
599
600 unsigned long arch_align_stack(unsigned long sp)
601 {
602 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
603 sp -= get_random_int() % 8192;
604 return sp & ~0xf;
605 }
606
607 unsigned long arch_randomize_brk(struct mm_struct *mm)
608 {
609 unsigned long range_end = mm->brk + 0x02000000;
610 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
611 }
612
This page took 0.054995 seconds and 5 git commands to generate.