Revert "UBI: use mtd->writebufsize to set minimal I/O unit size"
[deliverable/linux.git] / arch / x86 / kernel / process.c
1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <linux/user-return-notifier.h>
13 #include <linux/dmi.h>
14 #include <linux/utsname.h>
15 #include <trace/events/power.h>
16 #include <linux/hw_breakpoint.h>
17 #include <asm/system.h>
18 #include <asm/apic.h>
19 #include <asm/syscalls.h>
20 #include <asm/idle.h>
21 #include <asm/uaccess.h>
22 #include <asm/i387.h>
23 #include <asm/debugreg.h>
24
25 struct kmem_cache *task_xstate_cachep;
26 EXPORT_SYMBOL_GPL(task_xstate_cachep);
27
28 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
29 {
30 int ret;
31
32 *dst = *src;
33 if (fpu_allocated(&src->thread.fpu)) {
34 memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
35 ret = fpu_alloc(&dst->thread.fpu);
36 if (ret)
37 return ret;
38 fpu_copy(&dst->thread.fpu, &src->thread.fpu);
39 }
40 return 0;
41 }
42
43 void free_thread_xstate(struct task_struct *tsk)
44 {
45 fpu_free(&tsk->thread.fpu);
46 }
47
48 void free_thread_info(struct thread_info *ti)
49 {
50 free_thread_xstate(ti->task);
51 free_pages((unsigned long)ti, get_order(THREAD_SIZE));
52 }
53
54 void arch_task_cache_init(void)
55 {
56 task_xstate_cachep =
57 kmem_cache_create("task_xstate", xstate_size,
58 __alignof__(union thread_xstate),
59 SLAB_PANIC | SLAB_NOTRACK, NULL);
60 }
61
62 /*
63 * Free current thread data structures etc..
64 */
65 void exit_thread(void)
66 {
67 struct task_struct *me = current;
68 struct thread_struct *t = &me->thread;
69 unsigned long *bp = t->io_bitmap_ptr;
70
71 if (bp) {
72 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
73
74 t->io_bitmap_ptr = NULL;
75 clear_thread_flag(TIF_IO_BITMAP);
76 /*
77 * Careful, clear this in the TSS too:
78 */
79 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
80 t->io_bitmap_max = 0;
81 put_cpu();
82 kfree(bp);
83 }
84 }
85
86 void show_regs(struct pt_regs *regs)
87 {
88 show_registers(regs);
89 show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs));
90 }
91
92 void show_regs_common(void)
93 {
94 const char *board, *product;
95
96 board = dmi_get_system_info(DMI_BOARD_NAME);
97 if (!board)
98 board = "";
99 product = dmi_get_system_info(DMI_PRODUCT_NAME);
100 if (!product)
101 product = "";
102
103 printk(KERN_CONT "\n");
104 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s/%s\n",
105 current->pid, current->comm, print_tainted(),
106 init_utsname()->release,
107 (int)strcspn(init_utsname()->version, " "),
108 init_utsname()->version, board, product);
109 }
110
111 void flush_thread(void)
112 {
113 struct task_struct *tsk = current;
114
115 flush_ptrace_hw_breakpoint(tsk);
116 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
117 /*
118 * Forget coprocessor state..
119 */
120 tsk->fpu_counter = 0;
121 clear_fpu(tsk);
122 clear_used_math();
123 }
124
125 static void hard_disable_TSC(void)
126 {
127 write_cr4(read_cr4() | X86_CR4_TSD);
128 }
129
130 void disable_TSC(void)
131 {
132 preempt_disable();
133 if (!test_and_set_thread_flag(TIF_NOTSC))
134 /*
135 * Must flip the CPU state synchronously with
136 * TIF_NOTSC in the current running context.
137 */
138 hard_disable_TSC();
139 preempt_enable();
140 }
141
142 static void hard_enable_TSC(void)
143 {
144 write_cr4(read_cr4() & ~X86_CR4_TSD);
145 }
146
147 static void enable_TSC(void)
148 {
149 preempt_disable();
150 if (test_and_clear_thread_flag(TIF_NOTSC))
151 /*
152 * Must flip the CPU state synchronously with
153 * TIF_NOTSC in the current running context.
154 */
155 hard_enable_TSC();
156 preempt_enable();
157 }
158
159 int get_tsc_mode(unsigned long adr)
160 {
161 unsigned int val;
162
163 if (test_thread_flag(TIF_NOTSC))
164 val = PR_TSC_SIGSEGV;
165 else
166 val = PR_TSC_ENABLE;
167
168 return put_user(val, (unsigned int __user *)adr);
169 }
170
171 int set_tsc_mode(unsigned int val)
172 {
173 if (val == PR_TSC_SIGSEGV)
174 disable_TSC();
175 else if (val == PR_TSC_ENABLE)
176 enable_TSC();
177 else
178 return -EINVAL;
179
180 return 0;
181 }
182
183 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
184 struct tss_struct *tss)
185 {
186 struct thread_struct *prev, *next;
187
188 prev = &prev_p->thread;
189 next = &next_p->thread;
190
191 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
192 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
193 unsigned long debugctl = get_debugctlmsr();
194
195 debugctl &= ~DEBUGCTLMSR_BTF;
196 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
197 debugctl |= DEBUGCTLMSR_BTF;
198
199 update_debugctlmsr(debugctl);
200 }
201
202 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
203 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
204 /* prev and next are different */
205 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
206 hard_disable_TSC();
207 else
208 hard_enable_TSC();
209 }
210
211 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
212 /*
213 * Copy the relevant range of the IO bitmap.
214 * Normally this is 128 bytes or less:
215 */
216 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
217 max(prev->io_bitmap_max, next->io_bitmap_max));
218 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
219 /*
220 * Clear any possible leftover bits:
221 */
222 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
223 }
224 propagate_user_return_notify(prev_p, next_p);
225 }
226
227 int sys_fork(struct pt_regs *regs)
228 {
229 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
230 }
231
232 /*
233 * This is trivial, and on the face of it looks like it
234 * could equally well be done in user mode.
235 *
236 * Not so, for quite unobvious reasons - register pressure.
237 * In user mode vfork() cannot have a stack frame, and if
238 * done by calling the "clone()" system call directly, you
239 * do not have enough call-clobbered registers to hold all
240 * the information you need.
241 */
242 int sys_vfork(struct pt_regs *regs)
243 {
244 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
245 NULL, NULL);
246 }
247
248 long
249 sys_clone(unsigned long clone_flags, unsigned long newsp,
250 void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
251 {
252 if (!newsp)
253 newsp = regs->sp;
254 return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
255 }
256
257 /*
258 * This gets run with %si containing the
259 * function to call, and %di containing
260 * the "args".
261 */
262 extern void kernel_thread_helper(void);
263
264 /*
265 * Create a kernel thread
266 */
267 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
268 {
269 struct pt_regs regs;
270
271 memset(&regs, 0, sizeof(regs));
272
273 regs.si = (unsigned long) fn;
274 regs.di = (unsigned long) arg;
275
276 #ifdef CONFIG_X86_32
277 regs.ds = __USER_DS;
278 regs.es = __USER_DS;
279 regs.fs = __KERNEL_PERCPU;
280 regs.gs = __KERNEL_STACK_CANARY;
281 #else
282 regs.ss = __KERNEL_DS;
283 #endif
284
285 regs.orig_ax = -1;
286 regs.ip = (unsigned long) kernel_thread_helper;
287 regs.cs = __KERNEL_CS | get_kernel_rpl();
288 regs.flags = X86_EFLAGS_IF | 0x2;
289
290 /* Ok, create the new process.. */
291 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
292 }
293 EXPORT_SYMBOL(kernel_thread);
294
295 /*
296 * sys_execve() executes a new program.
297 */
298 long sys_execve(const char __user *name,
299 const char __user *const __user *argv,
300 const char __user *const __user *envp, struct pt_regs *regs)
301 {
302 long error;
303 char *filename;
304
305 filename = getname(name);
306 error = PTR_ERR(filename);
307 if (IS_ERR(filename))
308 return error;
309 error = do_execve(filename, argv, envp, regs);
310
311 #ifdef CONFIG_X86_32
312 if (error == 0) {
313 /* Make sure we don't return using sysenter.. */
314 set_thread_flag(TIF_IRET);
315 }
316 #endif
317
318 putname(filename);
319 return error;
320 }
321
322 /*
323 * Idle related variables and functions
324 */
325 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
326 EXPORT_SYMBOL(boot_option_idle_override);
327
328 /*
329 * Powermanagement idle function, if any..
330 */
331 void (*pm_idle)(void);
332 EXPORT_SYMBOL(pm_idle);
333
334 #ifdef CONFIG_X86_32
335 /*
336 * This halt magic was a workaround for ancient floppy DMA
337 * wreckage. It should be safe to remove.
338 */
339 static int hlt_counter;
340 void disable_hlt(void)
341 {
342 hlt_counter++;
343 }
344 EXPORT_SYMBOL(disable_hlt);
345
346 void enable_hlt(void)
347 {
348 hlt_counter--;
349 }
350 EXPORT_SYMBOL(enable_hlt);
351
352 static inline int hlt_use_halt(void)
353 {
354 return (!hlt_counter && boot_cpu_data.hlt_works_ok);
355 }
356 #else
357 static inline int hlt_use_halt(void)
358 {
359 return 1;
360 }
361 #endif
362
363 /*
364 * We use this if we don't have any better
365 * idle routine..
366 */
367 void default_idle(void)
368 {
369 if (hlt_use_halt()) {
370 trace_power_start(POWER_CSTATE, 1, smp_processor_id());
371 trace_cpu_idle(1, smp_processor_id());
372 current_thread_info()->status &= ~TS_POLLING;
373 /*
374 * TS_POLLING-cleared state must be visible before we
375 * test NEED_RESCHED:
376 */
377 smp_mb();
378
379 if (!need_resched())
380 safe_halt(); /* enables interrupts racelessly */
381 else
382 local_irq_enable();
383 current_thread_info()->status |= TS_POLLING;
384 trace_power_end(smp_processor_id());
385 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
386 } else {
387 local_irq_enable();
388 /* loop is done by the caller */
389 cpu_relax();
390 }
391 }
392 #ifdef CONFIG_APM_MODULE
393 EXPORT_SYMBOL(default_idle);
394 #endif
395
396 void stop_this_cpu(void *dummy)
397 {
398 local_irq_disable();
399 /*
400 * Remove this CPU:
401 */
402 set_cpu_online(smp_processor_id(), false);
403 disable_local_APIC();
404
405 for (;;) {
406 if (hlt_works(smp_processor_id()))
407 halt();
408 }
409 }
410
411 static void do_nothing(void *unused)
412 {
413 }
414
415 /*
416 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
417 * pm_idle and update to new pm_idle value. Required while changing pm_idle
418 * handler on SMP systems.
419 *
420 * Caller must have changed pm_idle to the new value before the call. Old
421 * pm_idle value will not be used by any CPU after the return of this function.
422 */
423 void cpu_idle_wait(void)
424 {
425 smp_mb();
426 /* kick all the CPUs so that they exit out of pm_idle */
427 smp_call_function(do_nothing, NULL, 1);
428 }
429 EXPORT_SYMBOL_GPL(cpu_idle_wait);
430
431 /*
432 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
433 * which can obviate IPI to trigger checking of need_resched.
434 * We execute MONITOR against need_resched and enter optimized wait state
435 * through MWAIT. Whenever someone changes need_resched, we would be woken
436 * up from MWAIT (without an IPI).
437 *
438 * New with Core Duo processors, MWAIT can take some hints based on CPU
439 * capability.
440 */
441 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
442 {
443 if (!need_resched()) {
444 if (cpu_has(__this_cpu_ptr(&cpu_info), X86_FEATURE_CLFLUSH_MONITOR))
445 clflush((void *)&current_thread_info()->flags);
446
447 __monitor((void *)&current_thread_info()->flags, 0, 0);
448 smp_mb();
449 if (!need_resched())
450 __mwait(ax, cx);
451 }
452 }
453
454 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
455 static void mwait_idle(void)
456 {
457 if (!need_resched()) {
458 trace_power_start(POWER_CSTATE, 1, smp_processor_id());
459 trace_cpu_idle(1, smp_processor_id());
460 if (cpu_has(__this_cpu_ptr(&cpu_info), X86_FEATURE_CLFLUSH_MONITOR))
461 clflush((void *)&current_thread_info()->flags);
462
463 __monitor((void *)&current_thread_info()->flags, 0, 0);
464 smp_mb();
465 if (!need_resched())
466 __sti_mwait(0, 0);
467 else
468 local_irq_enable();
469 trace_power_end(smp_processor_id());
470 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
471 } else
472 local_irq_enable();
473 }
474
475 /*
476 * On SMP it's slightly faster (but much more power-consuming!)
477 * to poll the ->work.need_resched flag instead of waiting for the
478 * cross-CPU IPI to arrive. Use this option with caution.
479 */
480 static void poll_idle(void)
481 {
482 trace_power_start(POWER_CSTATE, 0, smp_processor_id());
483 trace_cpu_idle(0, smp_processor_id());
484 local_irq_enable();
485 while (!need_resched())
486 cpu_relax();
487 trace_power_end(smp_processor_id());
488 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
489 }
490
491 /*
492 * mwait selection logic:
493 *
494 * It depends on the CPU. For AMD CPUs that support MWAIT this is
495 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
496 * then depend on a clock divisor and current Pstate of the core. If
497 * all cores of a processor are in halt state (C1) the processor can
498 * enter the C1E (C1 enhanced) state. If mwait is used this will never
499 * happen.
500 *
501 * idle=mwait overrides this decision and forces the usage of mwait.
502 */
503
504 #define MWAIT_INFO 0x05
505 #define MWAIT_ECX_EXTENDED_INFO 0x01
506 #define MWAIT_EDX_C1 0xf0
507
508 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
509 {
510 u32 eax, ebx, ecx, edx;
511
512 if (boot_option_idle_override == IDLE_FORCE_MWAIT)
513 return 1;
514
515 if (c->cpuid_level < MWAIT_INFO)
516 return 0;
517
518 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
519 /* Check, whether EDX has extended info about MWAIT */
520 if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
521 return 1;
522
523 /*
524 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
525 * C1 supports MWAIT
526 */
527 return (edx & MWAIT_EDX_C1);
528 }
529
530 bool c1e_detected;
531 EXPORT_SYMBOL(c1e_detected);
532
533 static cpumask_var_t c1e_mask;
534
535 void c1e_remove_cpu(int cpu)
536 {
537 if (c1e_mask != NULL)
538 cpumask_clear_cpu(cpu, c1e_mask);
539 }
540
541 /*
542 * C1E aware idle routine. We check for C1E active in the interrupt
543 * pending message MSR. If we detect C1E, then we handle it the same
544 * way as C3 power states (local apic timer and TSC stop)
545 */
546 static void c1e_idle(void)
547 {
548 if (need_resched())
549 return;
550
551 if (!c1e_detected) {
552 u32 lo, hi;
553
554 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
555
556 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
557 c1e_detected = true;
558 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
559 mark_tsc_unstable("TSC halt in AMD C1E");
560 printk(KERN_INFO "System has AMD C1E enabled\n");
561 }
562 }
563
564 if (c1e_detected) {
565 int cpu = smp_processor_id();
566
567 if (!cpumask_test_cpu(cpu, c1e_mask)) {
568 cpumask_set_cpu(cpu, c1e_mask);
569 /*
570 * Force broadcast so ACPI can not interfere.
571 */
572 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
573 &cpu);
574 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
575 cpu);
576 }
577 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
578
579 default_idle();
580
581 /*
582 * The switch back from broadcast mode needs to be
583 * called with interrupts disabled.
584 */
585 local_irq_disable();
586 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
587 local_irq_enable();
588 } else
589 default_idle();
590 }
591
592 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
593 {
594 #ifdef CONFIG_SMP
595 if (pm_idle == poll_idle && smp_num_siblings > 1) {
596 printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
597 " performance may degrade.\n");
598 }
599 #endif
600 if (pm_idle)
601 return;
602
603 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
604 /*
605 * One CPU supports mwait => All CPUs supports mwait
606 */
607 printk(KERN_INFO "using mwait in idle threads.\n");
608 pm_idle = mwait_idle;
609 } else if (cpu_has_amd_erratum(amd_erratum_400)) {
610 /* E400: APIC timer interrupt does not wake up CPU from C1e */
611 printk(KERN_INFO "using C1E aware idle routine\n");
612 pm_idle = c1e_idle;
613 } else
614 pm_idle = default_idle;
615 }
616
617 void __init init_c1e_mask(void)
618 {
619 /* If we're using c1e_idle, we need to allocate c1e_mask. */
620 if (pm_idle == c1e_idle)
621 zalloc_cpumask_var(&c1e_mask, GFP_KERNEL);
622 }
623
624 static int __init idle_setup(char *str)
625 {
626 if (!str)
627 return -EINVAL;
628
629 if (!strcmp(str, "poll")) {
630 printk("using polling idle threads.\n");
631 pm_idle = poll_idle;
632 boot_option_idle_override = IDLE_POLL;
633 } else if (!strcmp(str, "mwait")) {
634 boot_option_idle_override = IDLE_FORCE_MWAIT;
635 } else if (!strcmp(str, "halt")) {
636 /*
637 * When the boot option of idle=halt is added, halt is
638 * forced to be used for CPU idle. In such case CPU C2/C3
639 * won't be used again.
640 * To continue to load the CPU idle driver, don't touch
641 * the boot_option_idle_override.
642 */
643 pm_idle = default_idle;
644 boot_option_idle_override = IDLE_HALT;
645 } else if (!strcmp(str, "nomwait")) {
646 /*
647 * If the boot option of "idle=nomwait" is added,
648 * it means that mwait will be disabled for CPU C2/C3
649 * states. In such case it won't touch the variable
650 * of boot_option_idle_override.
651 */
652 boot_option_idle_override = IDLE_NOMWAIT;
653 } else
654 return -1;
655
656 return 0;
657 }
658 early_param("idle", idle_setup);
659
660 unsigned long arch_align_stack(unsigned long sp)
661 {
662 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
663 sp -= get_random_int() % 8192;
664 return sp & ~0xf;
665 }
666
667 unsigned long arch_randomize_brk(struct mm_struct *mm)
668 {
669 unsigned long range_end = mm->brk + 0x02000000;
670 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
671 }
672
This page took 0.25346 seconds and 5 git commands to generate.