Staging: Merge branch 'tidspbridge-for-2.6.39' of git://dev.omapzoom.org/pub/scm...
[deliverable/linux.git] / arch / x86 / kernel / process.c
1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <linux/user-return-notifier.h>
13 #include <linux/dmi.h>
14 #include <linux/utsname.h>
15 #include <trace/events/power.h>
16 #include <linux/hw_breakpoint.h>
17 #include <asm/cpu.h>
18 #include <asm/system.h>
19 #include <asm/apic.h>
20 #include <asm/syscalls.h>
21 #include <asm/idle.h>
22 #include <asm/uaccess.h>
23 #include <asm/i387.h>
24 #include <asm/debugreg.h>
25
26 struct kmem_cache *task_xstate_cachep;
27 EXPORT_SYMBOL_GPL(task_xstate_cachep);
28
29 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
30 {
31 int ret;
32
33 *dst = *src;
34 if (fpu_allocated(&src->thread.fpu)) {
35 memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
36 ret = fpu_alloc(&dst->thread.fpu);
37 if (ret)
38 return ret;
39 fpu_copy(&dst->thread.fpu, &src->thread.fpu);
40 }
41 return 0;
42 }
43
44 void free_thread_xstate(struct task_struct *tsk)
45 {
46 fpu_free(&tsk->thread.fpu);
47 }
48
49 void free_thread_info(struct thread_info *ti)
50 {
51 free_thread_xstate(ti->task);
52 free_pages((unsigned long)ti, get_order(THREAD_SIZE));
53 }
54
55 void arch_task_cache_init(void)
56 {
57 task_xstate_cachep =
58 kmem_cache_create("task_xstate", xstate_size,
59 __alignof__(union thread_xstate),
60 SLAB_PANIC | SLAB_NOTRACK, NULL);
61 }
62
63 /*
64 * Free current thread data structures etc..
65 */
66 void exit_thread(void)
67 {
68 struct task_struct *me = current;
69 struct thread_struct *t = &me->thread;
70 unsigned long *bp = t->io_bitmap_ptr;
71
72 if (bp) {
73 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
74
75 t->io_bitmap_ptr = NULL;
76 clear_thread_flag(TIF_IO_BITMAP);
77 /*
78 * Careful, clear this in the TSS too:
79 */
80 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
81 t->io_bitmap_max = 0;
82 put_cpu();
83 kfree(bp);
84 }
85 }
86
87 void show_regs(struct pt_regs *regs)
88 {
89 show_registers(regs);
90 show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs));
91 }
92
93 void show_regs_common(void)
94 {
95 const char *board, *product;
96
97 board = dmi_get_system_info(DMI_BOARD_NAME);
98 if (!board)
99 board = "";
100 product = dmi_get_system_info(DMI_PRODUCT_NAME);
101 if (!product)
102 product = "";
103
104 printk(KERN_CONT "\n");
105 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s/%s\n",
106 current->pid, current->comm, print_tainted(),
107 init_utsname()->release,
108 (int)strcspn(init_utsname()->version, " "),
109 init_utsname()->version, board, product);
110 }
111
112 void flush_thread(void)
113 {
114 struct task_struct *tsk = current;
115
116 flush_ptrace_hw_breakpoint(tsk);
117 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
118 /*
119 * Forget coprocessor state..
120 */
121 tsk->fpu_counter = 0;
122 clear_fpu(tsk);
123 clear_used_math();
124 }
125
126 static void hard_disable_TSC(void)
127 {
128 write_cr4(read_cr4() | X86_CR4_TSD);
129 }
130
131 void disable_TSC(void)
132 {
133 preempt_disable();
134 if (!test_and_set_thread_flag(TIF_NOTSC))
135 /*
136 * Must flip the CPU state synchronously with
137 * TIF_NOTSC in the current running context.
138 */
139 hard_disable_TSC();
140 preempt_enable();
141 }
142
143 static void hard_enable_TSC(void)
144 {
145 write_cr4(read_cr4() & ~X86_CR4_TSD);
146 }
147
148 static void enable_TSC(void)
149 {
150 preempt_disable();
151 if (test_and_clear_thread_flag(TIF_NOTSC))
152 /*
153 * Must flip the CPU state synchronously with
154 * TIF_NOTSC in the current running context.
155 */
156 hard_enable_TSC();
157 preempt_enable();
158 }
159
160 int get_tsc_mode(unsigned long adr)
161 {
162 unsigned int val;
163
164 if (test_thread_flag(TIF_NOTSC))
165 val = PR_TSC_SIGSEGV;
166 else
167 val = PR_TSC_ENABLE;
168
169 return put_user(val, (unsigned int __user *)adr);
170 }
171
172 int set_tsc_mode(unsigned int val)
173 {
174 if (val == PR_TSC_SIGSEGV)
175 disable_TSC();
176 else if (val == PR_TSC_ENABLE)
177 enable_TSC();
178 else
179 return -EINVAL;
180
181 return 0;
182 }
183
184 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
185 struct tss_struct *tss)
186 {
187 struct thread_struct *prev, *next;
188
189 prev = &prev_p->thread;
190 next = &next_p->thread;
191
192 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
193 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
194 unsigned long debugctl = get_debugctlmsr();
195
196 debugctl &= ~DEBUGCTLMSR_BTF;
197 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
198 debugctl |= DEBUGCTLMSR_BTF;
199
200 update_debugctlmsr(debugctl);
201 }
202
203 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
204 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
205 /* prev and next are different */
206 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
207 hard_disable_TSC();
208 else
209 hard_enable_TSC();
210 }
211
212 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
213 /*
214 * Copy the relevant range of the IO bitmap.
215 * Normally this is 128 bytes or less:
216 */
217 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
218 max(prev->io_bitmap_max, next->io_bitmap_max));
219 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
220 /*
221 * Clear any possible leftover bits:
222 */
223 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
224 }
225 propagate_user_return_notify(prev_p, next_p);
226 }
227
228 int sys_fork(struct pt_regs *regs)
229 {
230 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
231 }
232
233 /*
234 * This is trivial, and on the face of it looks like it
235 * could equally well be done in user mode.
236 *
237 * Not so, for quite unobvious reasons - register pressure.
238 * In user mode vfork() cannot have a stack frame, and if
239 * done by calling the "clone()" system call directly, you
240 * do not have enough call-clobbered registers to hold all
241 * the information you need.
242 */
243 int sys_vfork(struct pt_regs *regs)
244 {
245 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
246 NULL, NULL);
247 }
248
249 long
250 sys_clone(unsigned long clone_flags, unsigned long newsp,
251 void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
252 {
253 if (!newsp)
254 newsp = regs->sp;
255 return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
256 }
257
258 /*
259 * This gets run with %si containing the
260 * function to call, and %di containing
261 * the "args".
262 */
263 extern void kernel_thread_helper(void);
264
265 /*
266 * Create a kernel thread
267 */
268 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
269 {
270 struct pt_regs regs;
271
272 memset(&regs, 0, sizeof(regs));
273
274 regs.si = (unsigned long) fn;
275 regs.di = (unsigned long) arg;
276
277 #ifdef CONFIG_X86_32
278 regs.ds = __USER_DS;
279 regs.es = __USER_DS;
280 regs.fs = __KERNEL_PERCPU;
281 regs.gs = __KERNEL_STACK_CANARY;
282 #else
283 regs.ss = __KERNEL_DS;
284 #endif
285
286 regs.orig_ax = -1;
287 regs.ip = (unsigned long) kernel_thread_helper;
288 regs.cs = __KERNEL_CS | get_kernel_rpl();
289 regs.flags = X86_EFLAGS_IF | 0x2;
290
291 /* Ok, create the new process.. */
292 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
293 }
294 EXPORT_SYMBOL(kernel_thread);
295
296 /*
297 * sys_execve() executes a new program.
298 */
299 long sys_execve(const char __user *name,
300 const char __user *const __user *argv,
301 const char __user *const __user *envp, struct pt_regs *regs)
302 {
303 long error;
304 char *filename;
305
306 filename = getname(name);
307 error = PTR_ERR(filename);
308 if (IS_ERR(filename))
309 return error;
310 error = do_execve(filename, argv, envp, regs);
311
312 #ifdef CONFIG_X86_32
313 if (error == 0) {
314 /* Make sure we don't return using sysenter.. */
315 set_thread_flag(TIF_IRET);
316 }
317 #endif
318
319 putname(filename);
320 return error;
321 }
322
323 /*
324 * Idle related variables and functions
325 */
326 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
327 EXPORT_SYMBOL(boot_option_idle_override);
328
329 /*
330 * Powermanagement idle function, if any..
331 */
332 void (*pm_idle)(void);
333 EXPORT_SYMBOL(pm_idle);
334
335 #ifdef CONFIG_X86_32
336 /*
337 * This halt magic was a workaround for ancient floppy DMA
338 * wreckage. It should be safe to remove.
339 */
340 static int hlt_counter;
341 void disable_hlt(void)
342 {
343 hlt_counter++;
344 }
345 EXPORT_SYMBOL(disable_hlt);
346
347 void enable_hlt(void)
348 {
349 hlt_counter--;
350 }
351 EXPORT_SYMBOL(enable_hlt);
352
353 static inline int hlt_use_halt(void)
354 {
355 return (!hlt_counter && boot_cpu_data.hlt_works_ok);
356 }
357 #else
358 static inline int hlt_use_halt(void)
359 {
360 return 1;
361 }
362 #endif
363
364 /*
365 * We use this if we don't have any better
366 * idle routine..
367 */
368 void default_idle(void)
369 {
370 if (hlt_use_halt()) {
371 trace_power_start(POWER_CSTATE, 1, smp_processor_id());
372 trace_cpu_idle(1, smp_processor_id());
373 current_thread_info()->status &= ~TS_POLLING;
374 /*
375 * TS_POLLING-cleared state must be visible before we
376 * test NEED_RESCHED:
377 */
378 smp_mb();
379
380 if (!need_resched())
381 safe_halt(); /* enables interrupts racelessly */
382 else
383 local_irq_enable();
384 current_thread_info()->status |= TS_POLLING;
385 trace_power_end(smp_processor_id());
386 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
387 } else {
388 local_irq_enable();
389 /* loop is done by the caller */
390 cpu_relax();
391 }
392 }
393 #ifdef CONFIG_APM_MODULE
394 EXPORT_SYMBOL(default_idle);
395 #endif
396
397 void stop_this_cpu(void *dummy)
398 {
399 local_irq_disable();
400 /*
401 * Remove this CPU:
402 */
403 set_cpu_online(smp_processor_id(), false);
404 disable_local_APIC();
405
406 for (;;) {
407 if (hlt_works(smp_processor_id()))
408 halt();
409 }
410 }
411
412 static void do_nothing(void *unused)
413 {
414 }
415
416 /*
417 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
418 * pm_idle and update to new pm_idle value. Required while changing pm_idle
419 * handler on SMP systems.
420 *
421 * Caller must have changed pm_idle to the new value before the call. Old
422 * pm_idle value will not be used by any CPU after the return of this function.
423 */
424 void cpu_idle_wait(void)
425 {
426 smp_mb();
427 /* kick all the CPUs so that they exit out of pm_idle */
428 smp_call_function(do_nothing, NULL, 1);
429 }
430 EXPORT_SYMBOL_GPL(cpu_idle_wait);
431
432 /*
433 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
434 * which can obviate IPI to trigger checking of need_resched.
435 * We execute MONITOR against need_resched and enter optimized wait state
436 * through MWAIT. Whenever someone changes need_resched, we would be woken
437 * up from MWAIT (without an IPI).
438 *
439 * New with Core Duo processors, MWAIT can take some hints based on CPU
440 * capability.
441 */
442 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
443 {
444 if (!need_resched()) {
445 if (cpu_has(__this_cpu_ptr(&cpu_info), X86_FEATURE_CLFLUSH_MONITOR))
446 clflush((void *)&current_thread_info()->flags);
447
448 __monitor((void *)&current_thread_info()->flags, 0, 0);
449 smp_mb();
450 if (!need_resched())
451 __mwait(ax, cx);
452 }
453 }
454
455 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
456 static void mwait_idle(void)
457 {
458 if (!need_resched()) {
459 trace_power_start(POWER_CSTATE, 1, smp_processor_id());
460 trace_cpu_idle(1, smp_processor_id());
461 if (cpu_has(__this_cpu_ptr(&cpu_info), X86_FEATURE_CLFLUSH_MONITOR))
462 clflush((void *)&current_thread_info()->flags);
463
464 __monitor((void *)&current_thread_info()->flags, 0, 0);
465 smp_mb();
466 if (!need_resched())
467 __sti_mwait(0, 0);
468 else
469 local_irq_enable();
470 trace_power_end(smp_processor_id());
471 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
472 } else
473 local_irq_enable();
474 }
475
476 /*
477 * On SMP it's slightly faster (but much more power-consuming!)
478 * to poll the ->work.need_resched flag instead of waiting for the
479 * cross-CPU IPI to arrive. Use this option with caution.
480 */
481 static void poll_idle(void)
482 {
483 trace_power_start(POWER_CSTATE, 0, smp_processor_id());
484 trace_cpu_idle(0, smp_processor_id());
485 local_irq_enable();
486 while (!need_resched())
487 cpu_relax();
488 trace_power_end(smp_processor_id());
489 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
490 }
491
492 /*
493 * mwait selection logic:
494 *
495 * It depends on the CPU. For AMD CPUs that support MWAIT this is
496 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
497 * then depend on a clock divisor and current Pstate of the core. If
498 * all cores of a processor are in halt state (C1) the processor can
499 * enter the C1E (C1 enhanced) state. If mwait is used this will never
500 * happen.
501 *
502 * idle=mwait overrides this decision and forces the usage of mwait.
503 */
504
505 #define MWAIT_INFO 0x05
506 #define MWAIT_ECX_EXTENDED_INFO 0x01
507 #define MWAIT_EDX_C1 0xf0
508
509 int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
510 {
511 u32 eax, ebx, ecx, edx;
512
513 if (boot_option_idle_override == IDLE_FORCE_MWAIT)
514 return 1;
515
516 if (c->cpuid_level < MWAIT_INFO)
517 return 0;
518
519 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
520 /* Check, whether EDX has extended info about MWAIT */
521 if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
522 return 1;
523
524 /*
525 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
526 * C1 supports MWAIT
527 */
528 return (edx & MWAIT_EDX_C1);
529 }
530
531 bool c1e_detected;
532 EXPORT_SYMBOL(c1e_detected);
533
534 static cpumask_var_t c1e_mask;
535
536 void c1e_remove_cpu(int cpu)
537 {
538 if (c1e_mask != NULL)
539 cpumask_clear_cpu(cpu, c1e_mask);
540 }
541
542 /*
543 * C1E aware idle routine. We check for C1E active in the interrupt
544 * pending message MSR. If we detect C1E, then we handle it the same
545 * way as C3 power states (local apic timer and TSC stop)
546 */
547 static void c1e_idle(void)
548 {
549 if (need_resched())
550 return;
551
552 if (!c1e_detected) {
553 u32 lo, hi;
554
555 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
556
557 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
558 c1e_detected = true;
559 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
560 mark_tsc_unstable("TSC halt in AMD C1E");
561 printk(KERN_INFO "System has AMD C1E enabled\n");
562 }
563 }
564
565 if (c1e_detected) {
566 int cpu = smp_processor_id();
567
568 if (!cpumask_test_cpu(cpu, c1e_mask)) {
569 cpumask_set_cpu(cpu, c1e_mask);
570 /*
571 * Force broadcast so ACPI can not interfere.
572 */
573 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
574 &cpu);
575 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
576 cpu);
577 }
578 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
579
580 default_idle();
581
582 /*
583 * The switch back from broadcast mode needs to be
584 * called with interrupts disabled.
585 */
586 local_irq_disable();
587 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
588 local_irq_enable();
589 } else
590 default_idle();
591 }
592
593 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
594 {
595 #ifdef CONFIG_SMP
596 if (pm_idle == poll_idle && smp_num_siblings > 1) {
597 printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
598 " performance may degrade.\n");
599 }
600 #endif
601 if (pm_idle)
602 return;
603
604 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
605 /*
606 * One CPU supports mwait => All CPUs supports mwait
607 */
608 printk(KERN_INFO "using mwait in idle threads.\n");
609 pm_idle = mwait_idle;
610 } else if (cpu_has_amd_erratum(amd_erratum_400)) {
611 /* E400: APIC timer interrupt does not wake up CPU from C1e */
612 printk(KERN_INFO "using C1E aware idle routine\n");
613 pm_idle = c1e_idle;
614 } else
615 pm_idle = default_idle;
616 }
617
618 void __init init_c1e_mask(void)
619 {
620 /* If we're using c1e_idle, we need to allocate c1e_mask. */
621 if (pm_idle == c1e_idle)
622 zalloc_cpumask_var(&c1e_mask, GFP_KERNEL);
623 }
624
625 static int __init idle_setup(char *str)
626 {
627 if (!str)
628 return -EINVAL;
629
630 if (!strcmp(str, "poll")) {
631 printk("using polling idle threads.\n");
632 pm_idle = poll_idle;
633 boot_option_idle_override = IDLE_POLL;
634 } else if (!strcmp(str, "mwait")) {
635 boot_option_idle_override = IDLE_FORCE_MWAIT;
636 } else if (!strcmp(str, "halt")) {
637 /*
638 * When the boot option of idle=halt is added, halt is
639 * forced to be used for CPU idle. In such case CPU C2/C3
640 * won't be used again.
641 * To continue to load the CPU idle driver, don't touch
642 * the boot_option_idle_override.
643 */
644 pm_idle = default_idle;
645 boot_option_idle_override = IDLE_HALT;
646 } else if (!strcmp(str, "nomwait")) {
647 /*
648 * If the boot option of "idle=nomwait" is added,
649 * it means that mwait will be disabled for CPU C2/C3
650 * states. In such case it won't touch the variable
651 * of boot_option_idle_override.
652 */
653 boot_option_idle_override = IDLE_NOMWAIT;
654 } else
655 return -1;
656
657 return 0;
658 }
659 early_param("idle", idle_setup);
660
661 unsigned long arch_align_stack(unsigned long sp)
662 {
663 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
664 sp -= get_random_int() % 8192;
665 return sp & ~0xf;
666 }
667
668 unsigned long arch_randomize_brk(struct mm_struct *mm)
669 {
670 unsigned long range_end = mm->brk + 0x02000000;
671 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
672 }
673
This page took 0.055685 seconds and 5 git commands to generate.