x86: Introduce 'struct fpu' and related API
[deliverable/linux.git] / arch / x86 / kernel / process.c
1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <linux/user-return-notifier.h>
13 #include <linux/dmi.h>
14 #include <linux/utsname.h>
15 #include <trace/events/power.h>
16 #include <linux/hw_breakpoint.h>
17 #include <asm/system.h>
18 #include <asm/apic.h>
19 #include <asm/syscalls.h>
20 #include <asm/idle.h>
21 #include <asm/uaccess.h>
22 #include <asm/i387.h>
23 #include <asm/ds.h>
24 #include <asm/debugreg.h>
25
26 unsigned long idle_halt;
27 EXPORT_SYMBOL(idle_halt);
28 unsigned long idle_nomwait;
29 EXPORT_SYMBOL(idle_nomwait);
30
31 struct kmem_cache *task_xstate_cachep;
32
33 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
34 {
35 int ret;
36
37 *dst = *src;
38 if (fpu_allocated(&src->thread.fpu)) {
39 memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
40 ret = fpu_alloc(&dst->thread.fpu);
41 if (ret)
42 return ret;
43 fpu_copy(&dst->thread.fpu, &src->thread.fpu);
44 }
45 return 0;
46 }
47
48 void free_thread_xstate(struct task_struct *tsk)
49 {
50 fpu_free(&tsk->thread.fpu);
51 WARN(tsk->thread.ds_ctx, "leaking DS context\n");
52 }
53
54 void free_thread_info(struct thread_info *ti)
55 {
56 free_thread_xstate(ti->task);
57 free_pages((unsigned long)ti, get_order(THREAD_SIZE));
58 }
59
60 void arch_task_cache_init(void)
61 {
62 task_xstate_cachep =
63 kmem_cache_create("task_xstate", xstate_size,
64 __alignof__(union thread_xstate),
65 SLAB_PANIC | SLAB_NOTRACK, NULL);
66 }
67
68 /*
69 * Free current thread data structures etc..
70 */
71 void exit_thread(void)
72 {
73 struct task_struct *me = current;
74 struct thread_struct *t = &me->thread;
75 unsigned long *bp = t->io_bitmap_ptr;
76
77 if (bp) {
78 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
79
80 t->io_bitmap_ptr = NULL;
81 clear_thread_flag(TIF_IO_BITMAP);
82 /*
83 * Careful, clear this in the TSS too:
84 */
85 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
86 t->io_bitmap_max = 0;
87 put_cpu();
88 kfree(bp);
89 }
90 }
91
92 void show_regs(struct pt_regs *regs)
93 {
94 show_registers(regs);
95 show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs),
96 regs->bp);
97 }
98
99 void show_regs_common(void)
100 {
101 const char *board, *product;
102
103 board = dmi_get_system_info(DMI_BOARD_NAME);
104 if (!board)
105 board = "";
106 product = dmi_get_system_info(DMI_PRODUCT_NAME);
107 if (!product)
108 product = "";
109
110 printk(KERN_CONT "\n");
111 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s/%s\n",
112 current->pid, current->comm, print_tainted(),
113 init_utsname()->release,
114 (int)strcspn(init_utsname()->version, " "),
115 init_utsname()->version, board, product);
116 }
117
118 void flush_thread(void)
119 {
120 struct task_struct *tsk = current;
121
122 flush_ptrace_hw_breakpoint(tsk);
123 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
124 /*
125 * Forget coprocessor state..
126 */
127 tsk->fpu_counter = 0;
128 clear_fpu(tsk);
129 clear_used_math();
130 }
131
132 static void hard_disable_TSC(void)
133 {
134 write_cr4(read_cr4() | X86_CR4_TSD);
135 }
136
137 void disable_TSC(void)
138 {
139 preempt_disable();
140 if (!test_and_set_thread_flag(TIF_NOTSC))
141 /*
142 * Must flip the CPU state synchronously with
143 * TIF_NOTSC in the current running context.
144 */
145 hard_disable_TSC();
146 preempt_enable();
147 }
148
149 static void hard_enable_TSC(void)
150 {
151 write_cr4(read_cr4() & ~X86_CR4_TSD);
152 }
153
154 static void enable_TSC(void)
155 {
156 preempt_disable();
157 if (test_and_clear_thread_flag(TIF_NOTSC))
158 /*
159 * Must flip the CPU state synchronously with
160 * TIF_NOTSC in the current running context.
161 */
162 hard_enable_TSC();
163 preempt_enable();
164 }
165
166 int get_tsc_mode(unsigned long adr)
167 {
168 unsigned int val;
169
170 if (test_thread_flag(TIF_NOTSC))
171 val = PR_TSC_SIGSEGV;
172 else
173 val = PR_TSC_ENABLE;
174
175 return put_user(val, (unsigned int __user *)adr);
176 }
177
178 int set_tsc_mode(unsigned int val)
179 {
180 if (val == PR_TSC_SIGSEGV)
181 disable_TSC();
182 else if (val == PR_TSC_ENABLE)
183 enable_TSC();
184 else
185 return -EINVAL;
186
187 return 0;
188 }
189
190 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
191 struct tss_struct *tss)
192 {
193 struct thread_struct *prev, *next;
194
195 prev = &prev_p->thread;
196 next = &next_p->thread;
197
198 if (test_tsk_thread_flag(next_p, TIF_DS_AREA_MSR) ||
199 test_tsk_thread_flag(prev_p, TIF_DS_AREA_MSR))
200 ds_switch_to(prev_p, next_p);
201 else if (next->debugctlmsr != prev->debugctlmsr)
202 update_debugctlmsr(next->debugctlmsr);
203
204 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
205 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
206 /* prev and next are different */
207 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
208 hard_disable_TSC();
209 else
210 hard_enable_TSC();
211 }
212
213 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
214 /*
215 * Copy the relevant range of the IO bitmap.
216 * Normally this is 128 bytes or less:
217 */
218 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
219 max(prev->io_bitmap_max, next->io_bitmap_max));
220 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
221 /*
222 * Clear any possible leftover bits:
223 */
224 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
225 }
226 propagate_user_return_notify(prev_p, next_p);
227 }
228
229 int sys_fork(struct pt_regs *regs)
230 {
231 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
232 }
233
234 /*
235 * This is trivial, and on the face of it looks like it
236 * could equally well be done in user mode.
237 *
238 * Not so, for quite unobvious reasons - register pressure.
239 * In user mode vfork() cannot have a stack frame, and if
240 * done by calling the "clone()" system call directly, you
241 * do not have enough call-clobbered registers to hold all
242 * the information you need.
243 */
244 int sys_vfork(struct pt_regs *regs)
245 {
246 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
247 NULL, NULL);
248 }
249
250 long
251 sys_clone(unsigned long clone_flags, unsigned long newsp,
252 void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
253 {
254 if (!newsp)
255 newsp = regs->sp;
256 return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
257 }
258
259 /*
260 * This gets run with %si containing the
261 * function to call, and %di containing
262 * the "args".
263 */
264 extern void kernel_thread_helper(void);
265
266 /*
267 * Create a kernel thread
268 */
269 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
270 {
271 struct pt_regs regs;
272
273 memset(&regs, 0, sizeof(regs));
274
275 regs.si = (unsigned long) fn;
276 regs.di = (unsigned long) arg;
277
278 #ifdef CONFIG_X86_32
279 regs.ds = __USER_DS;
280 regs.es = __USER_DS;
281 regs.fs = __KERNEL_PERCPU;
282 regs.gs = __KERNEL_STACK_CANARY;
283 #else
284 regs.ss = __KERNEL_DS;
285 #endif
286
287 regs.orig_ax = -1;
288 regs.ip = (unsigned long) kernel_thread_helper;
289 regs.cs = __KERNEL_CS | get_kernel_rpl();
290 regs.flags = X86_EFLAGS_IF | 0x2;
291
292 /* Ok, create the new process.. */
293 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
294 }
295 EXPORT_SYMBOL(kernel_thread);
296
297 /*
298 * sys_execve() executes a new program.
299 */
300 long sys_execve(char __user *name, char __user * __user *argv,
301 char __user * __user *envp, struct pt_regs *regs)
302 {
303 long error;
304 char *filename;
305
306 filename = getname(name);
307 error = PTR_ERR(filename);
308 if (IS_ERR(filename))
309 return error;
310 error = do_execve(filename, argv, envp, regs);
311
312 #ifdef CONFIG_X86_32
313 if (error == 0) {
314 /* Make sure we don't return using sysenter.. */
315 set_thread_flag(TIF_IRET);
316 }
317 #endif
318
319 putname(filename);
320 return error;
321 }
322
323 /*
324 * Idle related variables and functions
325 */
326 unsigned long boot_option_idle_override = 0;
327 EXPORT_SYMBOL(boot_option_idle_override);
328
329 /*
330 * Powermanagement idle function, if any..
331 */
332 void (*pm_idle)(void);
333 EXPORT_SYMBOL(pm_idle);
334
335 #ifdef CONFIG_X86_32
336 /*
337 * This halt magic was a workaround for ancient floppy DMA
338 * wreckage. It should be safe to remove.
339 */
340 static int hlt_counter;
341 void disable_hlt(void)
342 {
343 hlt_counter++;
344 }
345 EXPORT_SYMBOL(disable_hlt);
346
347 void enable_hlt(void)
348 {
349 hlt_counter--;
350 }
351 EXPORT_SYMBOL(enable_hlt);
352
353 static inline int hlt_use_halt(void)
354 {
355 return (!hlt_counter && boot_cpu_data.hlt_works_ok);
356 }
357 #else
358 static inline int hlt_use_halt(void)
359 {
360 return 1;
361 }
362 #endif
363
364 /*
365 * We use this if we don't have any better
366 * idle routine..
367 */
368 void default_idle(void)
369 {
370 if (hlt_use_halt()) {
371 trace_power_start(POWER_CSTATE, 1);
372 current_thread_info()->status &= ~TS_POLLING;
373 /*
374 * TS_POLLING-cleared state must be visible before we
375 * test NEED_RESCHED:
376 */
377 smp_mb();
378
379 if (!need_resched())
380 safe_halt(); /* enables interrupts racelessly */
381 else
382 local_irq_enable();
383 current_thread_info()->status |= TS_POLLING;
384 } else {
385 local_irq_enable();
386 /* loop is done by the caller */
387 cpu_relax();
388 }
389 }
390 #ifdef CONFIG_APM_MODULE
391 EXPORT_SYMBOL(default_idle);
392 #endif
393
394 void stop_this_cpu(void *dummy)
395 {
396 local_irq_disable();
397 /*
398 * Remove this CPU:
399 */
400 set_cpu_online(smp_processor_id(), false);
401 disable_local_APIC();
402
403 for (;;) {
404 if (hlt_works(smp_processor_id()))
405 halt();
406 }
407 }
408
409 static void do_nothing(void *unused)
410 {
411 }
412
413 /*
414 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
415 * pm_idle and update to new pm_idle value. Required while changing pm_idle
416 * handler on SMP systems.
417 *
418 * Caller must have changed pm_idle to the new value before the call. Old
419 * pm_idle value will not be used by any CPU after the return of this function.
420 */
421 void cpu_idle_wait(void)
422 {
423 smp_mb();
424 /* kick all the CPUs so that they exit out of pm_idle */
425 smp_call_function(do_nothing, NULL, 1);
426 }
427 EXPORT_SYMBOL_GPL(cpu_idle_wait);
428
429 /*
430 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
431 * which can obviate IPI to trigger checking of need_resched.
432 * We execute MONITOR against need_resched and enter optimized wait state
433 * through MWAIT. Whenever someone changes need_resched, we would be woken
434 * up from MWAIT (without an IPI).
435 *
436 * New with Core Duo processors, MWAIT can take some hints based on CPU
437 * capability.
438 */
439 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
440 {
441 trace_power_start(POWER_CSTATE, (ax>>4)+1);
442 if (!need_resched()) {
443 if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
444 clflush((void *)&current_thread_info()->flags);
445
446 __monitor((void *)&current_thread_info()->flags, 0, 0);
447 smp_mb();
448 if (!need_resched())
449 __mwait(ax, cx);
450 }
451 }
452
453 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
454 static void mwait_idle(void)
455 {
456 if (!need_resched()) {
457 trace_power_start(POWER_CSTATE, 1);
458 if (cpu_has(&current_cpu_data, X86_FEATURE_CLFLUSH_MONITOR))
459 clflush((void *)&current_thread_info()->flags);
460
461 __monitor((void *)&current_thread_info()->flags, 0, 0);
462 smp_mb();
463 if (!need_resched())
464 __sti_mwait(0, 0);
465 else
466 local_irq_enable();
467 } else
468 local_irq_enable();
469 }
470
471 /*
472 * On SMP it's slightly faster (but much more power-consuming!)
473 * to poll the ->work.need_resched flag instead of waiting for the
474 * cross-CPU IPI to arrive. Use this option with caution.
475 */
476 static void poll_idle(void)
477 {
478 trace_power_start(POWER_CSTATE, 0);
479 local_irq_enable();
480 while (!need_resched())
481 cpu_relax();
482 trace_power_end(0);
483 }
484
485 /*
486 * mwait selection logic:
487 *
488 * It depends on the CPU. For AMD CPUs that support MWAIT this is
489 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
490 * then depend on a clock divisor and current Pstate of the core. If
491 * all cores of a processor are in halt state (C1) the processor can
492 * enter the C1E (C1 enhanced) state. If mwait is used this will never
493 * happen.
494 *
495 * idle=mwait overrides this decision and forces the usage of mwait.
496 */
497 static int __cpuinitdata force_mwait;
498
499 #define MWAIT_INFO 0x05
500 #define MWAIT_ECX_EXTENDED_INFO 0x01
501 #define MWAIT_EDX_C1 0xf0
502
503 static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
504 {
505 u32 eax, ebx, ecx, edx;
506
507 if (force_mwait)
508 return 1;
509
510 if (c->cpuid_level < MWAIT_INFO)
511 return 0;
512
513 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
514 /* Check, whether EDX has extended info about MWAIT */
515 if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
516 return 1;
517
518 /*
519 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
520 * C1 supports MWAIT
521 */
522 return (edx & MWAIT_EDX_C1);
523 }
524
525 /*
526 * Check for AMD CPUs, where APIC timer interrupt does not wake up CPU from C1e.
527 * For more information see
528 * - Erratum #400 for NPT family 0xf and family 0x10 CPUs
529 * - Erratum #365 for family 0x11 (not affected because C1e not in use)
530 */
531 static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c)
532 {
533 u64 val;
534 if (c->x86_vendor != X86_VENDOR_AMD)
535 goto no_c1e_idle;
536
537 /* Family 0x0f models < rev F do not have C1E */
538 if (c->x86 == 0x0F && c->x86_model >= 0x40)
539 return 1;
540
541 if (c->x86 == 0x10) {
542 /*
543 * check OSVW bit for CPUs that are not affected
544 * by erratum #400
545 */
546 rdmsrl(MSR_AMD64_OSVW_ID_LENGTH, val);
547 if (val >= 2) {
548 rdmsrl(MSR_AMD64_OSVW_STATUS, val);
549 if (!(val & BIT(1)))
550 goto no_c1e_idle;
551 }
552 return 1;
553 }
554
555 no_c1e_idle:
556 return 0;
557 }
558
559 static cpumask_var_t c1e_mask;
560 static int c1e_detected;
561
562 void c1e_remove_cpu(int cpu)
563 {
564 if (c1e_mask != NULL)
565 cpumask_clear_cpu(cpu, c1e_mask);
566 }
567
568 /*
569 * C1E aware idle routine. We check for C1E active in the interrupt
570 * pending message MSR. If we detect C1E, then we handle it the same
571 * way as C3 power states (local apic timer and TSC stop)
572 */
573 static void c1e_idle(void)
574 {
575 if (need_resched())
576 return;
577
578 if (!c1e_detected) {
579 u32 lo, hi;
580
581 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
582 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
583 c1e_detected = 1;
584 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
585 mark_tsc_unstable("TSC halt in AMD C1E");
586 printk(KERN_INFO "System has AMD C1E enabled\n");
587 set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E);
588 }
589 }
590
591 if (c1e_detected) {
592 int cpu = smp_processor_id();
593
594 if (!cpumask_test_cpu(cpu, c1e_mask)) {
595 cpumask_set_cpu(cpu, c1e_mask);
596 /*
597 * Force broadcast so ACPI can not interfere.
598 */
599 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
600 &cpu);
601 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
602 cpu);
603 }
604 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
605
606 default_idle();
607
608 /*
609 * The switch back from broadcast mode needs to be
610 * called with interrupts disabled.
611 */
612 local_irq_disable();
613 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
614 local_irq_enable();
615 } else
616 default_idle();
617 }
618
619 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
620 {
621 #ifdef CONFIG_SMP
622 if (pm_idle == poll_idle && smp_num_siblings > 1) {
623 printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
624 " performance may degrade.\n");
625 }
626 #endif
627 if (pm_idle)
628 return;
629
630 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
631 /*
632 * One CPU supports mwait => All CPUs supports mwait
633 */
634 printk(KERN_INFO "using mwait in idle threads.\n");
635 pm_idle = mwait_idle;
636 } else if (check_c1e_idle(c)) {
637 printk(KERN_INFO "using C1E aware idle routine\n");
638 pm_idle = c1e_idle;
639 } else
640 pm_idle = default_idle;
641 }
642
643 void __init init_c1e_mask(void)
644 {
645 /* If we're using c1e_idle, we need to allocate c1e_mask. */
646 if (pm_idle == c1e_idle)
647 zalloc_cpumask_var(&c1e_mask, GFP_KERNEL);
648 }
649
650 static int __init idle_setup(char *str)
651 {
652 if (!str)
653 return -EINVAL;
654
655 if (!strcmp(str, "poll")) {
656 printk("using polling idle threads.\n");
657 pm_idle = poll_idle;
658 } else if (!strcmp(str, "mwait"))
659 force_mwait = 1;
660 else if (!strcmp(str, "halt")) {
661 /*
662 * When the boot option of idle=halt is added, halt is
663 * forced to be used for CPU idle. In such case CPU C2/C3
664 * won't be used again.
665 * To continue to load the CPU idle driver, don't touch
666 * the boot_option_idle_override.
667 */
668 pm_idle = default_idle;
669 idle_halt = 1;
670 return 0;
671 } else if (!strcmp(str, "nomwait")) {
672 /*
673 * If the boot option of "idle=nomwait" is added,
674 * it means that mwait will be disabled for CPU C2/C3
675 * states. In such case it won't touch the variable
676 * of boot_option_idle_override.
677 */
678 idle_nomwait = 1;
679 return 0;
680 } else
681 return -1;
682
683 boot_option_idle_override = 1;
684 return 0;
685 }
686 early_param("idle", idle_setup);
687
688 unsigned long arch_align_stack(unsigned long sp)
689 {
690 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
691 sp -= get_random_int() % 8192;
692 return sp & ~0xf;
693 }
694
695 unsigned long arch_randomize_brk(struct mm_struct *mm)
696 {
697 unsigned long range_end = mm->brk + 0x02000000;
698 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
699 }
700
This page took 0.046451 seconds and 5 git commands to generate.