Merge 2.6.38-rc5 into staging-next
[deliverable/linux.git] / arch / x86 / kernel / process.c
1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <linux/user-return-notifier.h>
13 #include <linux/dmi.h>
14 #include <linux/utsname.h>
15 #include <trace/events/power.h>
16 #include <linux/hw_breakpoint.h>
17 #include <asm/cpu.h>
18 #include <asm/system.h>
19 #include <asm/apic.h>
20 #include <asm/syscalls.h>
21 #include <asm/idle.h>
22 #include <asm/uaccess.h>
23 #include <asm/i387.h>
24 #include <asm/debugreg.h>
25
26 struct kmem_cache *task_xstate_cachep;
27 EXPORT_SYMBOL_GPL(task_xstate_cachep);
28
29 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
30 {
31 int ret;
32
33 *dst = *src;
34 if (fpu_allocated(&src->thread.fpu)) {
35 memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
36 ret = fpu_alloc(&dst->thread.fpu);
37 if (ret)
38 return ret;
39 fpu_copy(&dst->thread.fpu, &src->thread.fpu);
40 }
41 return 0;
42 }
43
44 void free_thread_xstate(struct task_struct *tsk)
45 {
46 fpu_free(&tsk->thread.fpu);
47 }
48
49 void free_thread_info(struct thread_info *ti)
50 {
51 free_thread_xstate(ti->task);
52 free_pages((unsigned long)ti, get_order(THREAD_SIZE));
53 }
54
55 void arch_task_cache_init(void)
56 {
57 task_xstate_cachep =
58 kmem_cache_create("task_xstate", xstate_size,
59 __alignof__(union thread_xstate),
60 SLAB_PANIC | SLAB_NOTRACK, NULL);
61 }
62
63 /*
64 * Free current thread data structures etc..
65 */
66 void exit_thread(void)
67 {
68 struct task_struct *me = current;
69 struct thread_struct *t = &me->thread;
70 unsigned long *bp = t->io_bitmap_ptr;
71
72 if (bp) {
73 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
74
75 t->io_bitmap_ptr = NULL;
76 clear_thread_flag(TIF_IO_BITMAP);
77 /*
78 * Careful, clear this in the TSS too:
79 */
80 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
81 t->io_bitmap_max = 0;
82 put_cpu();
83 kfree(bp);
84 }
85 }
86
87 void show_regs(struct pt_regs *regs)
88 {
89 show_registers(regs);
90 show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs));
91 }
92
93 void show_regs_common(void)
94 {
95 const char *vendor, *product, *board;
96
97 vendor = dmi_get_system_info(DMI_SYS_VENDOR);
98 if (!vendor)
99 vendor = "";
100 product = dmi_get_system_info(DMI_PRODUCT_NAME);
101 if (!product)
102 product = "";
103
104 /* Board Name is optional */
105 board = dmi_get_system_info(DMI_BOARD_NAME);
106
107 printk(KERN_CONT "\n");
108 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s",
109 current->pid, current->comm, print_tainted(),
110 init_utsname()->release,
111 (int)strcspn(init_utsname()->version, " "),
112 init_utsname()->version);
113 printk(KERN_CONT " ");
114 printk(KERN_CONT "%s %s", vendor, product);
115 if (board) {
116 printk(KERN_CONT "/");
117 printk(KERN_CONT "%s", board);
118 }
119 printk(KERN_CONT "\n");
120 }
121
122 void flush_thread(void)
123 {
124 struct task_struct *tsk = current;
125
126 flush_ptrace_hw_breakpoint(tsk);
127 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
128 /*
129 * Forget coprocessor state..
130 */
131 tsk->fpu_counter = 0;
132 clear_fpu(tsk);
133 clear_used_math();
134 }
135
136 static void hard_disable_TSC(void)
137 {
138 write_cr4(read_cr4() | X86_CR4_TSD);
139 }
140
141 void disable_TSC(void)
142 {
143 preempt_disable();
144 if (!test_and_set_thread_flag(TIF_NOTSC))
145 /*
146 * Must flip the CPU state synchronously with
147 * TIF_NOTSC in the current running context.
148 */
149 hard_disable_TSC();
150 preempt_enable();
151 }
152
153 static void hard_enable_TSC(void)
154 {
155 write_cr4(read_cr4() & ~X86_CR4_TSD);
156 }
157
158 static void enable_TSC(void)
159 {
160 preempt_disable();
161 if (test_and_clear_thread_flag(TIF_NOTSC))
162 /*
163 * Must flip the CPU state synchronously with
164 * TIF_NOTSC in the current running context.
165 */
166 hard_enable_TSC();
167 preempt_enable();
168 }
169
170 int get_tsc_mode(unsigned long adr)
171 {
172 unsigned int val;
173
174 if (test_thread_flag(TIF_NOTSC))
175 val = PR_TSC_SIGSEGV;
176 else
177 val = PR_TSC_ENABLE;
178
179 return put_user(val, (unsigned int __user *)adr);
180 }
181
182 int set_tsc_mode(unsigned int val)
183 {
184 if (val == PR_TSC_SIGSEGV)
185 disable_TSC();
186 else if (val == PR_TSC_ENABLE)
187 enable_TSC();
188 else
189 return -EINVAL;
190
191 return 0;
192 }
193
194 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
195 struct tss_struct *tss)
196 {
197 struct thread_struct *prev, *next;
198
199 prev = &prev_p->thread;
200 next = &next_p->thread;
201
202 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
203 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
204 unsigned long debugctl = get_debugctlmsr();
205
206 debugctl &= ~DEBUGCTLMSR_BTF;
207 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
208 debugctl |= DEBUGCTLMSR_BTF;
209
210 update_debugctlmsr(debugctl);
211 }
212
213 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
214 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
215 /* prev and next are different */
216 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
217 hard_disable_TSC();
218 else
219 hard_enable_TSC();
220 }
221
222 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
223 /*
224 * Copy the relevant range of the IO bitmap.
225 * Normally this is 128 bytes or less:
226 */
227 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
228 max(prev->io_bitmap_max, next->io_bitmap_max));
229 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
230 /*
231 * Clear any possible leftover bits:
232 */
233 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
234 }
235 propagate_user_return_notify(prev_p, next_p);
236 }
237
238 int sys_fork(struct pt_regs *regs)
239 {
240 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
241 }
242
243 /*
244 * This is trivial, and on the face of it looks like it
245 * could equally well be done in user mode.
246 *
247 * Not so, for quite unobvious reasons - register pressure.
248 * In user mode vfork() cannot have a stack frame, and if
249 * done by calling the "clone()" system call directly, you
250 * do not have enough call-clobbered registers to hold all
251 * the information you need.
252 */
253 int sys_vfork(struct pt_regs *regs)
254 {
255 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
256 NULL, NULL);
257 }
258
259 long
260 sys_clone(unsigned long clone_flags, unsigned long newsp,
261 void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
262 {
263 if (!newsp)
264 newsp = regs->sp;
265 return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
266 }
267
268 /*
269 * This gets run with %si containing the
270 * function to call, and %di containing
271 * the "args".
272 */
273 extern void kernel_thread_helper(void);
274
275 /*
276 * Create a kernel thread
277 */
278 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
279 {
280 struct pt_regs regs;
281
282 memset(&regs, 0, sizeof(regs));
283
284 regs.si = (unsigned long) fn;
285 regs.di = (unsigned long) arg;
286
287 #ifdef CONFIG_X86_32
288 regs.ds = __USER_DS;
289 regs.es = __USER_DS;
290 regs.fs = __KERNEL_PERCPU;
291 regs.gs = __KERNEL_STACK_CANARY;
292 #else
293 regs.ss = __KERNEL_DS;
294 #endif
295
296 regs.orig_ax = -1;
297 regs.ip = (unsigned long) kernel_thread_helper;
298 regs.cs = __KERNEL_CS | get_kernel_rpl();
299 regs.flags = X86_EFLAGS_IF | 0x2;
300
301 /* Ok, create the new process.. */
302 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
303 }
304 EXPORT_SYMBOL(kernel_thread);
305
306 /*
307 * sys_execve() executes a new program.
308 */
309 long sys_execve(const char __user *name,
310 const char __user *const __user *argv,
311 const char __user *const __user *envp, struct pt_regs *regs)
312 {
313 long error;
314 char *filename;
315
316 filename = getname(name);
317 error = PTR_ERR(filename);
318 if (IS_ERR(filename))
319 return error;
320 error = do_execve(filename, argv, envp, regs);
321
322 #ifdef CONFIG_X86_32
323 if (error == 0) {
324 /* Make sure we don't return using sysenter.. */
325 set_thread_flag(TIF_IRET);
326 }
327 #endif
328
329 putname(filename);
330 return error;
331 }
332
333 /*
334 * Idle related variables and functions
335 */
336 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
337 EXPORT_SYMBOL(boot_option_idle_override);
338
339 /*
340 * Powermanagement idle function, if any..
341 */
342 void (*pm_idle)(void);
343 EXPORT_SYMBOL(pm_idle);
344
345 #ifdef CONFIG_X86_32
346 /*
347 * This halt magic was a workaround for ancient floppy DMA
348 * wreckage. It should be safe to remove.
349 */
350 static int hlt_counter;
351 void disable_hlt(void)
352 {
353 hlt_counter++;
354 }
355 EXPORT_SYMBOL(disable_hlt);
356
357 void enable_hlt(void)
358 {
359 hlt_counter--;
360 }
361 EXPORT_SYMBOL(enable_hlt);
362
363 static inline int hlt_use_halt(void)
364 {
365 return (!hlt_counter && boot_cpu_data.hlt_works_ok);
366 }
367 #else
368 static inline int hlt_use_halt(void)
369 {
370 return 1;
371 }
372 #endif
373
374 /*
375 * We use this if we don't have any better
376 * idle routine..
377 */
378 void default_idle(void)
379 {
380 if (hlt_use_halt()) {
381 trace_power_start(POWER_CSTATE, 1, smp_processor_id());
382 trace_cpu_idle(1, smp_processor_id());
383 current_thread_info()->status &= ~TS_POLLING;
384 /*
385 * TS_POLLING-cleared state must be visible before we
386 * test NEED_RESCHED:
387 */
388 smp_mb();
389
390 if (!need_resched())
391 safe_halt(); /* enables interrupts racelessly */
392 else
393 local_irq_enable();
394 current_thread_info()->status |= TS_POLLING;
395 trace_power_end(smp_processor_id());
396 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
397 } else {
398 local_irq_enable();
399 /* loop is done by the caller */
400 cpu_relax();
401 }
402 }
403 #ifdef CONFIG_APM_MODULE
404 EXPORT_SYMBOL(default_idle);
405 #endif
406
407 void stop_this_cpu(void *dummy)
408 {
409 local_irq_disable();
410 /*
411 * Remove this CPU:
412 */
413 set_cpu_online(smp_processor_id(), false);
414 disable_local_APIC();
415
416 for (;;) {
417 if (hlt_works(smp_processor_id()))
418 halt();
419 }
420 }
421
422 static void do_nothing(void *unused)
423 {
424 }
425
426 /*
427 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
428 * pm_idle and update to new pm_idle value. Required while changing pm_idle
429 * handler on SMP systems.
430 *
431 * Caller must have changed pm_idle to the new value before the call. Old
432 * pm_idle value will not be used by any CPU after the return of this function.
433 */
434 void cpu_idle_wait(void)
435 {
436 smp_mb();
437 /* kick all the CPUs so that they exit out of pm_idle */
438 smp_call_function(do_nothing, NULL, 1);
439 }
440 EXPORT_SYMBOL_GPL(cpu_idle_wait);
441
442 /*
443 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
444 * which can obviate IPI to trigger checking of need_resched.
445 * We execute MONITOR against need_resched and enter optimized wait state
446 * through MWAIT. Whenever someone changes need_resched, we would be woken
447 * up from MWAIT (without an IPI).
448 *
449 * New with Core Duo processors, MWAIT can take some hints based on CPU
450 * capability.
451 */
452 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
453 {
454 if (!need_resched()) {
455 if (cpu_has(__this_cpu_ptr(&cpu_info), X86_FEATURE_CLFLUSH_MONITOR))
456 clflush((void *)&current_thread_info()->flags);
457
458 __monitor((void *)&current_thread_info()->flags, 0, 0);
459 smp_mb();
460 if (!need_resched())
461 __mwait(ax, cx);
462 }
463 }
464
465 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
466 static void mwait_idle(void)
467 {
468 if (!need_resched()) {
469 trace_power_start(POWER_CSTATE, 1, smp_processor_id());
470 trace_cpu_idle(1, smp_processor_id());
471 if (cpu_has(__this_cpu_ptr(&cpu_info), X86_FEATURE_CLFLUSH_MONITOR))
472 clflush((void *)&current_thread_info()->flags);
473
474 __monitor((void *)&current_thread_info()->flags, 0, 0);
475 smp_mb();
476 if (!need_resched())
477 __sti_mwait(0, 0);
478 else
479 local_irq_enable();
480 trace_power_end(smp_processor_id());
481 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
482 } else
483 local_irq_enable();
484 }
485
486 /*
487 * On SMP it's slightly faster (but much more power-consuming!)
488 * to poll the ->work.need_resched flag instead of waiting for the
489 * cross-CPU IPI to arrive. Use this option with caution.
490 */
491 static void poll_idle(void)
492 {
493 trace_power_start(POWER_CSTATE, 0, smp_processor_id());
494 trace_cpu_idle(0, smp_processor_id());
495 local_irq_enable();
496 while (!need_resched())
497 cpu_relax();
498 trace_power_end(smp_processor_id());
499 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
500 }
501
502 /*
503 * mwait selection logic:
504 *
505 * It depends on the CPU. For AMD CPUs that support MWAIT this is
506 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
507 * then depend on a clock divisor and current Pstate of the core. If
508 * all cores of a processor are in halt state (C1) the processor can
509 * enter the C1E (C1 enhanced) state. If mwait is used this will never
510 * happen.
511 *
512 * idle=mwait overrides this decision and forces the usage of mwait.
513 */
514
515 #define MWAIT_INFO 0x05
516 #define MWAIT_ECX_EXTENDED_INFO 0x01
517 #define MWAIT_EDX_C1 0xf0
518
519 int mwait_usable(const struct cpuinfo_x86 *c)
520 {
521 u32 eax, ebx, ecx, edx;
522
523 if (boot_option_idle_override == IDLE_FORCE_MWAIT)
524 return 1;
525
526 if (c->cpuid_level < MWAIT_INFO)
527 return 0;
528
529 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
530 /* Check, whether EDX has extended info about MWAIT */
531 if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
532 return 1;
533
534 /*
535 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
536 * C1 supports MWAIT
537 */
538 return (edx & MWAIT_EDX_C1);
539 }
540
541 bool c1e_detected;
542 EXPORT_SYMBOL(c1e_detected);
543
544 static cpumask_var_t c1e_mask;
545
546 void c1e_remove_cpu(int cpu)
547 {
548 if (c1e_mask != NULL)
549 cpumask_clear_cpu(cpu, c1e_mask);
550 }
551
552 /*
553 * C1E aware idle routine. We check for C1E active in the interrupt
554 * pending message MSR. If we detect C1E, then we handle it the same
555 * way as C3 power states (local apic timer and TSC stop)
556 */
557 static void c1e_idle(void)
558 {
559 if (need_resched())
560 return;
561
562 if (!c1e_detected) {
563 u32 lo, hi;
564
565 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
566
567 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
568 c1e_detected = true;
569 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
570 mark_tsc_unstable("TSC halt in AMD C1E");
571 printk(KERN_INFO "System has AMD C1E enabled\n");
572 }
573 }
574
575 if (c1e_detected) {
576 int cpu = smp_processor_id();
577
578 if (!cpumask_test_cpu(cpu, c1e_mask)) {
579 cpumask_set_cpu(cpu, c1e_mask);
580 /*
581 * Force broadcast so ACPI can not interfere.
582 */
583 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
584 &cpu);
585 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
586 cpu);
587 }
588 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
589
590 default_idle();
591
592 /*
593 * The switch back from broadcast mode needs to be
594 * called with interrupts disabled.
595 */
596 local_irq_disable();
597 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
598 local_irq_enable();
599 } else
600 default_idle();
601 }
602
603 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
604 {
605 #ifdef CONFIG_SMP
606 if (pm_idle == poll_idle && smp_num_siblings > 1) {
607 printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
608 " performance may degrade.\n");
609 }
610 #endif
611 if (pm_idle)
612 return;
613
614 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
615 /*
616 * One CPU supports mwait => All CPUs supports mwait
617 */
618 printk(KERN_INFO "using mwait in idle threads.\n");
619 pm_idle = mwait_idle;
620 } else if (cpu_has_amd_erratum(amd_erratum_400)) {
621 /* E400: APIC timer interrupt does not wake up CPU from C1e */
622 printk(KERN_INFO "using C1E aware idle routine\n");
623 pm_idle = c1e_idle;
624 } else
625 pm_idle = default_idle;
626 }
627
628 void __init init_c1e_mask(void)
629 {
630 /* If we're using c1e_idle, we need to allocate c1e_mask. */
631 if (pm_idle == c1e_idle)
632 zalloc_cpumask_var(&c1e_mask, GFP_KERNEL);
633 }
634
635 static int __init idle_setup(char *str)
636 {
637 if (!str)
638 return -EINVAL;
639
640 if (!strcmp(str, "poll")) {
641 printk("using polling idle threads.\n");
642 pm_idle = poll_idle;
643 boot_option_idle_override = IDLE_POLL;
644 } else if (!strcmp(str, "mwait")) {
645 boot_option_idle_override = IDLE_FORCE_MWAIT;
646 } else if (!strcmp(str, "halt")) {
647 /*
648 * When the boot option of idle=halt is added, halt is
649 * forced to be used for CPU idle. In such case CPU C2/C3
650 * won't be used again.
651 * To continue to load the CPU idle driver, don't touch
652 * the boot_option_idle_override.
653 */
654 pm_idle = default_idle;
655 boot_option_idle_override = IDLE_HALT;
656 } else if (!strcmp(str, "nomwait")) {
657 /*
658 * If the boot option of "idle=nomwait" is added,
659 * it means that mwait will be disabled for CPU C2/C3
660 * states. In such case it won't touch the variable
661 * of boot_option_idle_override.
662 */
663 boot_option_idle_override = IDLE_NOMWAIT;
664 } else
665 return -1;
666
667 return 0;
668 }
669 early_param("idle", idle_setup);
670
671 unsigned long arch_align_stack(unsigned long sp)
672 {
673 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
674 sp -= get_random_int() % 8192;
675 return sp & ~0xf;
676 }
677
678 unsigned long arch_randomize_brk(struct mm_struct *mm)
679 {
680 unsigned long range_end = mm->brk + 0x02000000;
681 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
682 }
683
This page took 0.054159 seconds and 5 git commands to generate.