Merge branch 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / arch / x86 / kernel / process.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/module.h>
11 #include <linux/pm.h>
12 #include <linux/clockchips.h>
13 #include <linux/random.h>
14 #include <linux/user-return-notifier.h>
15 #include <linux/dmi.h>
16 #include <linux/utsname.h>
17 #include <linux/stackprotector.h>
18 #include <linux/tick.h>
19 #include <linux/cpuidle.h>
20 #include <trace/events/power.h>
21 #include <linux/hw_breakpoint.h>
22 #include <asm/cpu.h>
23 #include <asm/apic.h>
24 #include <asm/syscalls.h>
25 #include <asm/idle.h>
26 #include <asm/uaccess.h>
27 #include <asm/i387.h>
28 #include <asm/fpu-internal.h>
29 #include <asm/debugreg.h>
30 #include <asm/nmi.h>
31
32 /*
33 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
34 * no more per-task TSS's. The TSS size is kept cacheline-aligned
35 * so they are allowed to end up in the .data..cacheline_aligned
36 * section. Since TSS's are completely CPU-local, we want them
37 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
38 */
39 DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
40
41 #ifdef CONFIG_X86_64
42 static DEFINE_PER_CPU(unsigned char, is_idle);
43 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
44
45 void idle_notifier_register(struct notifier_block *n)
46 {
47 atomic_notifier_chain_register(&idle_notifier, n);
48 }
49 EXPORT_SYMBOL_GPL(idle_notifier_register);
50
51 void idle_notifier_unregister(struct notifier_block *n)
52 {
53 atomic_notifier_chain_unregister(&idle_notifier, n);
54 }
55 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
56 #endif
57
58 struct kmem_cache *task_xstate_cachep;
59 EXPORT_SYMBOL_GPL(task_xstate_cachep);
60
61 /*
62 * this gets called so that we can store lazy state into memory and copy the
63 * current task into the new thread.
64 */
65 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
66 {
67 int ret;
68
69 *dst = *src;
70 if (fpu_allocated(&src->thread.fpu)) {
71 memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
72 ret = fpu_alloc(&dst->thread.fpu);
73 if (ret)
74 return ret;
75 fpu_copy(dst, src);
76 }
77 return 0;
78 }
79
80 void free_thread_xstate(struct task_struct *tsk)
81 {
82 fpu_free(&tsk->thread.fpu);
83 }
84
85 void arch_release_task_struct(struct task_struct *tsk)
86 {
87 free_thread_xstate(tsk);
88 }
89
90 void arch_task_cache_init(void)
91 {
92 task_xstate_cachep =
93 kmem_cache_create("task_xstate", xstate_size,
94 __alignof__(union thread_xstate),
95 SLAB_PANIC | SLAB_NOTRACK, NULL);
96 }
97
98 /*
99 * Free current thread data structures etc..
100 */
101 void exit_thread(void)
102 {
103 struct task_struct *me = current;
104 struct thread_struct *t = &me->thread;
105 unsigned long *bp = t->io_bitmap_ptr;
106
107 if (bp) {
108 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
109
110 t->io_bitmap_ptr = NULL;
111 clear_thread_flag(TIF_IO_BITMAP);
112 /*
113 * Careful, clear this in the TSS too:
114 */
115 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
116 t->io_bitmap_max = 0;
117 put_cpu();
118 kfree(bp);
119 }
120
121 drop_fpu(me);
122 }
123
124 void show_regs_common(void)
125 {
126 const char *vendor, *product, *board;
127
128 vendor = dmi_get_system_info(DMI_SYS_VENDOR);
129 if (!vendor)
130 vendor = "";
131 product = dmi_get_system_info(DMI_PRODUCT_NAME);
132 if (!product)
133 product = "";
134
135 /* Board Name is optional */
136 board = dmi_get_system_info(DMI_BOARD_NAME);
137
138 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s %s%s%s\n",
139 current->pid, current->comm, print_tainted(),
140 init_utsname()->release,
141 (int)strcspn(init_utsname()->version, " "),
142 init_utsname()->version,
143 vendor, product,
144 board ? "/" : "",
145 board ? board : "");
146 }
147
148 void flush_thread(void)
149 {
150 struct task_struct *tsk = current;
151
152 flush_ptrace_hw_breakpoint(tsk);
153 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
154 drop_init_fpu(tsk);
155 /*
156 * Free the FPU state for non xsave platforms. They get reallocated
157 * lazily at the first use.
158 */
159 if (!use_eager_fpu())
160 free_thread_xstate(tsk);
161 }
162
163 static void hard_disable_TSC(void)
164 {
165 write_cr4(read_cr4() | X86_CR4_TSD);
166 }
167
168 void disable_TSC(void)
169 {
170 preempt_disable();
171 if (!test_and_set_thread_flag(TIF_NOTSC))
172 /*
173 * Must flip the CPU state synchronously with
174 * TIF_NOTSC in the current running context.
175 */
176 hard_disable_TSC();
177 preempt_enable();
178 }
179
180 static void hard_enable_TSC(void)
181 {
182 write_cr4(read_cr4() & ~X86_CR4_TSD);
183 }
184
185 static void enable_TSC(void)
186 {
187 preempt_disable();
188 if (test_and_clear_thread_flag(TIF_NOTSC))
189 /*
190 * Must flip the CPU state synchronously with
191 * TIF_NOTSC in the current running context.
192 */
193 hard_enable_TSC();
194 preempt_enable();
195 }
196
197 int get_tsc_mode(unsigned long adr)
198 {
199 unsigned int val;
200
201 if (test_thread_flag(TIF_NOTSC))
202 val = PR_TSC_SIGSEGV;
203 else
204 val = PR_TSC_ENABLE;
205
206 return put_user(val, (unsigned int __user *)adr);
207 }
208
209 int set_tsc_mode(unsigned int val)
210 {
211 if (val == PR_TSC_SIGSEGV)
212 disable_TSC();
213 else if (val == PR_TSC_ENABLE)
214 enable_TSC();
215 else
216 return -EINVAL;
217
218 return 0;
219 }
220
221 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
222 struct tss_struct *tss)
223 {
224 struct thread_struct *prev, *next;
225
226 prev = &prev_p->thread;
227 next = &next_p->thread;
228
229 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
230 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
231 unsigned long debugctl = get_debugctlmsr();
232
233 debugctl &= ~DEBUGCTLMSR_BTF;
234 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
235 debugctl |= DEBUGCTLMSR_BTF;
236
237 update_debugctlmsr(debugctl);
238 }
239
240 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
241 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
242 /* prev and next are different */
243 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
244 hard_disable_TSC();
245 else
246 hard_enable_TSC();
247 }
248
249 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
250 /*
251 * Copy the relevant range of the IO bitmap.
252 * Normally this is 128 bytes or less:
253 */
254 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
255 max(prev->io_bitmap_max, next->io_bitmap_max));
256 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
257 /*
258 * Clear any possible leftover bits:
259 */
260 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
261 }
262 propagate_user_return_notify(prev_p, next_p);
263 }
264
265 int sys_fork(struct pt_regs *regs)
266 {
267 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
268 }
269
270 /*
271 * This is trivial, and on the face of it looks like it
272 * could equally well be done in user mode.
273 *
274 * Not so, for quite unobvious reasons - register pressure.
275 * In user mode vfork() cannot have a stack frame, and if
276 * done by calling the "clone()" system call directly, you
277 * do not have enough call-clobbered registers to hold all
278 * the information you need.
279 */
280 int sys_vfork(struct pt_regs *regs)
281 {
282 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
283 NULL, NULL);
284 }
285
286 long
287 sys_clone(unsigned long clone_flags, unsigned long newsp,
288 void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
289 {
290 if (!newsp)
291 newsp = regs->sp;
292 return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
293 }
294
295 /*
296 * Idle related variables and functions
297 */
298 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
299 EXPORT_SYMBOL(boot_option_idle_override);
300
301 /*
302 * Powermanagement idle function, if any..
303 */
304 void (*pm_idle)(void);
305 #ifdef CONFIG_APM_MODULE
306 EXPORT_SYMBOL(pm_idle);
307 #endif
308
309 #ifndef CONFIG_SMP
310 static inline void play_dead(void)
311 {
312 BUG();
313 }
314 #endif
315
316 #ifdef CONFIG_X86_64
317 void enter_idle(void)
318 {
319 this_cpu_write(is_idle, 1);
320 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
321 }
322
323 static void __exit_idle(void)
324 {
325 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
326 return;
327 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
328 }
329
330 /* Called from interrupts to signify idle end */
331 void exit_idle(void)
332 {
333 /* idle loop has pid 0 */
334 if (current->pid)
335 return;
336 __exit_idle();
337 }
338 #endif
339
340 /*
341 * The idle thread. There's no useful work to be
342 * done, so just try to conserve power and have a
343 * low exit latency (ie sit in a loop waiting for
344 * somebody to say that they'd like to reschedule)
345 */
346 void cpu_idle(void)
347 {
348 /*
349 * If we're the non-boot CPU, nothing set the stack canary up
350 * for us. CPU0 already has it initialized but no harm in
351 * doing it again. This is a good place for updating it, as
352 * we wont ever return from this function (so the invalid
353 * canaries already on the stack wont ever trigger).
354 */
355 boot_init_stack_canary();
356 current_thread_info()->status |= TS_POLLING;
357
358 while (1) {
359 tick_nohz_idle_enter();
360
361 while (!need_resched()) {
362 rmb();
363
364 if (cpu_is_offline(smp_processor_id()))
365 play_dead();
366
367 /*
368 * Idle routines should keep interrupts disabled
369 * from here on, until they go to idle.
370 * Otherwise, idle callbacks can misfire.
371 */
372 local_touch_nmi();
373 local_irq_disable();
374
375 enter_idle();
376
377 /* Don't trace irqs off for idle */
378 stop_critical_timings();
379
380 /* enter_idle() needs rcu for notifiers */
381 rcu_idle_enter();
382
383 if (cpuidle_idle_call())
384 pm_idle();
385
386 rcu_idle_exit();
387 start_critical_timings();
388
389 /* In many cases the interrupt that ended idle
390 has already called exit_idle. But some idle
391 loops can be woken up without interrupt. */
392 __exit_idle();
393 }
394
395 tick_nohz_idle_exit();
396 preempt_enable_no_resched();
397 schedule();
398 preempt_disable();
399 }
400 }
401
402 /*
403 * We use this if we don't have any better
404 * idle routine..
405 */
406 void default_idle(void)
407 {
408 trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
409 trace_cpu_idle_rcuidle(1, smp_processor_id());
410 current_thread_info()->status &= ~TS_POLLING;
411 /*
412 * TS_POLLING-cleared state must be visible before we
413 * test NEED_RESCHED:
414 */
415 smp_mb();
416
417 if (!need_resched())
418 safe_halt(); /* enables interrupts racelessly */
419 else
420 local_irq_enable();
421 current_thread_info()->status |= TS_POLLING;
422 trace_power_end_rcuidle(smp_processor_id());
423 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
424 }
425 #ifdef CONFIG_APM_MODULE
426 EXPORT_SYMBOL(default_idle);
427 #endif
428
429 bool set_pm_idle_to_default(void)
430 {
431 bool ret = !!pm_idle;
432
433 pm_idle = default_idle;
434
435 return ret;
436 }
437 void stop_this_cpu(void *dummy)
438 {
439 local_irq_disable();
440 /*
441 * Remove this CPU:
442 */
443 set_cpu_online(smp_processor_id(), false);
444 disable_local_APIC();
445
446 for (;;) {
447 if (hlt_works(smp_processor_id()))
448 halt();
449 }
450 }
451
452 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
453 static void mwait_idle(void)
454 {
455 if (!need_resched()) {
456 trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
457 trace_cpu_idle_rcuidle(1, smp_processor_id());
458 if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
459 clflush((void *)&current_thread_info()->flags);
460
461 __monitor((void *)&current_thread_info()->flags, 0, 0);
462 smp_mb();
463 if (!need_resched())
464 __sti_mwait(0, 0);
465 else
466 local_irq_enable();
467 trace_power_end_rcuidle(smp_processor_id());
468 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
469 } else
470 local_irq_enable();
471 }
472
473 /*
474 * On SMP it's slightly faster (but much more power-consuming!)
475 * to poll the ->work.need_resched flag instead of waiting for the
476 * cross-CPU IPI to arrive. Use this option with caution.
477 */
478 static void poll_idle(void)
479 {
480 trace_power_start_rcuidle(POWER_CSTATE, 0, smp_processor_id());
481 trace_cpu_idle_rcuidle(0, smp_processor_id());
482 local_irq_enable();
483 while (!need_resched())
484 cpu_relax();
485 trace_power_end_rcuidle(smp_processor_id());
486 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
487 }
488
489 /*
490 * mwait selection logic:
491 *
492 * It depends on the CPU. For AMD CPUs that support MWAIT this is
493 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
494 * then depend on a clock divisor and current Pstate of the core. If
495 * all cores of a processor are in halt state (C1) the processor can
496 * enter the C1E (C1 enhanced) state. If mwait is used this will never
497 * happen.
498 *
499 * idle=mwait overrides this decision and forces the usage of mwait.
500 */
501
502 #define MWAIT_INFO 0x05
503 #define MWAIT_ECX_EXTENDED_INFO 0x01
504 #define MWAIT_EDX_C1 0xf0
505
506 int mwait_usable(const struct cpuinfo_x86 *c)
507 {
508 u32 eax, ebx, ecx, edx;
509
510 /* Use mwait if idle=mwait boot option is given */
511 if (boot_option_idle_override == IDLE_FORCE_MWAIT)
512 return 1;
513
514 /*
515 * Any idle= boot option other than idle=mwait means that we must not
516 * use mwait. Eg: idle=halt or idle=poll or idle=nomwait
517 */
518 if (boot_option_idle_override != IDLE_NO_OVERRIDE)
519 return 0;
520
521 if (c->cpuid_level < MWAIT_INFO)
522 return 0;
523
524 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
525 /* Check, whether EDX has extended info about MWAIT */
526 if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
527 return 1;
528
529 /*
530 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
531 * C1 supports MWAIT
532 */
533 return (edx & MWAIT_EDX_C1);
534 }
535
536 bool amd_e400_c1e_detected;
537 EXPORT_SYMBOL(amd_e400_c1e_detected);
538
539 static cpumask_var_t amd_e400_c1e_mask;
540
541 void amd_e400_remove_cpu(int cpu)
542 {
543 if (amd_e400_c1e_mask != NULL)
544 cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
545 }
546
547 /*
548 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
549 * pending message MSR. If we detect C1E, then we handle it the same
550 * way as C3 power states (local apic timer and TSC stop)
551 */
552 static void amd_e400_idle(void)
553 {
554 if (need_resched())
555 return;
556
557 if (!amd_e400_c1e_detected) {
558 u32 lo, hi;
559
560 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
561
562 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
563 amd_e400_c1e_detected = true;
564 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
565 mark_tsc_unstable("TSC halt in AMD C1E");
566 pr_info("System has AMD C1E enabled\n");
567 }
568 }
569
570 if (amd_e400_c1e_detected) {
571 int cpu = smp_processor_id();
572
573 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
574 cpumask_set_cpu(cpu, amd_e400_c1e_mask);
575 /*
576 * Force broadcast so ACPI can not interfere.
577 */
578 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
579 &cpu);
580 pr_info("Switch to broadcast mode on CPU%d\n", cpu);
581 }
582 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
583
584 default_idle();
585
586 /*
587 * The switch back from broadcast mode needs to be
588 * called with interrupts disabled.
589 */
590 local_irq_disable();
591 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
592 local_irq_enable();
593 } else
594 default_idle();
595 }
596
597 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
598 {
599 #ifdef CONFIG_SMP
600 if (pm_idle == poll_idle && smp_num_siblings > 1) {
601 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
602 }
603 #endif
604 if (pm_idle)
605 return;
606
607 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
608 /*
609 * One CPU supports mwait => All CPUs supports mwait
610 */
611 pr_info("using mwait in idle threads\n");
612 pm_idle = mwait_idle;
613 } else if (cpu_has_amd_erratum(amd_erratum_400)) {
614 /* E400: APIC timer interrupt does not wake up CPU from C1e */
615 pr_info("using AMD E400 aware idle routine\n");
616 pm_idle = amd_e400_idle;
617 } else
618 pm_idle = default_idle;
619 }
620
621 void __init init_amd_e400_c1e_mask(void)
622 {
623 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
624 if (pm_idle == amd_e400_idle)
625 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
626 }
627
628 static int __init idle_setup(char *str)
629 {
630 if (!str)
631 return -EINVAL;
632
633 if (!strcmp(str, "poll")) {
634 pr_info("using polling idle threads\n");
635 pm_idle = poll_idle;
636 boot_option_idle_override = IDLE_POLL;
637 } else if (!strcmp(str, "mwait")) {
638 boot_option_idle_override = IDLE_FORCE_MWAIT;
639 WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n");
640 } else if (!strcmp(str, "halt")) {
641 /*
642 * When the boot option of idle=halt is added, halt is
643 * forced to be used for CPU idle. In such case CPU C2/C3
644 * won't be used again.
645 * To continue to load the CPU idle driver, don't touch
646 * the boot_option_idle_override.
647 */
648 pm_idle = default_idle;
649 boot_option_idle_override = IDLE_HALT;
650 } else if (!strcmp(str, "nomwait")) {
651 /*
652 * If the boot option of "idle=nomwait" is added,
653 * it means that mwait will be disabled for CPU C2/C3
654 * states. In such case it won't touch the variable
655 * of boot_option_idle_override.
656 */
657 boot_option_idle_override = IDLE_NOMWAIT;
658 } else
659 return -1;
660
661 return 0;
662 }
663 early_param("idle", idle_setup);
664
665 unsigned long arch_align_stack(unsigned long sp)
666 {
667 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
668 sp -= get_random_int() % 8192;
669 return sp & ~0xf;
670 }
671
672 unsigned long arch_randomize_brk(struct mm_struct *mm)
673 {
674 unsigned long range_end = mm->brk + 0x02000000;
675 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
676 }
677
This page took 0.047909 seconds and 6 git commands to generate.