x86: Merge the x86_32 and x86_64 cpu_idle() functions
[deliverable/linux.git] / arch / x86 / kernel / process.c
1 #include <linux/errno.h>
2 #include <linux/kernel.h>
3 #include <linux/mm.h>
4 #include <linux/smp.h>
5 #include <linux/prctl.h>
6 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/module.h>
9 #include <linux/pm.h>
10 #include <linux/clockchips.h>
11 #include <linux/random.h>
12 #include <linux/user-return-notifier.h>
13 #include <linux/dmi.h>
14 #include <linux/utsname.h>
15 #include <linux/stackprotector.h>
16 #include <linux/tick.h>
17 #include <linux/cpuidle.h>
18 #include <trace/events/power.h>
19 #include <linux/hw_breakpoint.h>
20 #include <asm/cpu.h>
21 #include <asm/system.h>
22 #include <asm/apic.h>
23 #include <asm/syscalls.h>
24 #include <asm/idle.h>
25 #include <asm/uaccess.h>
26 #include <asm/i387.h>
27 #include <asm/fpu-internal.h>
28 #include <asm/debugreg.h>
29 #include <asm/nmi.h>
30
31 #ifdef CONFIG_X86_64
32 static DEFINE_PER_CPU(unsigned char, is_idle);
33 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
34
35 void idle_notifier_register(struct notifier_block *n)
36 {
37 atomic_notifier_chain_register(&idle_notifier, n);
38 }
39 EXPORT_SYMBOL_GPL(idle_notifier_register);
40
41 void idle_notifier_unregister(struct notifier_block *n)
42 {
43 atomic_notifier_chain_unregister(&idle_notifier, n);
44 }
45 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
46 #endif
47
48 struct kmem_cache *task_xstate_cachep;
49 EXPORT_SYMBOL_GPL(task_xstate_cachep);
50
51 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
52 {
53 int ret;
54
55 *dst = *src;
56 if (fpu_allocated(&src->thread.fpu)) {
57 memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
58 ret = fpu_alloc(&dst->thread.fpu);
59 if (ret)
60 return ret;
61 fpu_copy(&dst->thread.fpu, &src->thread.fpu);
62 }
63 return 0;
64 }
65
66 void free_thread_xstate(struct task_struct *tsk)
67 {
68 fpu_free(&tsk->thread.fpu);
69 }
70
71 void free_thread_info(struct thread_info *ti)
72 {
73 free_thread_xstate(ti->task);
74 free_pages((unsigned long)ti, THREAD_ORDER);
75 }
76
77 void arch_task_cache_init(void)
78 {
79 task_xstate_cachep =
80 kmem_cache_create("task_xstate", xstate_size,
81 __alignof__(union thread_xstate),
82 SLAB_PANIC | SLAB_NOTRACK, NULL);
83 }
84
85 /*
86 * Free current thread data structures etc..
87 */
88 void exit_thread(void)
89 {
90 struct task_struct *me = current;
91 struct thread_struct *t = &me->thread;
92 unsigned long *bp = t->io_bitmap_ptr;
93
94 if (bp) {
95 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
96
97 t->io_bitmap_ptr = NULL;
98 clear_thread_flag(TIF_IO_BITMAP);
99 /*
100 * Careful, clear this in the TSS too:
101 */
102 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
103 t->io_bitmap_max = 0;
104 put_cpu();
105 kfree(bp);
106 }
107 }
108
109 void show_regs(struct pt_regs *regs)
110 {
111 show_registers(regs);
112 show_trace(NULL, regs, (unsigned long *)kernel_stack_pointer(regs), 0);
113 }
114
115 void show_regs_common(void)
116 {
117 const char *vendor, *product, *board;
118
119 vendor = dmi_get_system_info(DMI_SYS_VENDOR);
120 if (!vendor)
121 vendor = "";
122 product = dmi_get_system_info(DMI_PRODUCT_NAME);
123 if (!product)
124 product = "";
125
126 /* Board Name is optional */
127 board = dmi_get_system_info(DMI_BOARD_NAME);
128
129 printk(KERN_CONT "\n");
130 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s",
131 current->pid, current->comm, print_tainted(),
132 init_utsname()->release,
133 (int)strcspn(init_utsname()->version, " "),
134 init_utsname()->version);
135 printk(KERN_CONT " %s %s", vendor, product);
136 if (board)
137 printk(KERN_CONT "/%s", board);
138 printk(KERN_CONT "\n");
139 }
140
141 void flush_thread(void)
142 {
143 struct task_struct *tsk = current;
144
145 flush_ptrace_hw_breakpoint(tsk);
146 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
147 /*
148 * Forget coprocessor state..
149 */
150 tsk->fpu_counter = 0;
151 clear_fpu(tsk);
152 clear_used_math();
153 }
154
155 static void hard_disable_TSC(void)
156 {
157 write_cr4(read_cr4() | X86_CR4_TSD);
158 }
159
160 void disable_TSC(void)
161 {
162 preempt_disable();
163 if (!test_and_set_thread_flag(TIF_NOTSC))
164 /*
165 * Must flip the CPU state synchronously with
166 * TIF_NOTSC in the current running context.
167 */
168 hard_disable_TSC();
169 preempt_enable();
170 }
171
172 static void hard_enable_TSC(void)
173 {
174 write_cr4(read_cr4() & ~X86_CR4_TSD);
175 }
176
177 static void enable_TSC(void)
178 {
179 preempt_disable();
180 if (test_and_clear_thread_flag(TIF_NOTSC))
181 /*
182 * Must flip the CPU state synchronously with
183 * TIF_NOTSC in the current running context.
184 */
185 hard_enable_TSC();
186 preempt_enable();
187 }
188
189 int get_tsc_mode(unsigned long adr)
190 {
191 unsigned int val;
192
193 if (test_thread_flag(TIF_NOTSC))
194 val = PR_TSC_SIGSEGV;
195 else
196 val = PR_TSC_ENABLE;
197
198 return put_user(val, (unsigned int __user *)adr);
199 }
200
201 int set_tsc_mode(unsigned int val)
202 {
203 if (val == PR_TSC_SIGSEGV)
204 disable_TSC();
205 else if (val == PR_TSC_ENABLE)
206 enable_TSC();
207 else
208 return -EINVAL;
209
210 return 0;
211 }
212
213 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
214 struct tss_struct *tss)
215 {
216 struct thread_struct *prev, *next;
217
218 prev = &prev_p->thread;
219 next = &next_p->thread;
220
221 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
222 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
223 unsigned long debugctl = get_debugctlmsr();
224
225 debugctl &= ~DEBUGCTLMSR_BTF;
226 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
227 debugctl |= DEBUGCTLMSR_BTF;
228
229 update_debugctlmsr(debugctl);
230 }
231
232 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
233 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
234 /* prev and next are different */
235 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
236 hard_disable_TSC();
237 else
238 hard_enable_TSC();
239 }
240
241 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
242 /*
243 * Copy the relevant range of the IO bitmap.
244 * Normally this is 128 bytes or less:
245 */
246 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
247 max(prev->io_bitmap_max, next->io_bitmap_max));
248 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
249 /*
250 * Clear any possible leftover bits:
251 */
252 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
253 }
254 propagate_user_return_notify(prev_p, next_p);
255 }
256
257 int sys_fork(struct pt_regs *regs)
258 {
259 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
260 }
261
262 /*
263 * This is trivial, and on the face of it looks like it
264 * could equally well be done in user mode.
265 *
266 * Not so, for quite unobvious reasons - register pressure.
267 * In user mode vfork() cannot have a stack frame, and if
268 * done by calling the "clone()" system call directly, you
269 * do not have enough call-clobbered registers to hold all
270 * the information you need.
271 */
272 int sys_vfork(struct pt_regs *regs)
273 {
274 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
275 NULL, NULL);
276 }
277
278 long
279 sys_clone(unsigned long clone_flags, unsigned long newsp,
280 void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
281 {
282 if (!newsp)
283 newsp = regs->sp;
284 return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
285 }
286
287 /*
288 * This gets run with %si containing the
289 * function to call, and %di containing
290 * the "args".
291 */
292 extern void kernel_thread_helper(void);
293
294 /*
295 * Create a kernel thread
296 */
297 int kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
298 {
299 struct pt_regs regs;
300
301 memset(&regs, 0, sizeof(regs));
302
303 regs.si = (unsigned long) fn;
304 regs.di = (unsigned long) arg;
305
306 #ifdef CONFIG_X86_32
307 regs.ds = __USER_DS;
308 regs.es = __USER_DS;
309 regs.fs = __KERNEL_PERCPU;
310 regs.gs = __KERNEL_STACK_CANARY;
311 #else
312 regs.ss = __KERNEL_DS;
313 #endif
314
315 regs.orig_ax = -1;
316 regs.ip = (unsigned long) kernel_thread_helper;
317 regs.cs = __KERNEL_CS | get_kernel_rpl();
318 regs.flags = X86_EFLAGS_IF | X86_EFLAGS_BIT1;
319
320 /* Ok, create the new process.. */
321 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
322 }
323 EXPORT_SYMBOL(kernel_thread);
324
325 /*
326 * sys_execve() executes a new program.
327 */
328 long sys_execve(const char __user *name,
329 const char __user *const __user *argv,
330 const char __user *const __user *envp, struct pt_regs *regs)
331 {
332 long error;
333 char *filename;
334
335 filename = getname(name);
336 error = PTR_ERR(filename);
337 if (IS_ERR(filename))
338 return error;
339 error = do_execve(filename, argv, envp, regs);
340
341 #ifdef CONFIG_X86_32
342 if (error == 0) {
343 /* Make sure we don't return using sysenter.. */
344 set_thread_flag(TIF_IRET);
345 }
346 #endif
347
348 putname(filename);
349 return error;
350 }
351
352 /*
353 * Idle related variables and functions
354 */
355 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
356 EXPORT_SYMBOL(boot_option_idle_override);
357
358 /*
359 * Powermanagement idle function, if any..
360 */
361 void (*pm_idle)(void);
362 #ifdef CONFIG_APM_MODULE
363 EXPORT_SYMBOL(pm_idle);
364 #endif
365
366 #ifdef CONFIG_X86_32
367 /*
368 * This halt magic was a workaround for ancient floppy DMA
369 * wreckage. It should be safe to remove.
370 */
371 static int hlt_counter;
372 void disable_hlt(void)
373 {
374 hlt_counter++;
375 }
376 EXPORT_SYMBOL(disable_hlt);
377
378 void enable_hlt(void)
379 {
380 hlt_counter--;
381 }
382 EXPORT_SYMBOL(enable_hlt);
383
384 static inline int hlt_use_halt(void)
385 {
386 return (!hlt_counter && boot_cpu_data.hlt_works_ok);
387 }
388 #else
389 static inline int hlt_use_halt(void)
390 {
391 return 1;
392 }
393 #endif
394
395 #ifndef CONFIG_SMP
396 static inline void play_dead(void)
397 {
398 BUG();
399 }
400 #endif
401
402 #ifdef CONFIG_X86_64
403 void enter_idle(void)
404 {
405 percpu_write(is_idle, 1);
406 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
407 }
408
409 static void __exit_idle(void)
410 {
411 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
412 return;
413 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
414 }
415
416 /* Called from interrupts to signify idle end */
417 void exit_idle(void)
418 {
419 /* idle loop has pid 0 */
420 if (current->pid)
421 return;
422 __exit_idle();
423 }
424 #endif
425
426 /*
427 * The idle thread. There's no useful work to be
428 * done, so just try to conserve power and have a
429 * low exit latency (ie sit in a loop waiting for
430 * somebody to say that they'd like to reschedule)
431 */
432 void cpu_idle(void)
433 {
434 /*
435 * If we're the non-boot CPU, nothing set the stack canary up
436 * for us. CPU0 already has it initialized but no harm in
437 * doing it again. This is a good place for updating it, as
438 * we wont ever return from this function (so the invalid
439 * canaries already on the stack wont ever trigger).
440 */
441 boot_init_stack_canary();
442 current_thread_info()->status |= TS_POLLING;
443
444 while (1) {
445 tick_nohz_idle_enter();
446
447 while (!need_resched()) {
448 rmb();
449
450 if (cpu_is_offline(smp_processor_id()))
451 play_dead();
452
453 /*
454 * Idle routines should keep interrupts disabled
455 * from here on, until they go to idle.
456 * Otherwise, idle callbacks can misfire.
457 */
458 local_touch_nmi();
459 local_irq_disable();
460
461 enter_idle();
462
463 /* Don't trace irqs off for idle */
464 stop_critical_timings();
465
466 /* enter_idle() needs rcu for notifiers */
467 rcu_idle_enter();
468
469 if (cpuidle_idle_call())
470 pm_idle();
471
472 rcu_idle_exit();
473 start_critical_timings();
474
475 /* In many cases the interrupt that ended idle
476 has already called exit_idle. But some idle
477 loops can be woken up without interrupt. */
478 __exit_idle();
479 }
480
481 tick_nohz_idle_exit();
482 preempt_enable_no_resched();
483 schedule();
484 preempt_disable();
485 }
486 }
487
488 /*
489 * We use this if we don't have any better
490 * idle routine..
491 */
492 void default_idle(void)
493 {
494 if (hlt_use_halt()) {
495 trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
496 trace_cpu_idle_rcuidle(1, smp_processor_id());
497 current_thread_info()->status &= ~TS_POLLING;
498 /*
499 * TS_POLLING-cleared state must be visible before we
500 * test NEED_RESCHED:
501 */
502 smp_mb();
503
504 if (!need_resched())
505 safe_halt(); /* enables interrupts racelessly */
506 else
507 local_irq_enable();
508 current_thread_info()->status |= TS_POLLING;
509 trace_power_end_rcuidle(smp_processor_id());
510 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
511 } else {
512 local_irq_enable();
513 /* loop is done by the caller */
514 cpu_relax();
515 }
516 }
517 #ifdef CONFIG_APM_MODULE
518 EXPORT_SYMBOL(default_idle);
519 #endif
520
521 bool set_pm_idle_to_default(void)
522 {
523 bool ret = !!pm_idle;
524
525 pm_idle = default_idle;
526
527 return ret;
528 }
529 void stop_this_cpu(void *dummy)
530 {
531 local_irq_disable();
532 /*
533 * Remove this CPU:
534 */
535 set_cpu_online(smp_processor_id(), false);
536 disable_local_APIC();
537
538 for (;;) {
539 if (hlt_works(smp_processor_id()))
540 halt();
541 }
542 }
543
544 static void do_nothing(void *unused)
545 {
546 }
547
548 /*
549 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
550 * pm_idle and update to new pm_idle value. Required while changing pm_idle
551 * handler on SMP systems.
552 *
553 * Caller must have changed pm_idle to the new value before the call. Old
554 * pm_idle value will not be used by any CPU after the return of this function.
555 */
556 void cpu_idle_wait(void)
557 {
558 smp_mb();
559 /* kick all the CPUs so that they exit out of pm_idle */
560 smp_call_function(do_nothing, NULL, 1);
561 }
562 EXPORT_SYMBOL_GPL(cpu_idle_wait);
563
564 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
565 static void mwait_idle(void)
566 {
567 if (!need_resched()) {
568 trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
569 trace_cpu_idle_rcuidle(1, smp_processor_id());
570 if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
571 clflush((void *)&current_thread_info()->flags);
572
573 __monitor((void *)&current_thread_info()->flags, 0, 0);
574 smp_mb();
575 if (!need_resched())
576 __sti_mwait(0, 0);
577 else
578 local_irq_enable();
579 trace_power_end_rcuidle(smp_processor_id());
580 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
581 } else
582 local_irq_enable();
583 }
584
585 /*
586 * On SMP it's slightly faster (but much more power-consuming!)
587 * to poll the ->work.need_resched flag instead of waiting for the
588 * cross-CPU IPI to arrive. Use this option with caution.
589 */
590 static void poll_idle(void)
591 {
592 trace_power_start_rcuidle(POWER_CSTATE, 0, smp_processor_id());
593 trace_cpu_idle_rcuidle(0, smp_processor_id());
594 local_irq_enable();
595 while (!need_resched())
596 cpu_relax();
597 trace_power_end_rcuidle(smp_processor_id());
598 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
599 }
600
601 /*
602 * mwait selection logic:
603 *
604 * It depends on the CPU. For AMD CPUs that support MWAIT this is
605 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
606 * then depend on a clock divisor and current Pstate of the core. If
607 * all cores of a processor are in halt state (C1) the processor can
608 * enter the C1E (C1 enhanced) state. If mwait is used this will never
609 * happen.
610 *
611 * idle=mwait overrides this decision and forces the usage of mwait.
612 */
613
614 #define MWAIT_INFO 0x05
615 #define MWAIT_ECX_EXTENDED_INFO 0x01
616 #define MWAIT_EDX_C1 0xf0
617
618 int mwait_usable(const struct cpuinfo_x86 *c)
619 {
620 u32 eax, ebx, ecx, edx;
621
622 if (boot_option_idle_override == IDLE_FORCE_MWAIT)
623 return 1;
624
625 if (c->cpuid_level < MWAIT_INFO)
626 return 0;
627
628 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
629 /* Check, whether EDX has extended info about MWAIT */
630 if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
631 return 1;
632
633 /*
634 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
635 * C1 supports MWAIT
636 */
637 return (edx & MWAIT_EDX_C1);
638 }
639
640 bool amd_e400_c1e_detected;
641 EXPORT_SYMBOL(amd_e400_c1e_detected);
642
643 static cpumask_var_t amd_e400_c1e_mask;
644
645 void amd_e400_remove_cpu(int cpu)
646 {
647 if (amd_e400_c1e_mask != NULL)
648 cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
649 }
650
651 /*
652 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
653 * pending message MSR. If we detect C1E, then we handle it the same
654 * way as C3 power states (local apic timer and TSC stop)
655 */
656 static void amd_e400_idle(void)
657 {
658 if (need_resched())
659 return;
660
661 if (!amd_e400_c1e_detected) {
662 u32 lo, hi;
663
664 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
665
666 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
667 amd_e400_c1e_detected = true;
668 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
669 mark_tsc_unstable("TSC halt in AMD C1E");
670 printk(KERN_INFO "System has AMD C1E enabled\n");
671 }
672 }
673
674 if (amd_e400_c1e_detected) {
675 int cpu = smp_processor_id();
676
677 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
678 cpumask_set_cpu(cpu, amd_e400_c1e_mask);
679 /*
680 * Force broadcast so ACPI can not interfere.
681 */
682 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
683 &cpu);
684 printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
685 cpu);
686 }
687 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
688
689 default_idle();
690
691 /*
692 * The switch back from broadcast mode needs to be
693 * called with interrupts disabled.
694 */
695 local_irq_disable();
696 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
697 local_irq_enable();
698 } else
699 default_idle();
700 }
701
702 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
703 {
704 #ifdef CONFIG_SMP
705 if (pm_idle == poll_idle && smp_num_siblings > 1) {
706 printk_once(KERN_WARNING "WARNING: polling idle and HT enabled,"
707 " performance may degrade.\n");
708 }
709 #endif
710 if (pm_idle)
711 return;
712
713 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
714 /*
715 * One CPU supports mwait => All CPUs supports mwait
716 */
717 printk(KERN_INFO "using mwait in idle threads.\n");
718 pm_idle = mwait_idle;
719 } else if (cpu_has_amd_erratum(amd_erratum_400)) {
720 /* E400: APIC timer interrupt does not wake up CPU from C1e */
721 printk(KERN_INFO "using AMD E400 aware idle routine\n");
722 pm_idle = amd_e400_idle;
723 } else
724 pm_idle = default_idle;
725 }
726
727 void __init init_amd_e400_c1e_mask(void)
728 {
729 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
730 if (pm_idle == amd_e400_idle)
731 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
732 }
733
734 static int __init idle_setup(char *str)
735 {
736 if (!str)
737 return -EINVAL;
738
739 if (!strcmp(str, "poll")) {
740 printk("using polling idle threads.\n");
741 pm_idle = poll_idle;
742 boot_option_idle_override = IDLE_POLL;
743 } else if (!strcmp(str, "mwait")) {
744 boot_option_idle_override = IDLE_FORCE_MWAIT;
745 WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n");
746 } else if (!strcmp(str, "halt")) {
747 /*
748 * When the boot option of idle=halt is added, halt is
749 * forced to be used for CPU idle. In such case CPU C2/C3
750 * won't be used again.
751 * To continue to load the CPU idle driver, don't touch
752 * the boot_option_idle_override.
753 */
754 pm_idle = default_idle;
755 boot_option_idle_override = IDLE_HALT;
756 } else if (!strcmp(str, "nomwait")) {
757 /*
758 * If the boot option of "idle=nomwait" is added,
759 * it means that mwait will be disabled for CPU C2/C3
760 * states. In such case it won't touch the variable
761 * of boot_option_idle_override.
762 */
763 boot_option_idle_override = IDLE_NOMWAIT;
764 } else
765 return -1;
766
767 return 0;
768 }
769 early_param("idle", idle_setup);
770
771 unsigned long arch_align_stack(unsigned long sp)
772 {
773 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
774 sp -= get_random_int() % 8192;
775 return sp & ~0xf;
776 }
777
778 unsigned long arch_randomize_brk(struct mm_struct *mm)
779 {
780 unsigned long range_end = mm->brk + 0x02000000;
781 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
782 }
783
This page took 0.049435 seconds and 6 git commands to generate.