Merge branch 'misc' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[deliverable/linux.git] / arch / x86 / kernel / process.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/module.h>
11 #include <linux/pm.h>
12 #include <linux/clockchips.h>
13 #include <linux/random.h>
14 #include <linux/user-return-notifier.h>
15 #include <linux/dmi.h>
16 #include <linux/utsname.h>
17 #include <linux/stackprotector.h>
18 #include <linux/tick.h>
19 #include <linux/cpuidle.h>
20 #include <trace/events/power.h>
21 #include <linux/hw_breakpoint.h>
22 #include <asm/cpu.h>
23 #include <asm/apic.h>
24 #include <asm/syscalls.h>
25 #include <asm/idle.h>
26 #include <asm/uaccess.h>
27 #include <asm/i387.h>
28 #include <asm/fpu-internal.h>
29 #include <asm/debugreg.h>
30 #include <asm/nmi.h>
31
32 /*
33 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
34 * no more per-task TSS's. The TSS size is kept cacheline-aligned
35 * so they are allowed to end up in the .data..cacheline_aligned
36 * section. Since TSS's are completely CPU-local, we want them
37 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
38 */
39 DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
40
41 #ifdef CONFIG_X86_64
42 static DEFINE_PER_CPU(unsigned char, is_idle);
43 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
44
45 void idle_notifier_register(struct notifier_block *n)
46 {
47 atomic_notifier_chain_register(&idle_notifier, n);
48 }
49 EXPORT_SYMBOL_GPL(idle_notifier_register);
50
51 void idle_notifier_unregister(struct notifier_block *n)
52 {
53 atomic_notifier_chain_unregister(&idle_notifier, n);
54 }
55 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
56 #endif
57
58 struct kmem_cache *task_xstate_cachep;
59 EXPORT_SYMBOL_GPL(task_xstate_cachep);
60
61 /*
62 * this gets called so that we can store lazy state into memory and copy the
63 * current task into the new thread.
64 */
65 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
66 {
67 int ret;
68
69 *dst = *src;
70 if (fpu_allocated(&src->thread.fpu)) {
71 memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
72 ret = fpu_alloc(&dst->thread.fpu);
73 if (ret)
74 return ret;
75 fpu_copy(dst, src);
76 }
77 return 0;
78 }
79
80 void free_thread_xstate(struct task_struct *tsk)
81 {
82 fpu_free(&tsk->thread.fpu);
83 }
84
85 void arch_release_task_struct(struct task_struct *tsk)
86 {
87 free_thread_xstate(tsk);
88 }
89
90 void arch_task_cache_init(void)
91 {
92 task_xstate_cachep =
93 kmem_cache_create("task_xstate", xstate_size,
94 __alignof__(union thread_xstate),
95 SLAB_PANIC | SLAB_NOTRACK, NULL);
96 }
97
98 /*
99 * Free current thread data structures etc..
100 */
101 void exit_thread(void)
102 {
103 struct task_struct *me = current;
104 struct thread_struct *t = &me->thread;
105 unsigned long *bp = t->io_bitmap_ptr;
106
107 if (bp) {
108 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
109
110 t->io_bitmap_ptr = NULL;
111 clear_thread_flag(TIF_IO_BITMAP);
112 /*
113 * Careful, clear this in the TSS too:
114 */
115 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
116 t->io_bitmap_max = 0;
117 put_cpu();
118 kfree(bp);
119 }
120
121 drop_fpu(me);
122 }
123
124 void show_regs_common(void)
125 {
126 const char *vendor, *product, *board;
127
128 vendor = dmi_get_system_info(DMI_SYS_VENDOR);
129 if (!vendor)
130 vendor = "";
131 product = dmi_get_system_info(DMI_PRODUCT_NAME);
132 if (!product)
133 product = "";
134
135 /* Board Name is optional */
136 board = dmi_get_system_info(DMI_BOARD_NAME);
137
138 printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s %s%s%s\n",
139 current->pid, current->comm, print_tainted(),
140 init_utsname()->release,
141 (int)strcspn(init_utsname()->version, " "),
142 init_utsname()->version,
143 vendor, product,
144 board ? "/" : "",
145 board ? board : "");
146 }
147
148 void flush_thread(void)
149 {
150 struct task_struct *tsk = current;
151
152 flush_ptrace_hw_breakpoint(tsk);
153 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
154 drop_init_fpu(tsk);
155 /*
156 * Free the FPU state for non xsave platforms. They get reallocated
157 * lazily at the first use.
158 */
159 if (!use_eager_fpu())
160 free_thread_xstate(tsk);
161 }
162
163 static void hard_disable_TSC(void)
164 {
165 write_cr4(read_cr4() | X86_CR4_TSD);
166 }
167
168 void disable_TSC(void)
169 {
170 preempt_disable();
171 if (!test_and_set_thread_flag(TIF_NOTSC))
172 /*
173 * Must flip the CPU state synchronously with
174 * TIF_NOTSC in the current running context.
175 */
176 hard_disable_TSC();
177 preempt_enable();
178 }
179
180 static void hard_enable_TSC(void)
181 {
182 write_cr4(read_cr4() & ~X86_CR4_TSD);
183 }
184
185 static void enable_TSC(void)
186 {
187 preempt_disable();
188 if (test_and_clear_thread_flag(TIF_NOTSC))
189 /*
190 * Must flip the CPU state synchronously with
191 * TIF_NOTSC in the current running context.
192 */
193 hard_enable_TSC();
194 preempt_enable();
195 }
196
197 int get_tsc_mode(unsigned long adr)
198 {
199 unsigned int val;
200
201 if (test_thread_flag(TIF_NOTSC))
202 val = PR_TSC_SIGSEGV;
203 else
204 val = PR_TSC_ENABLE;
205
206 return put_user(val, (unsigned int __user *)adr);
207 }
208
209 int set_tsc_mode(unsigned int val)
210 {
211 if (val == PR_TSC_SIGSEGV)
212 disable_TSC();
213 else if (val == PR_TSC_ENABLE)
214 enable_TSC();
215 else
216 return -EINVAL;
217
218 return 0;
219 }
220
221 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
222 struct tss_struct *tss)
223 {
224 struct thread_struct *prev, *next;
225
226 prev = &prev_p->thread;
227 next = &next_p->thread;
228
229 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
230 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
231 unsigned long debugctl = get_debugctlmsr();
232
233 debugctl &= ~DEBUGCTLMSR_BTF;
234 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
235 debugctl |= DEBUGCTLMSR_BTF;
236
237 update_debugctlmsr(debugctl);
238 }
239
240 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
241 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
242 /* prev and next are different */
243 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
244 hard_disable_TSC();
245 else
246 hard_enable_TSC();
247 }
248
249 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
250 /*
251 * Copy the relevant range of the IO bitmap.
252 * Normally this is 128 bytes or less:
253 */
254 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
255 max(prev->io_bitmap_max, next->io_bitmap_max));
256 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
257 /*
258 * Clear any possible leftover bits:
259 */
260 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
261 }
262 propagate_user_return_notify(prev_p, next_p);
263 }
264
265 int sys_fork(struct pt_regs *regs)
266 {
267 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
268 }
269
270 /*
271 * This is trivial, and on the face of it looks like it
272 * could equally well be done in user mode.
273 *
274 * Not so, for quite unobvious reasons - register pressure.
275 * In user mode vfork() cannot have a stack frame, and if
276 * done by calling the "clone()" system call directly, you
277 * do not have enough call-clobbered registers to hold all
278 * the information you need.
279 */
280 int sys_vfork(struct pt_regs *regs)
281 {
282 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp, regs, 0,
283 NULL, NULL);
284 }
285
286 long
287 sys_clone(unsigned long clone_flags, unsigned long newsp,
288 void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
289 {
290 if (!newsp)
291 newsp = regs->sp;
292 return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
293 }
294
295 /*
296 * Idle related variables and functions
297 */
298 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
299 EXPORT_SYMBOL(boot_option_idle_override);
300
301 /*
302 * Powermanagement idle function, if any..
303 */
304 void (*pm_idle)(void);
305 #ifdef CONFIG_APM_MODULE
306 EXPORT_SYMBOL(pm_idle);
307 #endif
308
309 static inline int hlt_use_halt(void)
310 {
311 return 1;
312 }
313
314 #ifndef CONFIG_SMP
315 static inline void play_dead(void)
316 {
317 BUG();
318 }
319 #endif
320
321 #ifdef CONFIG_X86_64
322 void enter_idle(void)
323 {
324 this_cpu_write(is_idle, 1);
325 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
326 }
327
328 static void __exit_idle(void)
329 {
330 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
331 return;
332 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
333 }
334
335 /* Called from interrupts to signify idle end */
336 void exit_idle(void)
337 {
338 /* idle loop has pid 0 */
339 if (current->pid)
340 return;
341 __exit_idle();
342 }
343 #endif
344
345 /*
346 * The idle thread. There's no useful work to be
347 * done, so just try to conserve power and have a
348 * low exit latency (ie sit in a loop waiting for
349 * somebody to say that they'd like to reschedule)
350 */
351 void cpu_idle(void)
352 {
353 /*
354 * If we're the non-boot CPU, nothing set the stack canary up
355 * for us. CPU0 already has it initialized but no harm in
356 * doing it again. This is a good place for updating it, as
357 * we wont ever return from this function (so the invalid
358 * canaries already on the stack wont ever trigger).
359 */
360 boot_init_stack_canary();
361 current_thread_info()->status |= TS_POLLING;
362
363 while (1) {
364 tick_nohz_idle_enter();
365
366 while (!need_resched()) {
367 rmb();
368
369 if (cpu_is_offline(smp_processor_id()))
370 play_dead();
371
372 /*
373 * Idle routines should keep interrupts disabled
374 * from here on, until they go to idle.
375 * Otherwise, idle callbacks can misfire.
376 */
377 local_touch_nmi();
378 local_irq_disable();
379
380 enter_idle();
381
382 /* Don't trace irqs off for idle */
383 stop_critical_timings();
384
385 /* enter_idle() needs rcu for notifiers */
386 rcu_idle_enter();
387
388 if (cpuidle_idle_call())
389 pm_idle();
390
391 rcu_idle_exit();
392 start_critical_timings();
393
394 /* In many cases the interrupt that ended idle
395 has already called exit_idle. But some idle
396 loops can be woken up without interrupt. */
397 __exit_idle();
398 }
399
400 tick_nohz_idle_exit();
401 preempt_enable_no_resched();
402 schedule();
403 preempt_disable();
404 }
405 }
406
407 /*
408 * We use this if we don't have any better
409 * idle routine..
410 */
411 void default_idle(void)
412 {
413 if (hlt_use_halt()) {
414 trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
415 trace_cpu_idle_rcuidle(1, smp_processor_id());
416 current_thread_info()->status &= ~TS_POLLING;
417 /*
418 * TS_POLLING-cleared state must be visible before we
419 * test NEED_RESCHED:
420 */
421 smp_mb();
422
423 if (!need_resched())
424 safe_halt(); /* enables interrupts racelessly */
425 else
426 local_irq_enable();
427 current_thread_info()->status |= TS_POLLING;
428 trace_power_end_rcuidle(smp_processor_id());
429 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
430 } else {
431 local_irq_enable();
432 /* loop is done by the caller */
433 cpu_relax();
434 }
435 }
436 #ifdef CONFIG_APM_MODULE
437 EXPORT_SYMBOL(default_idle);
438 #endif
439
440 bool set_pm_idle_to_default(void)
441 {
442 bool ret = !!pm_idle;
443
444 pm_idle = default_idle;
445
446 return ret;
447 }
448 void stop_this_cpu(void *dummy)
449 {
450 local_irq_disable();
451 /*
452 * Remove this CPU:
453 */
454 set_cpu_online(smp_processor_id(), false);
455 disable_local_APIC();
456
457 for (;;) {
458 if (hlt_works(smp_processor_id()))
459 halt();
460 }
461 }
462
463 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
464 static void mwait_idle(void)
465 {
466 if (!need_resched()) {
467 trace_power_start_rcuidle(POWER_CSTATE, 1, smp_processor_id());
468 trace_cpu_idle_rcuidle(1, smp_processor_id());
469 if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR))
470 clflush((void *)&current_thread_info()->flags);
471
472 __monitor((void *)&current_thread_info()->flags, 0, 0);
473 smp_mb();
474 if (!need_resched())
475 __sti_mwait(0, 0);
476 else
477 local_irq_enable();
478 trace_power_end_rcuidle(smp_processor_id());
479 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
480 } else
481 local_irq_enable();
482 }
483
484 /*
485 * On SMP it's slightly faster (but much more power-consuming!)
486 * to poll the ->work.need_resched flag instead of waiting for the
487 * cross-CPU IPI to arrive. Use this option with caution.
488 */
489 static void poll_idle(void)
490 {
491 trace_power_start_rcuidle(POWER_CSTATE, 0, smp_processor_id());
492 trace_cpu_idle_rcuidle(0, smp_processor_id());
493 local_irq_enable();
494 while (!need_resched())
495 cpu_relax();
496 trace_power_end_rcuidle(smp_processor_id());
497 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
498 }
499
500 /*
501 * mwait selection logic:
502 *
503 * It depends on the CPU. For AMD CPUs that support MWAIT this is
504 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
505 * then depend on a clock divisor and current Pstate of the core. If
506 * all cores of a processor are in halt state (C1) the processor can
507 * enter the C1E (C1 enhanced) state. If mwait is used this will never
508 * happen.
509 *
510 * idle=mwait overrides this decision and forces the usage of mwait.
511 */
512
513 #define MWAIT_INFO 0x05
514 #define MWAIT_ECX_EXTENDED_INFO 0x01
515 #define MWAIT_EDX_C1 0xf0
516
517 int mwait_usable(const struct cpuinfo_x86 *c)
518 {
519 u32 eax, ebx, ecx, edx;
520
521 /* Use mwait if idle=mwait boot option is given */
522 if (boot_option_idle_override == IDLE_FORCE_MWAIT)
523 return 1;
524
525 /*
526 * Any idle= boot option other than idle=mwait means that we must not
527 * use mwait. Eg: idle=halt or idle=poll or idle=nomwait
528 */
529 if (boot_option_idle_override != IDLE_NO_OVERRIDE)
530 return 0;
531
532 if (c->cpuid_level < MWAIT_INFO)
533 return 0;
534
535 cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
536 /* Check, whether EDX has extended info about MWAIT */
537 if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
538 return 1;
539
540 /*
541 * edx enumeratios MONITOR/MWAIT extensions. Check, whether
542 * C1 supports MWAIT
543 */
544 return (edx & MWAIT_EDX_C1);
545 }
546
547 bool amd_e400_c1e_detected;
548 EXPORT_SYMBOL(amd_e400_c1e_detected);
549
550 static cpumask_var_t amd_e400_c1e_mask;
551
552 void amd_e400_remove_cpu(int cpu)
553 {
554 if (amd_e400_c1e_mask != NULL)
555 cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
556 }
557
558 /*
559 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
560 * pending message MSR. If we detect C1E, then we handle it the same
561 * way as C3 power states (local apic timer and TSC stop)
562 */
563 static void amd_e400_idle(void)
564 {
565 if (need_resched())
566 return;
567
568 if (!amd_e400_c1e_detected) {
569 u32 lo, hi;
570
571 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
572
573 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
574 amd_e400_c1e_detected = true;
575 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
576 mark_tsc_unstable("TSC halt in AMD C1E");
577 pr_info("System has AMD C1E enabled\n");
578 }
579 }
580
581 if (amd_e400_c1e_detected) {
582 int cpu = smp_processor_id();
583
584 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
585 cpumask_set_cpu(cpu, amd_e400_c1e_mask);
586 /*
587 * Force broadcast so ACPI can not interfere.
588 */
589 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
590 &cpu);
591 pr_info("Switch to broadcast mode on CPU%d\n", cpu);
592 }
593 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
594
595 default_idle();
596
597 /*
598 * The switch back from broadcast mode needs to be
599 * called with interrupts disabled.
600 */
601 local_irq_disable();
602 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
603 local_irq_enable();
604 } else
605 default_idle();
606 }
607
608 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
609 {
610 #ifdef CONFIG_SMP
611 if (pm_idle == poll_idle && smp_num_siblings > 1) {
612 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
613 }
614 #endif
615 if (pm_idle)
616 return;
617
618 if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
619 /*
620 * One CPU supports mwait => All CPUs supports mwait
621 */
622 pr_info("using mwait in idle threads\n");
623 pm_idle = mwait_idle;
624 } else if (cpu_has_amd_erratum(amd_erratum_400)) {
625 /* E400: APIC timer interrupt does not wake up CPU from C1e */
626 pr_info("using AMD E400 aware idle routine\n");
627 pm_idle = amd_e400_idle;
628 } else
629 pm_idle = default_idle;
630 }
631
632 void __init init_amd_e400_c1e_mask(void)
633 {
634 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
635 if (pm_idle == amd_e400_idle)
636 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
637 }
638
639 static int __init idle_setup(char *str)
640 {
641 if (!str)
642 return -EINVAL;
643
644 if (!strcmp(str, "poll")) {
645 pr_info("using polling idle threads\n");
646 pm_idle = poll_idle;
647 boot_option_idle_override = IDLE_POLL;
648 } else if (!strcmp(str, "mwait")) {
649 boot_option_idle_override = IDLE_FORCE_MWAIT;
650 WARN_ONCE(1, "\"idle=mwait\" will be removed in 2012\n");
651 } else if (!strcmp(str, "halt")) {
652 /*
653 * When the boot option of idle=halt is added, halt is
654 * forced to be used for CPU idle. In such case CPU C2/C3
655 * won't be used again.
656 * To continue to load the CPU idle driver, don't touch
657 * the boot_option_idle_override.
658 */
659 pm_idle = default_idle;
660 boot_option_idle_override = IDLE_HALT;
661 } else if (!strcmp(str, "nomwait")) {
662 /*
663 * If the boot option of "idle=nomwait" is added,
664 * it means that mwait will be disabled for CPU C2/C3
665 * states. In such case it won't touch the variable
666 * of boot_option_idle_override.
667 */
668 boot_option_idle_override = IDLE_NOMWAIT;
669 } else
670 return -1;
671
672 return 0;
673 }
674 early_param("idle", idle_setup);
675
676 unsigned long arch_align_stack(unsigned long sp)
677 {
678 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
679 sp -= get_random_int() % 8192;
680 return sp & ~0xf;
681 }
682
683 unsigned long arch_randomize_brk(struct mm_struct *mm)
684 {
685 unsigned long range_end = mm->brk + 0x02000000;
686 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
687 }
688
This page took 0.085139 seconds and 6 git commands to generate.