Merge branch 'locking-arch-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / arch / x86 / kernel / process.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/errno.h>
4 #include <linux/kernel.h>
5 #include <linux/mm.h>
6 #include <linux/smp.h>
7 #include <linux/prctl.h>
8 #include <linux/slab.h>
9 #include <linux/sched.h>
10 #include <linux/module.h>
11 #include <linux/pm.h>
12 #include <linux/clockchips.h>
13 #include <linux/random.h>
14 #include <linux/user-return-notifier.h>
15 #include <linux/dmi.h>
16 #include <linux/utsname.h>
17 #include <linux/stackprotector.h>
18 #include <linux/tick.h>
19 #include <linux/cpuidle.h>
20 #include <trace/events/power.h>
21 #include <linux/hw_breakpoint.h>
22 #include <asm/cpu.h>
23 #include <asm/apic.h>
24 #include <asm/syscalls.h>
25 #include <asm/idle.h>
26 #include <asm/uaccess.h>
27 #include <asm/i387.h>
28 #include <asm/fpu-internal.h>
29 #include <asm/debugreg.h>
30 #include <asm/nmi.h>
31
32 /*
33 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
34 * no more per-task TSS's. The TSS size is kept cacheline-aligned
35 * so they are allowed to end up in the .data..cacheline_aligned
36 * section. Since TSS's are completely CPU-local, we want them
37 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
38 */
39 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;
40
41 #ifdef CONFIG_X86_64
42 static DEFINE_PER_CPU(unsigned char, is_idle);
43 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
44
45 void idle_notifier_register(struct notifier_block *n)
46 {
47 atomic_notifier_chain_register(&idle_notifier, n);
48 }
49 EXPORT_SYMBOL_GPL(idle_notifier_register);
50
51 void idle_notifier_unregister(struct notifier_block *n)
52 {
53 atomic_notifier_chain_unregister(&idle_notifier, n);
54 }
55 EXPORT_SYMBOL_GPL(idle_notifier_unregister);
56 #endif
57
58 struct kmem_cache *task_xstate_cachep;
59 EXPORT_SYMBOL_GPL(task_xstate_cachep);
60
61 /*
62 * this gets called so that we can store lazy state into memory and copy the
63 * current task into the new thread.
64 */
65 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
66 {
67 int ret;
68
69 *dst = *src;
70 if (fpu_allocated(&src->thread.fpu)) {
71 memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
72 ret = fpu_alloc(&dst->thread.fpu);
73 if (ret)
74 return ret;
75 fpu_copy(dst, src);
76 }
77 return 0;
78 }
79
80 void free_thread_xstate(struct task_struct *tsk)
81 {
82 fpu_free(&tsk->thread.fpu);
83 }
84
85 void arch_release_task_struct(struct task_struct *tsk)
86 {
87 free_thread_xstate(tsk);
88 }
89
90 void arch_task_cache_init(void)
91 {
92 task_xstate_cachep =
93 kmem_cache_create("task_xstate", xstate_size,
94 __alignof__(union thread_xstate),
95 SLAB_PANIC | SLAB_NOTRACK, NULL);
96 setup_xstate_comp();
97 }
98
99 /*
100 * Free current thread data structures etc..
101 */
102 void exit_thread(void)
103 {
104 struct task_struct *me = current;
105 struct thread_struct *t = &me->thread;
106 unsigned long *bp = t->io_bitmap_ptr;
107
108 if (bp) {
109 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
110
111 t->io_bitmap_ptr = NULL;
112 clear_thread_flag(TIF_IO_BITMAP);
113 /*
114 * Careful, clear this in the TSS too:
115 */
116 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
117 t->io_bitmap_max = 0;
118 put_cpu();
119 kfree(bp);
120 }
121
122 drop_fpu(me);
123 }
124
125 void flush_thread(void)
126 {
127 struct task_struct *tsk = current;
128
129 flush_ptrace_hw_breakpoint(tsk);
130 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
131 drop_init_fpu(tsk);
132 /*
133 * Free the FPU state for non xsave platforms. They get reallocated
134 * lazily at the first use.
135 */
136 if (!use_eager_fpu())
137 free_thread_xstate(tsk);
138 }
139
140 static void hard_disable_TSC(void)
141 {
142 write_cr4(read_cr4() | X86_CR4_TSD);
143 }
144
145 void disable_TSC(void)
146 {
147 preempt_disable();
148 if (!test_and_set_thread_flag(TIF_NOTSC))
149 /*
150 * Must flip the CPU state synchronously with
151 * TIF_NOTSC in the current running context.
152 */
153 hard_disable_TSC();
154 preempt_enable();
155 }
156
157 static void hard_enable_TSC(void)
158 {
159 write_cr4(read_cr4() & ~X86_CR4_TSD);
160 }
161
162 static void enable_TSC(void)
163 {
164 preempt_disable();
165 if (test_and_clear_thread_flag(TIF_NOTSC))
166 /*
167 * Must flip the CPU state synchronously with
168 * TIF_NOTSC in the current running context.
169 */
170 hard_enable_TSC();
171 preempt_enable();
172 }
173
174 int get_tsc_mode(unsigned long adr)
175 {
176 unsigned int val;
177
178 if (test_thread_flag(TIF_NOTSC))
179 val = PR_TSC_SIGSEGV;
180 else
181 val = PR_TSC_ENABLE;
182
183 return put_user(val, (unsigned int __user *)adr);
184 }
185
186 int set_tsc_mode(unsigned int val)
187 {
188 if (val == PR_TSC_SIGSEGV)
189 disable_TSC();
190 else if (val == PR_TSC_ENABLE)
191 enable_TSC();
192 else
193 return -EINVAL;
194
195 return 0;
196 }
197
198 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
199 struct tss_struct *tss)
200 {
201 struct thread_struct *prev, *next;
202
203 prev = &prev_p->thread;
204 next = &next_p->thread;
205
206 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
207 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
208 unsigned long debugctl = get_debugctlmsr();
209
210 debugctl &= ~DEBUGCTLMSR_BTF;
211 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
212 debugctl |= DEBUGCTLMSR_BTF;
213
214 update_debugctlmsr(debugctl);
215 }
216
217 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
218 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
219 /* prev and next are different */
220 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
221 hard_disable_TSC();
222 else
223 hard_enable_TSC();
224 }
225
226 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
227 /*
228 * Copy the relevant range of the IO bitmap.
229 * Normally this is 128 bytes or less:
230 */
231 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
232 max(prev->io_bitmap_max, next->io_bitmap_max));
233 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
234 /*
235 * Clear any possible leftover bits:
236 */
237 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
238 }
239 propagate_user_return_notify(prev_p, next_p);
240 }
241
242 /*
243 * Idle related variables and functions
244 */
245 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
246 EXPORT_SYMBOL(boot_option_idle_override);
247
248 static void (*x86_idle)(void);
249
250 #ifndef CONFIG_SMP
251 static inline void play_dead(void)
252 {
253 BUG();
254 }
255 #endif
256
257 #ifdef CONFIG_X86_64
258 void enter_idle(void)
259 {
260 this_cpu_write(is_idle, 1);
261 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
262 }
263
264 static void __exit_idle(void)
265 {
266 if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
267 return;
268 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
269 }
270
271 /* Called from interrupts to signify idle end */
272 void exit_idle(void)
273 {
274 /* idle loop has pid 0 */
275 if (current->pid)
276 return;
277 __exit_idle();
278 }
279 #endif
280
281 void arch_cpu_idle_enter(void)
282 {
283 local_touch_nmi();
284 enter_idle();
285 }
286
287 void arch_cpu_idle_exit(void)
288 {
289 __exit_idle();
290 }
291
292 void arch_cpu_idle_dead(void)
293 {
294 play_dead();
295 }
296
297 /*
298 * Called from the generic idle code.
299 */
300 void arch_cpu_idle(void)
301 {
302 x86_idle();
303 }
304
305 /*
306 * We use this if we don't have any better idle routine..
307 */
308 void default_idle(void)
309 {
310 trace_cpu_idle_rcuidle(1, smp_processor_id());
311 safe_halt();
312 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
313 }
314 #ifdef CONFIG_APM_MODULE
315 EXPORT_SYMBOL(default_idle);
316 #endif
317
318 #ifdef CONFIG_XEN
319 bool xen_set_default_idle(void)
320 {
321 bool ret = !!x86_idle;
322
323 x86_idle = default_idle;
324
325 return ret;
326 }
327 #endif
328 void stop_this_cpu(void *dummy)
329 {
330 local_irq_disable();
331 /*
332 * Remove this CPU:
333 */
334 set_cpu_online(smp_processor_id(), false);
335 disable_local_APIC();
336
337 for (;;)
338 halt();
339 }
340
341 bool amd_e400_c1e_detected;
342 EXPORT_SYMBOL(amd_e400_c1e_detected);
343
344 static cpumask_var_t amd_e400_c1e_mask;
345
346 void amd_e400_remove_cpu(int cpu)
347 {
348 if (amd_e400_c1e_mask != NULL)
349 cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
350 }
351
352 /*
353 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
354 * pending message MSR. If we detect C1E, then we handle it the same
355 * way as C3 power states (local apic timer and TSC stop)
356 */
357 static void amd_e400_idle(void)
358 {
359 if (!amd_e400_c1e_detected) {
360 u32 lo, hi;
361
362 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
363
364 if (lo & K8_INTP_C1E_ACTIVE_MASK) {
365 amd_e400_c1e_detected = true;
366 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
367 mark_tsc_unstable("TSC halt in AMD C1E");
368 pr_info("System has AMD C1E enabled\n");
369 }
370 }
371
372 if (amd_e400_c1e_detected) {
373 int cpu = smp_processor_id();
374
375 if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
376 cpumask_set_cpu(cpu, amd_e400_c1e_mask);
377 /*
378 * Force broadcast so ACPI can not interfere.
379 */
380 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
381 &cpu);
382 pr_info("Switch to broadcast mode on CPU%d\n", cpu);
383 }
384 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);
385
386 default_idle();
387
388 /*
389 * The switch back from broadcast mode needs to be
390 * called with interrupts disabled.
391 */
392 local_irq_disable();
393 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
394 local_irq_enable();
395 } else
396 default_idle();
397 }
398
399 void select_idle_routine(const struct cpuinfo_x86 *c)
400 {
401 #ifdef CONFIG_SMP
402 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
403 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
404 #endif
405 if (x86_idle || boot_option_idle_override == IDLE_POLL)
406 return;
407
408 if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
409 /* E400: APIC timer interrupt does not wake up CPU from C1e */
410 pr_info("using AMD E400 aware idle routine\n");
411 x86_idle = amd_e400_idle;
412 } else
413 x86_idle = default_idle;
414 }
415
416 void __init init_amd_e400_c1e_mask(void)
417 {
418 /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
419 if (x86_idle == amd_e400_idle)
420 zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
421 }
422
423 static int __init idle_setup(char *str)
424 {
425 if (!str)
426 return -EINVAL;
427
428 if (!strcmp(str, "poll")) {
429 pr_info("using polling idle threads\n");
430 boot_option_idle_override = IDLE_POLL;
431 cpu_idle_poll_ctrl(true);
432 } else if (!strcmp(str, "halt")) {
433 /*
434 * When the boot option of idle=halt is added, halt is
435 * forced to be used for CPU idle. In such case CPU C2/C3
436 * won't be used again.
437 * To continue to load the CPU idle driver, don't touch
438 * the boot_option_idle_override.
439 */
440 x86_idle = default_idle;
441 boot_option_idle_override = IDLE_HALT;
442 } else if (!strcmp(str, "nomwait")) {
443 /*
444 * If the boot option of "idle=nomwait" is added,
445 * it means that mwait will be disabled for CPU C2/C3
446 * states. In such case it won't touch the variable
447 * of boot_option_idle_override.
448 */
449 boot_option_idle_override = IDLE_NOMWAIT;
450 } else
451 return -1;
452
453 return 0;
454 }
455 early_param("idle", idle_setup);
456
457 unsigned long arch_align_stack(unsigned long sp)
458 {
459 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
460 sp -= get_random_int() % 8192;
461 return sp & ~0xf;
462 }
463
464 unsigned long arch_randomize_brk(struct mm_struct *mm)
465 {
466 unsigned long range_end = mm->brk + 0x02000000;
467 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
468 }
469
This page took 0.041045 seconds and 6 git commands to generate.