Merge branch 'x86/unify-cpu-detect' into x86-v28-for-linus-phase4-D
[deliverable/linux.git] / arch / x86 / kernel / process_32.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 */
7
8 /*
9 * This file handles the architecture-dependent parts of process handling..
10 */
11
12 #include <stdarg.h>
13
14 #include <linux/cpu.h>
15 #include <linux/errno.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/elfcore.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/utsname.h>
28 #include <linux/delay.h>
29 #include <linux/reboot.h>
30 #include <linux/init.h>
31 #include <linux/mc146818rtc.h>
32 #include <linux/module.h>
33 #include <linux/kallsyms.h>
34 #include <linux/ptrace.h>
35 #include <linux/random.h>
36 #include <linux/personality.h>
37 #include <linux/tick.h>
38 #include <linux/percpu.h>
39 #include <linux/prctl.h>
40 #include <linux/dmi.h>
41
42 #include <asm/uaccess.h>
43 #include <asm/pgtable.h>
44 #include <asm/system.h>
45 #include <asm/io.h>
46 #include <asm/ldt.h>
47 #include <asm/processor.h>
48 #include <asm/i387.h>
49 #include <asm/desc.h>
50 #ifdef CONFIG_MATH_EMULATION
51 #include <asm/math_emu.h>
52 #endif
53
54 #include <linux/err.h>
55
56 #include <asm/tlbflush.h>
57 #include <asm/cpu.h>
58 #include <asm/kdebug.h>
59 #include <asm/idle.h>
60 #include <asm/syscalls.h>
61 #include <asm/smp.h>
62
63 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
64
65 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
66 EXPORT_PER_CPU_SYMBOL(current_task);
67
68 DEFINE_PER_CPU(int, cpu_number);
69 EXPORT_PER_CPU_SYMBOL(cpu_number);
70
71 /*
72 * Return saved PC of a blocked thread.
73 */
74 unsigned long thread_saved_pc(struct task_struct *tsk)
75 {
76 return ((unsigned long *)tsk->thread.sp)[3];
77 }
78
79 #ifdef CONFIG_HOTPLUG_CPU
80 #include <asm/nmi.h>
81
82 static void cpu_exit_clear(void)
83 {
84 int cpu = raw_smp_processor_id();
85
86 idle_task_exit();
87
88 cpu_uninit();
89 irq_ctx_exit(cpu);
90
91 cpu_clear(cpu, cpu_callout_map);
92 cpu_clear(cpu, cpu_callin_map);
93
94 numa_remove_cpu(cpu);
95 c1e_remove_cpu(cpu);
96 }
97
98 /* We don't actually take CPU down, just spin without interrupts. */
99 static inline void play_dead(void)
100 {
101 /* This must be done before dead CPU ack */
102 cpu_exit_clear();
103 mb();
104 /* Ack it */
105 __get_cpu_var(cpu_state) = CPU_DEAD;
106
107 /*
108 * With physical CPU hotplug, we should halt the cpu
109 */
110 local_irq_disable();
111 /* mask all interrupts, flush any and all caches, and halt */
112 wbinvd_halt();
113 }
114 #else
115 static inline void play_dead(void)
116 {
117 BUG();
118 }
119 #endif /* CONFIG_HOTPLUG_CPU */
120
121 /*
122 * The idle thread. There's no useful work to be
123 * done, so just try to conserve power and have a
124 * low exit latency (ie sit in a loop waiting for
125 * somebody to say that they'd like to reschedule)
126 */
127 void cpu_idle(void)
128 {
129 int cpu = smp_processor_id();
130
131 current_thread_info()->status |= TS_POLLING;
132
133 /* endless idle loop with no priority at all */
134 while (1) {
135 tick_nohz_stop_sched_tick(1);
136 while (!need_resched()) {
137
138 check_pgt_cache();
139 rmb();
140
141 if (rcu_pending(cpu))
142 rcu_check_callbacks(cpu, 0);
143
144 if (cpu_is_offline(cpu))
145 play_dead();
146
147 local_irq_disable();
148 __get_cpu_var(irq_stat).idle_timestamp = jiffies;
149 /* Don't trace irqs off for idle */
150 stop_critical_timings();
151 pm_idle();
152 start_critical_timings();
153 }
154 tick_nohz_restart_sched_tick();
155 preempt_enable_no_resched();
156 schedule();
157 preempt_disable();
158 }
159 }
160
161 void __show_registers(struct pt_regs *regs, int all)
162 {
163 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
164 unsigned long d0, d1, d2, d3, d6, d7;
165 unsigned long sp;
166 unsigned short ss, gs;
167 const char *board;
168
169 if (user_mode_vm(regs)) {
170 sp = regs->sp;
171 ss = regs->ss & 0xffff;
172 savesegment(gs, gs);
173 } else {
174 sp = (unsigned long) (&regs->sp);
175 savesegment(ss, ss);
176 savesegment(gs, gs);
177 }
178
179 printk("\n");
180
181 board = dmi_get_system_info(DMI_PRODUCT_NAME);
182 if (!board)
183 board = "";
184 printk("Pid: %d, comm: %s %s (%s %.*s) %s\n",
185 task_pid_nr(current), current->comm,
186 print_tainted(), init_utsname()->release,
187 (int)strcspn(init_utsname()->version, " "),
188 init_utsname()->version, board);
189
190 printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
191 (u16)regs->cs, regs->ip, regs->flags,
192 smp_processor_id());
193 print_symbol("EIP is at %s\n", regs->ip);
194
195 printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
196 regs->ax, regs->bx, regs->cx, regs->dx);
197 printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
198 regs->si, regs->di, regs->bp, sp);
199 printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
200 (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
201
202 if (!all)
203 return;
204
205 cr0 = read_cr0();
206 cr2 = read_cr2();
207 cr3 = read_cr3();
208 cr4 = read_cr4_safe();
209 printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
210 cr0, cr2, cr3, cr4);
211
212 get_debugreg(d0, 0);
213 get_debugreg(d1, 1);
214 get_debugreg(d2, 2);
215 get_debugreg(d3, 3);
216 printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
217 d0, d1, d2, d3);
218
219 get_debugreg(d6, 6);
220 get_debugreg(d7, 7);
221 printk("DR6: %08lx DR7: %08lx\n",
222 d6, d7);
223 }
224
225 void show_regs(struct pt_regs *regs)
226 {
227 __show_registers(regs, 1);
228 show_trace(NULL, regs, &regs->sp, regs->bp);
229 }
230
231 /*
232 * This gets run with %bx containing the
233 * function to call, and %dx containing
234 * the "args".
235 */
236 extern void kernel_thread_helper(void);
237
238 /*
239 * Create a kernel thread
240 */
241 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
242 {
243 struct pt_regs regs;
244
245 memset(&regs, 0, sizeof(regs));
246
247 regs.bx = (unsigned long) fn;
248 regs.dx = (unsigned long) arg;
249
250 regs.ds = __USER_DS;
251 regs.es = __USER_DS;
252 regs.fs = __KERNEL_PERCPU;
253 regs.orig_ax = -1;
254 regs.ip = (unsigned long) kernel_thread_helper;
255 regs.cs = __KERNEL_CS | get_kernel_rpl();
256 regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
257
258 /* Ok, create the new process.. */
259 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
260 }
261 EXPORT_SYMBOL(kernel_thread);
262
263 /*
264 * Free current thread data structures etc..
265 */
266 void exit_thread(void)
267 {
268 /* The process may have allocated an io port bitmap... nuke it. */
269 if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
270 struct task_struct *tsk = current;
271 struct thread_struct *t = &tsk->thread;
272 int cpu = get_cpu();
273 struct tss_struct *tss = &per_cpu(init_tss, cpu);
274
275 kfree(t->io_bitmap_ptr);
276 t->io_bitmap_ptr = NULL;
277 clear_thread_flag(TIF_IO_BITMAP);
278 /*
279 * Careful, clear this in the TSS too:
280 */
281 memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
282 t->io_bitmap_max = 0;
283 tss->io_bitmap_owner = NULL;
284 tss->io_bitmap_max = 0;
285 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
286 put_cpu();
287 }
288 #ifdef CONFIG_X86_DS
289 /* Free any DS contexts that have not been properly released. */
290 if (unlikely(current->thread.ds_ctx)) {
291 /* we clear debugctl to make sure DS is not used. */
292 update_debugctlmsr(0);
293 ds_free(current->thread.ds_ctx);
294 }
295 #endif /* CONFIG_X86_DS */
296 }
297
298 void flush_thread(void)
299 {
300 struct task_struct *tsk = current;
301
302 tsk->thread.debugreg0 = 0;
303 tsk->thread.debugreg1 = 0;
304 tsk->thread.debugreg2 = 0;
305 tsk->thread.debugreg3 = 0;
306 tsk->thread.debugreg6 = 0;
307 tsk->thread.debugreg7 = 0;
308 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
309 clear_tsk_thread_flag(tsk, TIF_DEBUG);
310 /*
311 * Forget coprocessor state..
312 */
313 tsk->fpu_counter = 0;
314 clear_fpu(tsk);
315 clear_used_math();
316 }
317
318 void release_thread(struct task_struct *dead_task)
319 {
320 BUG_ON(dead_task->mm);
321 release_vm86_irqs(dead_task);
322 }
323
324 /*
325 * This gets called before we allocate a new thread and copy
326 * the current task into it.
327 */
328 void prepare_to_copy(struct task_struct *tsk)
329 {
330 unlazy_fpu(tsk);
331 }
332
333 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
334 unsigned long unused,
335 struct task_struct * p, struct pt_regs * regs)
336 {
337 struct pt_regs * childregs;
338 struct task_struct *tsk;
339 int err;
340
341 childregs = task_pt_regs(p);
342 *childregs = *regs;
343 childregs->ax = 0;
344 childregs->sp = sp;
345
346 p->thread.sp = (unsigned long) childregs;
347 p->thread.sp0 = (unsigned long) (childregs+1);
348
349 p->thread.ip = (unsigned long) ret_from_fork;
350
351 savesegment(gs, p->thread.gs);
352
353 tsk = current;
354 if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
355 p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
356 IO_BITMAP_BYTES, GFP_KERNEL);
357 if (!p->thread.io_bitmap_ptr) {
358 p->thread.io_bitmap_max = 0;
359 return -ENOMEM;
360 }
361 set_tsk_thread_flag(p, TIF_IO_BITMAP);
362 }
363
364 err = 0;
365
366 /*
367 * Set a new TLS for the child thread?
368 */
369 if (clone_flags & CLONE_SETTLS)
370 err = do_set_thread_area(p, -1,
371 (struct user_desc __user *)childregs->si, 0);
372
373 if (err && p->thread.io_bitmap_ptr) {
374 kfree(p->thread.io_bitmap_ptr);
375 p->thread.io_bitmap_max = 0;
376 }
377 return err;
378 }
379
380 void
381 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
382 {
383 __asm__("movl %0, %%gs" :: "r"(0));
384 regs->fs = 0;
385 set_fs(USER_DS);
386 regs->ds = __USER_DS;
387 regs->es = __USER_DS;
388 regs->ss = __USER_DS;
389 regs->cs = __USER_CS;
390 regs->ip = new_ip;
391 regs->sp = new_sp;
392 /*
393 * Free the old FP and other extended state
394 */
395 free_thread_xstate(current);
396 }
397 EXPORT_SYMBOL_GPL(start_thread);
398
399 static void hard_disable_TSC(void)
400 {
401 write_cr4(read_cr4() | X86_CR4_TSD);
402 }
403
404 void disable_TSC(void)
405 {
406 preempt_disable();
407 if (!test_and_set_thread_flag(TIF_NOTSC))
408 /*
409 * Must flip the CPU state synchronously with
410 * TIF_NOTSC in the current running context.
411 */
412 hard_disable_TSC();
413 preempt_enable();
414 }
415
416 static void hard_enable_TSC(void)
417 {
418 write_cr4(read_cr4() & ~X86_CR4_TSD);
419 }
420
421 static void enable_TSC(void)
422 {
423 preempt_disable();
424 if (test_and_clear_thread_flag(TIF_NOTSC))
425 /*
426 * Must flip the CPU state synchronously with
427 * TIF_NOTSC in the current running context.
428 */
429 hard_enable_TSC();
430 preempt_enable();
431 }
432
433 int get_tsc_mode(unsigned long adr)
434 {
435 unsigned int val;
436
437 if (test_thread_flag(TIF_NOTSC))
438 val = PR_TSC_SIGSEGV;
439 else
440 val = PR_TSC_ENABLE;
441
442 return put_user(val, (unsigned int __user *)adr);
443 }
444
445 int set_tsc_mode(unsigned int val)
446 {
447 if (val == PR_TSC_SIGSEGV)
448 disable_TSC();
449 else if (val == PR_TSC_ENABLE)
450 enable_TSC();
451 else
452 return -EINVAL;
453
454 return 0;
455 }
456
457 #ifdef CONFIG_X86_DS
458 static int update_debugctl(struct thread_struct *prev,
459 struct thread_struct *next, unsigned long debugctl)
460 {
461 unsigned long ds_prev = 0;
462 unsigned long ds_next = 0;
463
464 if (prev->ds_ctx)
465 ds_prev = (unsigned long)prev->ds_ctx->ds;
466 if (next->ds_ctx)
467 ds_next = (unsigned long)next->ds_ctx->ds;
468
469 if (ds_next != ds_prev) {
470 /* we clear debugctl to make sure DS
471 * is not in use when we change it */
472 debugctl = 0;
473 update_debugctlmsr(0);
474 wrmsr(MSR_IA32_DS_AREA, ds_next, 0);
475 }
476 return debugctl;
477 }
478 #else
479 static int update_debugctl(struct thread_struct *prev,
480 struct thread_struct *next, unsigned long debugctl)
481 {
482 return debugctl;
483 }
484 #endif /* CONFIG_X86_DS */
485
486 static noinline void
487 __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
488 struct tss_struct *tss)
489 {
490 struct thread_struct *prev, *next;
491 unsigned long debugctl;
492
493 prev = &prev_p->thread;
494 next = &next_p->thread;
495
496 debugctl = update_debugctl(prev, next, prev->debugctlmsr);
497
498 if (next->debugctlmsr != debugctl)
499 update_debugctlmsr(next->debugctlmsr);
500
501 if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
502 set_debugreg(next->debugreg0, 0);
503 set_debugreg(next->debugreg1, 1);
504 set_debugreg(next->debugreg2, 2);
505 set_debugreg(next->debugreg3, 3);
506 /* no 4 and 5 */
507 set_debugreg(next->debugreg6, 6);
508 set_debugreg(next->debugreg7, 7);
509 }
510
511 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
512 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
513 /* prev and next are different */
514 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
515 hard_disable_TSC();
516 else
517 hard_enable_TSC();
518 }
519
520 #ifdef CONFIG_X86_PTRACE_BTS
521 if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS))
522 ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS);
523
524 if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS))
525 ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES);
526 #endif /* CONFIG_X86_PTRACE_BTS */
527
528
529 if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
530 /*
531 * Disable the bitmap via an invalid offset. We still cache
532 * the previous bitmap owner and the IO bitmap contents:
533 */
534 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
535 return;
536 }
537
538 if (likely(next == tss->io_bitmap_owner)) {
539 /*
540 * Previous owner of the bitmap (hence the bitmap content)
541 * matches the next task, we dont have to do anything but
542 * to set a valid offset in the TSS:
543 */
544 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
545 return;
546 }
547 /*
548 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
549 * and we let the task to get a GPF in case an I/O instruction
550 * is performed. The handler of the GPF will verify that the
551 * faulting task has a valid I/O bitmap and, it true, does the
552 * real copy and restart the instruction. This will save us
553 * redundant copies when the currently switched task does not
554 * perform any I/O during its timeslice.
555 */
556 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
557 }
558
559 /*
560 * switch_to(x,yn) should switch tasks from x to y.
561 *
562 * We fsave/fwait so that an exception goes off at the right time
563 * (as a call from the fsave or fwait in effect) rather than to
564 * the wrong process. Lazy FP saving no longer makes any sense
565 * with modern CPU's, and this simplifies a lot of things (SMP
566 * and UP become the same).
567 *
568 * NOTE! We used to use the x86 hardware context switching. The
569 * reason for not using it any more becomes apparent when you
570 * try to recover gracefully from saved state that is no longer
571 * valid (stale segment register values in particular). With the
572 * hardware task-switch, there is no way to fix up bad state in
573 * a reasonable manner.
574 *
575 * The fact that Intel documents the hardware task-switching to
576 * be slow is a fairly red herring - this code is not noticeably
577 * faster. However, there _is_ some room for improvement here,
578 * so the performance issues may eventually be a valid point.
579 * More important, however, is the fact that this allows us much
580 * more flexibility.
581 *
582 * The return value (in %ax) will be the "prev" task after
583 * the task-switch, and shows up in ret_from_fork in entry.S,
584 * for example.
585 */
586 struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
587 {
588 struct thread_struct *prev = &prev_p->thread,
589 *next = &next_p->thread;
590 int cpu = smp_processor_id();
591 struct tss_struct *tss = &per_cpu(init_tss, cpu);
592
593 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
594
595 __unlazy_fpu(prev_p);
596
597
598 /* we're going to use this soon, after a few expensive things */
599 if (next_p->fpu_counter > 5)
600 prefetch(next->xstate);
601
602 /*
603 * Reload esp0.
604 */
605 load_sp0(tss, next);
606
607 /*
608 * Save away %gs. No need to save %fs, as it was saved on the
609 * stack on entry. No need to save %es and %ds, as those are
610 * always kernel segments while inside the kernel. Doing this
611 * before setting the new TLS descriptors avoids the situation
612 * where we temporarily have non-reloadable segments in %fs
613 * and %gs. This could be an issue if the NMI handler ever
614 * used %fs or %gs (it does not today), or if the kernel is
615 * running inside of a hypervisor layer.
616 */
617 savesegment(gs, prev->gs);
618
619 /*
620 * Load the per-thread Thread-Local Storage descriptor.
621 */
622 load_TLS(next, cpu);
623
624 /*
625 * Restore IOPL if needed. In normal use, the flags restore
626 * in the switch assembly will handle this. But if the kernel
627 * is running virtualized at a non-zero CPL, the popf will
628 * not restore flags, so it must be done in a separate step.
629 */
630 if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
631 set_iopl_mask(next->iopl);
632
633 /*
634 * Now maybe handle debug registers and/or IO bitmaps
635 */
636 if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
637 task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
638 __switch_to_xtra(prev_p, next_p, tss);
639
640 /*
641 * Leave lazy mode, flushing any hypercalls made here.
642 * This must be done before restoring TLS segments so
643 * the GDT and LDT are properly updated, and must be
644 * done before math_state_restore, so the TS bit is up
645 * to date.
646 */
647 arch_leave_lazy_cpu_mode();
648
649 /* If the task has used fpu the last 5 timeslices, just do a full
650 * restore of the math state immediately to avoid the trap; the
651 * chances of needing FPU soon are obviously high now
652 *
653 * tsk_used_math() checks prevent calling math_state_restore(),
654 * which can sleep in the case of !tsk_used_math()
655 */
656 if (tsk_used_math(next_p) && next_p->fpu_counter > 5)
657 math_state_restore();
658
659 /*
660 * Restore %gs if needed (which is common)
661 */
662 if (prev->gs | next->gs)
663 loadsegment(gs, next->gs);
664
665 x86_write_percpu(current_task, next_p);
666
667 return prev_p;
668 }
669
670 asmlinkage int sys_fork(struct pt_regs regs)
671 {
672 return do_fork(SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
673 }
674
675 asmlinkage int sys_clone(struct pt_regs regs)
676 {
677 unsigned long clone_flags;
678 unsigned long newsp;
679 int __user *parent_tidptr, *child_tidptr;
680
681 clone_flags = regs.bx;
682 newsp = regs.cx;
683 parent_tidptr = (int __user *)regs.dx;
684 child_tidptr = (int __user *)regs.di;
685 if (!newsp)
686 newsp = regs.sp;
687 return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
688 }
689
690 /*
691 * This is trivial, and on the face of it looks like it
692 * could equally well be done in user mode.
693 *
694 * Not so, for quite unobvious reasons - register pressure.
695 * In user mode vfork() cannot have a stack frame, and if
696 * done by calling the "clone()" system call directly, you
697 * do not have enough call-clobbered registers to hold all
698 * the information you need.
699 */
700 asmlinkage int sys_vfork(struct pt_regs regs)
701 {
702 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
703 }
704
705 /*
706 * sys_execve() executes a new program.
707 */
708 asmlinkage int sys_execve(struct pt_regs regs)
709 {
710 int error;
711 char * filename;
712
713 filename = getname((char __user *) regs.bx);
714 error = PTR_ERR(filename);
715 if (IS_ERR(filename))
716 goto out;
717 error = do_execve(filename,
718 (char __user * __user *) regs.cx,
719 (char __user * __user *) regs.dx,
720 &regs);
721 if (error == 0) {
722 /* Make sure we don't return using sysenter.. */
723 set_thread_flag(TIF_IRET);
724 }
725 putname(filename);
726 out:
727 return error;
728 }
729
730 #define top_esp (THREAD_SIZE - sizeof(unsigned long))
731 #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
732
733 unsigned long get_wchan(struct task_struct *p)
734 {
735 unsigned long bp, sp, ip;
736 unsigned long stack_page;
737 int count = 0;
738 if (!p || p == current || p->state == TASK_RUNNING)
739 return 0;
740 stack_page = (unsigned long)task_stack_page(p);
741 sp = p->thread.sp;
742 if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
743 return 0;
744 /* include/asm-i386/system.h:switch_to() pushes bp last. */
745 bp = *(unsigned long *) sp;
746 do {
747 if (bp < stack_page || bp > top_ebp+stack_page)
748 return 0;
749 ip = *(unsigned long *) (bp+4);
750 if (!in_sched_functions(ip))
751 return ip;
752 bp = *(unsigned long *) bp;
753 } while (count++ < 16);
754 return 0;
755 }
756
757 unsigned long arch_align_stack(unsigned long sp)
758 {
759 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
760 sp -= get_random_int() % 8192;
761 return sp & ~0xf;
762 }
763
764 unsigned long arch_randomize_brk(struct mm_struct *mm)
765 {
766 unsigned long range_end = mm->brk + 0x02000000;
767 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
768 }
This page took 0.062737 seconds and 5 git commands to generate.