x86: remove all definitions with fastcall
[deliverable/linux.git] / arch / x86 / kernel / process_32.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 */
7
8 /*
9 * This file handles the architecture-dependent parts of process handling..
10 */
11
12 #include <stdarg.h>
13
14 #include <linux/cpu.h>
15 #include <linux/errno.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/elfcore.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/user.h>
26 #include <linux/a.out.h>
27 #include <linux/interrupt.h>
28 #include <linux/utsname.h>
29 #include <linux/delay.h>
30 #include <linux/reboot.h>
31 #include <linux/init.h>
32 #include <linux/mc146818rtc.h>
33 #include <linux/module.h>
34 #include <linux/kallsyms.h>
35 #include <linux/ptrace.h>
36 #include <linux/random.h>
37 #include <linux/personality.h>
38 #include <linux/tick.h>
39 #include <linux/percpu.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/pgtable.h>
43 #include <asm/system.h>
44 #include <asm/io.h>
45 #include <asm/ldt.h>
46 #include <asm/processor.h>
47 #include <asm/i387.h>
48 #include <asm/desc.h>
49 #include <asm/vm86.h>
50 #ifdef CONFIG_MATH_EMULATION
51 #include <asm/math_emu.h>
52 #endif
53
54 #include <linux/err.h>
55
56 #include <asm/tlbflush.h>
57 #include <asm/cpu.h>
58 #include <asm/kdebug.h>
59
60 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
61
62 static int hlt_counter;
63
64 unsigned long boot_option_idle_override = 0;
65 EXPORT_SYMBOL(boot_option_idle_override);
66
67 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
68 EXPORT_PER_CPU_SYMBOL(current_task);
69
70 DEFINE_PER_CPU(int, cpu_number);
71 EXPORT_PER_CPU_SYMBOL(cpu_number);
72
73 /*
74 * Return saved PC of a blocked thread.
75 */
76 unsigned long thread_saved_pc(struct task_struct *tsk)
77 {
78 return ((unsigned long *)tsk->thread.sp)[3];
79 }
80
81 /*
82 * Powermanagement idle function, if any..
83 */
84 void (*pm_idle)(void);
85 EXPORT_SYMBOL(pm_idle);
86 static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
87
88 void disable_hlt(void)
89 {
90 hlt_counter++;
91 }
92
93 EXPORT_SYMBOL(disable_hlt);
94
95 void enable_hlt(void)
96 {
97 hlt_counter--;
98 }
99
100 EXPORT_SYMBOL(enable_hlt);
101
102 /*
103 * We use this if we don't have any better
104 * idle routine..
105 */
106 void default_idle(void)
107 {
108 if (!hlt_counter && boot_cpu_data.hlt_works_ok) {
109 current_thread_info()->status &= ~TS_POLLING;
110 /*
111 * TS_POLLING-cleared state must be visible before we
112 * test NEED_RESCHED:
113 */
114 smp_mb();
115
116 local_irq_disable();
117 if (!need_resched()) {
118 ktime_t t0, t1;
119 u64 t0n, t1n;
120
121 t0 = ktime_get();
122 t0n = ktime_to_ns(t0);
123 safe_halt(); /* enables interrupts racelessly */
124 local_irq_disable();
125 t1 = ktime_get();
126 t1n = ktime_to_ns(t1);
127 sched_clock_idle_wakeup_event(t1n - t0n);
128 }
129 local_irq_enable();
130 current_thread_info()->status |= TS_POLLING;
131 } else {
132 /* loop is done by the caller */
133 cpu_relax();
134 }
135 }
136 #ifdef CONFIG_APM_MODULE
137 EXPORT_SYMBOL(default_idle);
138 #endif
139
140 /*
141 * On SMP it's slightly faster (but much more power-consuming!)
142 * to poll the ->work.need_resched flag instead of waiting for the
143 * cross-CPU IPI to arrive. Use this option with caution.
144 */
145 static void poll_idle(void)
146 {
147 cpu_relax();
148 }
149
150 #ifdef CONFIG_HOTPLUG_CPU
151 #include <asm/nmi.h>
152 /* We don't actually take CPU down, just spin without interrupts. */
153 static inline void play_dead(void)
154 {
155 /* This must be done before dead CPU ack */
156 cpu_exit_clear();
157 wbinvd();
158 mb();
159 /* Ack it */
160 __get_cpu_var(cpu_state) = CPU_DEAD;
161
162 /*
163 * With physical CPU hotplug, we should halt the cpu
164 */
165 local_irq_disable();
166 while (1)
167 halt();
168 }
169 #else
170 static inline void play_dead(void)
171 {
172 BUG();
173 }
174 #endif /* CONFIG_HOTPLUG_CPU */
175
176 /*
177 * The idle thread. There's no useful work to be
178 * done, so just try to conserve power and have a
179 * low exit latency (ie sit in a loop waiting for
180 * somebody to say that they'd like to reschedule)
181 */
182 void cpu_idle(void)
183 {
184 int cpu = smp_processor_id();
185
186 current_thread_info()->status |= TS_POLLING;
187
188 /* endless idle loop with no priority at all */
189 while (1) {
190 tick_nohz_stop_sched_tick();
191 while (!need_resched()) {
192 void (*idle)(void);
193
194 if (__get_cpu_var(cpu_idle_state))
195 __get_cpu_var(cpu_idle_state) = 0;
196
197 check_pgt_cache();
198 rmb();
199 idle = pm_idle;
200
201 if (!idle)
202 idle = default_idle;
203
204 if (cpu_is_offline(cpu))
205 play_dead();
206
207 __get_cpu_var(irq_stat).idle_timestamp = jiffies;
208 idle();
209 }
210 tick_nohz_restart_sched_tick();
211 preempt_enable_no_resched();
212 schedule();
213 preempt_disable();
214 }
215 }
216
217 static void do_nothing(void *unused)
218 {
219 }
220
221 void cpu_idle_wait(void)
222 {
223 unsigned int cpu, this_cpu = get_cpu();
224 cpumask_t map, tmp = current->cpus_allowed;
225
226 set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
227 put_cpu();
228
229 cpus_clear(map);
230 for_each_online_cpu(cpu) {
231 per_cpu(cpu_idle_state, cpu) = 1;
232 cpu_set(cpu, map);
233 }
234
235 __get_cpu_var(cpu_idle_state) = 0;
236
237 wmb();
238 do {
239 ssleep(1);
240 for_each_online_cpu(cpu) {
241 if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
242 cpu_clear(cpu, map);
243 }
244 cpus_and(map, map, cpu_online_map);
245 /*
246 * We waited 1 sec, if a CPU still did not call idle
247 * it may be because it is in idle and not waking up
248 * because it has nothing to do.
249 * Give all the remaining CPUS a kick.
250 */
251 smp_call_function_mask(map, do_nothing, 0, 0);
252 } while (!cpus_empty(map));
253
254 set_cpus_allowed(current, tmp);
255 }
256 EXPORT_SYMBOL_GPL(cpu_idle_wait);
257
258 /*
259 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
260 * which can obviate IPI to trigger checking of need_resched.
261 * We execute MONITOR against need_resched and enter optimized wait state
262 * through MWAIT. Whenever someone changes need_resched, we would be woken
263 * up from MWAIT (without an IPI).
264 *
265 * New with Core Duo processors, MWAIT can take some hints based on CPU
266 * capability.
267 */
268 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
269 {
270 if (!need_resched()) {
271 __monitor((void *)&current_thread_info()->flags, 0, 0);
272 smp_mb();
273 if (!need_resched())
274 __mwait(ax, cx);
275 }
276 }
277
278 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
279 static void mwait_idle(void)
280 {
281 local_irq_enable();
282 mwait_idle_with_hints(0, 0);
283 }
284
285 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
286 {
287 if (cpu_has(c, X86_FEATURE_MWAIT)) {
288 printk("monitor/mwait feature present.\n");
289 /*
290 * Skip, if setup has overridden idle.
291 * One CPU supports mwait => All CPUs supports mwait
292 */
293 if (!pm_idle) {
294 printk("using mwait in idle threads.\n");
295 pm_idle = mwait_idle;
296 }
297 }
298 }
299
300 static int __init idle_setup(char *str)
301 {
302 if (!strcmp(str, "poll")) {
303 printk("using polling idle threads.\n");
304 pm_idle = poll_idle;
305 #ifdef CONFIG_X86_SMP
306 if (smp_num_siblings > 1)
307 printk("WARNING: polling idle and HT enabled, performance may degrade.\n");
308 #endif
309 } else if (!strcmp(str, "mwait"))
310 force_mwait = 1;
311 else
312 return -1;
313
314 boot_option_idle_override = 1;
315 return 0;
316 }
317 early_param("idle", idle_setup);
318
319 void __show_registers(struct pt_regs *regs, int all)
320 {
321 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
322 unsigned long d0, d1, d2, d3, d6, d7;
323 unsigned long sp;
324 unsigned short ss, gs;
325
326 if (user_mode_vm(regs)) {
327 sp = regs->sp;
328 ss = regs->ss & 0xffff;
329 savesegment(gs, gs);
330 } else {
331 sp = (unsigned long) (&regs->sp);
332 savesegment(ss, ss);
333 savesegment(gs, gs);
334 }
335
336 printk("\n");
337 printk("Pid: %d, comm: %s %s (%s %.*s)\n",
338 task_pid_nr(current), current->comm,
339 print_tainted(), init_utsname()->release,
340 (int)strcspn(init_utsname()->version, " "),
341 init_utsname()->version);
342
343 printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
344 0xffff & regs->cs, regs->ip, regs->flags,
345 smp_processor_id());
346 print_symbol("EIP is at %s\n", regs->ip);
347
348 printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
349 regs->ax, regs->bx, regs->cx, regs->dx);
350 printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
351 regs->si, regs->di, regs->bp, sp);
352 printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
353 regs->ds & 0xffff, regs->es & 0xffff,
354 regs->fs & 0xffff, gs, ss);
355
356 if (!all)
357 return;
358
359 cr0 = read_cr0();
360 cr2 = read_cr2();
361 cr3 = read_cr3();
362 cr4 = read_cr4_safe();
363 printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
364 cr0, cr2, cr3, cr4);
365
366 get_debugreg(d0, 0);
367 get_debugreg(d1, 1);
368 get_debugreg(d2, 2);
369 get_debugreg(d3, 3);
370 printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
371 d0, d1, d2, d3);
372
373 get_debugreg(d6, 6);
374 get_debugreg(d7, 7);
375 printk("DR6: %08lx DR7: %08lx\n",
376 d6, d7);
377 }
378
379 void show_regs(struct pt_regs *regs)
380 {
381 __show_registers(regs, 1);
382 show_trace(NULL, regs, &regs->sp);
383 }
384
385 /*
386 * This gets run with %bx containing the
387 * function to call, and %dx containing
388 * the "args".
389 */
390 extern void kernel_thread_helper(void);
391
392 /*
393 * Create a kernel thread
394 */
395 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
396 {
397 struct pt_regs regs;
398
399 memset(&regs, 0, sizeof(regs));
400
401 regs.bx = (unsigned long) fn;
402 regs.dx = (unsigned long) arg;
403
404 regs.ds = __USER_DS;
405 regs.es = __USER_DS;
406 regs.fs = __KERNEL_PERCPU;
407 regs.orig_ax = -1;
408 regs.ip = (unsigned long) kernel_thread_helper;
409 regs.cs = __KERNEL_CS | get_kernel_rpl();
410 regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
411
412 /* Ok, create the new process.. */
413 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
414 }
415 EXPORT_SYMBOL(kernel_thread);
416
417 /*
418 * Free current thread data structures etc..
419 */
420 void exit_thread(void)
421 {
422 /* The process may have allocated an io port bitmap... nuke it. */
423 if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
424 struct task_struct *tsk = current;
425 struct thread_struct *t = &tsk->thread;
426 int cpu = get_cpu();
427 struct tss_struct *tss = &per_cpu(init_tss, cpu);
428
429 kfree(t->io_bitmap_ptr);
430 t->io_bitmap_ptr = NULL;
431 clear_thread_flag(TIF_IO_BITMAP);
432 /*
433 * Careful, clear this in the TSS too:
434 */
435 memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
436 t->io_bitmap_max = 0;
437 tss->io_bitmap_owner = NULL;
438 tss->io_bitmap_max = 0;
439 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
440 put_cpu();
441 }
442 }
443
444 void flush_thread(void)
445 {
446 struct task_struct *tsk = current;
447
448 tsk->thread.debugreg0 = 0;
449 tsk->thread.debugreg1 = 0;
450 tsk->thread.debugreg2 = 0;
451 tsk->thread.debugreg3 = 0;
452 tsk->thread.debugreg6 = 0;
453 tsk->thread.debugreg7 = 0;
454 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
455 clear_tsk_thread_flag(tsk, TIF_DEBUG);
456 /*
457 * Forget coprocessor state..
458 */
459 clear_fpu(tsk);
460 clear_used_math();
461 }
462
463 void release_thread(struct task_struct *dead_task)
464 {
465 BUG_ON(dead_task->mm);
466 release_vm86_irqs(dead_task);
467 }
468
469 /*
470 * This gets called before we allocate a new thread and copy
471 * the current task into it.
472 */
473 void prepare_to_copy(struct task_struct *tsk)
474 {
475 unlazy_fpu(tsk);
476 }
477
478 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
479 unsigned long unused,
480 struct task_struct * p, struct pt_regs * regs)
481 {
482 struct pt_regs * childregs;
483 struct task_struct *tsk;
484 int err;
485
486 childregs = task_pt_regs(p);
487 *childregs = *regs;
488 childregs->ax = 0;
489 childregs->sp = sp;
490
491 p->thread.sp = (unsigned long) childregs;
492 p->thread.sp0 = (unsigned long) (childregs+1);
493
494 p->thread.ip = (unsigned long) ret_from_fork;
495
496 savesegment(gs, p->thread.gs);
497
498 tsk = current;
499 if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
500 p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
501 IO_BITMAP_BYTES, GFP_KERNEL);
502 if (!p->thread.io_bitmap_ptr) {
503 p->thread.io_bitmap_max = 0;
504 return -ENOMEM;
505 }
506 set_tsk_thread_flag(p, TIF_IO_BITMAP);
507 }
508
509 err = 0;
510
511 /*
512 * Set a new TLS for the child thread?
513 */
514 if (clone_flags & CLONE_SETTLS)
515 err = do_set_thread_area(p, -1,
516 (struct user_desc __user *)childregs->si, 0);
517
518 if (err && p->thread.io_bitmap_ptr) {
519 kfree(p->thread.io_bitmap_ptr);
520 p->thread.io_bitmap_max = 0;
521 }
522 return err;
523 }
524
525 /*
526 * fill in the user structure for a core dump..
527 */
528 void dump_thread(struct pt_regs * regs, struct user * dump)
529 {
530 u16 gs;
531
532 /* changed the size calculations - should hopefully work better. lbt */
533 dump->magic = CMAGIC;
534 dump->start_code = 0;
535 dump->start_stack = regs->sp & ~(PAGE_SIZE - 1);
536 dump->u_tsize = ((unsigned long) current->mm->end_code) >> PAGE_SHIFT;
537 dump->u_dsize = ((unsigned long) (current->mm->brk + (PAGE_SIZE-1))) >> PAGE_SHIFT;
538 dump->u_dsize -= dump->u_tsize;
539 dump->u_ssize = 0;
540 dump->u_debugreg[0] = current->thread.debugreg0;
541 dump->u_debugreg[1] = current->thread.debugreg1;
542 dump->u_debugreg[2] = current->thread.debugreg2;
543 dump->u_debugreg[3] = current->thread.debugreg3;
544 dump->u_debugreg[4] = 0;
545 dump->u_debugreg[5] = 0;
546 dump->u_debugreg[6] = current->thread.debugreg6;
547 dump->u_debugreg[7] = current->thread.debugreg7;
548
549 if (dump->start_stack < TASK_SIZE)
550 dump->u_ssize = ((unsigned long) (TASK_SIZE - dump->start_stack)) >> PAGE_SHIFT;
551
552 dump->regs.bx = regs->bx;
553 dump->regs.cx = regs->cx;
554 dump->regs.dx = regs->dx;
555 dump->regs.si = regs->si;
556 dump->regs.di = regs->di;
557 dump->regs.bp = regs->bp;
558 dump->regs.ax = regs->ax;
559 dump->regs.ds = (u16)regs->ds;
560 dump->regs.es = (u16)regs->es;
561 dump->regs.fs = (u16)regs->fs;
562 savesegment(gs,gs);
563 dump->regs.orig_ax = regs->orig_ax;
564 dump->regs.ip = regs->ip;
565 dump->regs.cs = (u16)regs->cs;
566 dump->regs.flags = regs->flags;
567 dump->regs.sp = regs->sp;
568 dump->regs.ss = (u16)regs->ss;
569
570 dump->u_fpvalid = dump_fpu (regs, &dump->i387);
571 }
572 EXPORT_SYMBOL(dump_thread);
573
574 /*
575 * Capture the user space registers if the task is not running (in user space)
576 */
577 int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
578 {
579 struct pt_regs ptregs = *task_pt_regs(tsk);
580 ptregs.cs &= 0xffff;
581 ptregs.ds &= 0xffff;
582 ptregs.es &= 0xffff;
583 ptregs.ss &= 0xffff;
584
585 elf_core_copy_regs(regs, &ptregs);
586
587 return 1;
588 }
589
590 #ifdef CONFIG_SECCOMP
591 void hard_disable_TSC(void)
592 {
593 write_cr4(read_cr4() | X86_CR4_TSD);
594 }
595 void disable_TSC(void)
596 {
597 preempt_disable();
598 if (!test_and_set_thread_flag(TIF_NOTSC))
599 /*
600 * Must flip the CPU state synchronously with
601 * TIF_NOTSC in the current running context.
602 */
603 hard_disable_TSC();
604 preempt_enable();
605 }
606 void hard_enable_TSC(void)
607 {
608 write_cr4(read_cr4() & ~X86_CR4_TSD);
609 }
610 #endif /* CONFIG_SECCOMP */
611
612 static noinline void
613 __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
614 struct tss_struct *tss)
615 {
616 struct thread_struct *prev, *next;
617 unsigned long debugctl;
618
619 prev = &prev_p->thread;
620 next = &next_p->thread;
621
622 debugctl = prev->debugctlmsr;
623 if (next->ds_area_msr != prev->ds_area_msr) {
624 /* we clear debugctl to make sure DS
625 * is not in use when we change it */
626 debugctl = 0;
627 wrmsrl(MSR_IA32_DEBUGCTLMSR, 0);
628 wrmsr(MSR_IA32_DS_AREA, next->ds_area_msr, 0);
629 }
630
631 if (next->debugctlmsr != debugctl)
632 wrmsr(MSR_IA32_DEBUGCTLMSR, next->debugctlmsr, 0);
633
634 if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
635 set_debugreg(next->debugreg0, 0);
636 set_debugreg(next->debugreg1, 1);
637 set_debugreg(next->debugreg2, 2);
638 set_debugreg(next->debugreg3, 3);
639 /* no 4 and 5 */
640 set_debugreg(next->debugreg6, 6);
641 set_debugreg(next->debugreg7, 7);
642 }
643
644 #ifdef CONFIG_SECCOMP
645 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
646 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
647 /* prev and next are different */
648 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
649 hard_disable_TSC();
650 else
651 hard_enable_TSC();
652 }
653 #endif
654
655 if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS))
656 ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS);
657
658 if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS))
659 ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES);
660
661
662 if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
663 /*
664 * Disable the bitmap via an invalid offset. We still cache
665 * the previous bitmap owner and the IO bitmap contents:
666 */
667 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
668 return;
669 }
670
671 if (likely(next == tss->io_bitmap_owner)) {
672 /*
673 * Previous owner of the bitmap (hence the bitmap content)
674 * matches the next task, we dont have to do anything but
675 * to set a valid offset in the TSS:
676 */
677 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
678 return;
679 }
680 /*
681 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
682 * and we let the task to get a GPF in case an I/O instruction
683 * is performed. The handler of the GPF will verify that the
684 * faulting task has a valid I/O bitmap and, it true, does the
685 * real copy and restart the instruction. This will save us
686 * redundant copies when the currently switched task does not
687 * perform any I/O during its timeslice.
688 */
689 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
690 }
691
692 /*
693 * switch_to(x,yn) should switch tasks from x to y.
694 *
695 * We fsave/fwait so that an exception goes off at the right time
696 * (as a call from the fsave or fwait in effect) rather than to
697 * the wrong process. Lazy FP saving no longer makes any sense
698 * with modern CPU's, and this simplifies a lot of things (SMP
699 * and UP become the same).
700 *
701 * NOTE! We used to use the x86 hardware context switching. The
702 * reason for not using it any more becomes apparent when you
703 * try to recover gracefully from saved state that is no longer
704 * valid (stale segment register values in particular). With the
705 * hardware task-switch, there is no way to fix up bad state in
706 * a reasonable manner.
707 *
708 * The fact that Intel documents the hardware task-switching to
709 * be slow is a fairly red herring - this code is not noticeably
710 * faster. However, there _is_ some room for improvement here,
711 * so the performance issues may eventually be a valid point.
712 * More important, however, is the fact that this allows us much
713 * more flexibility.
714 *
715 * The return value (in %ax) will be the "prev" task after
716 * the task-switch, and shows up in ret_from_fork in entry.S,
717 * for example.
718 */
719 struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
720 {
721 struct thread_struct *prev = &prev_p->thread,
722 *next = &next_p->thread;
723 int cpu = smp_processor_id();
724 struct tss_struct *tss = &per_cpu(init_tss, cpu);
725
726 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
727
728 __unlazy_fpu(prev_p);
729
730
731 /* we're going to use this soon, after a few expensive things */
732 if (next_p->fpu_counter > 5)
733 prefetch(&next->i387.fxsave);
734
735 /*
736 * Reload esp0.
737 */
738 load_sp0(tss, next);
739
740 /*
741 * Save away %gs. No need to save %fs, as it was saved on the
742 * stack on entry. No need to save %es and %ds, as those are
743 * always kernel segments while inside the kernel. Doing this
744 * before setting the new TLS descriptors avoids the situation
745 * where we temporarily have non-reloadable segments in %fs
746 * and %gs. This could be an issue if the NMI handler ever
747 * used %fs or %gs (it does not today), or if the kernel is
748 * running inside of a hypervisor layer.
749 */
750 savesegment(gs, prev->gs);
751
752 /*
753 * Load the per-thread Thread-Local Storage descriptor.
754 */
755 load_TLS(next, cpu);
756
757 /*
758 * Restore IOPL if needed. In normal use, the flags restore
759 * in the switch assembly will handle this. But if the kernel
760 * is running virtualized at a non-zero CPL, the popf will
761 * not restore flags, so it must be done in a separate step.
762 */
763 if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
764 set_iopl_mask(next->iopl);
765
766 /*
767 * Now maybe handle debug registers and/or IO bitmaps
768 */
769 if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
770 task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
771 __switch_to_xtra(prev_p, next_p, tss);
772
773 /*
774 * Leave lazy mode, flushing any hypercalls made here.
775 * This must be done before restoring TLS segments so
776 * the GDT and LDT are properly updated, and must be
777 * done before math_state_restore, so the TS bit is up
778 * to date.
779 */
780 arch_leave_lazy_cpu_mode();
781
782 /* If the task has used fpu the last 5 timeslices, just do a full
783 * restore of the math state immediately to avoid the trap; the
784 * chances of needing FPU soon are obviously high now
785 */
786 if (next_p->fpu_counter > 5)
787 math_state_restore();
788
789 /*
790 * Restore %gs if needed (which is common)
791 */
792 if (prev->gs | next->gs)
793 loadsegment(gs, next->gs);
794
795 x86_write_percpu(current_task, next_p);
796
797 return prev_p;
798 }
799
800 asmlinkage int sys_fork(struct pt_regs regs)
801 {
802 return do_fork(SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
803 }
804
805 asmlinkage int sys_clone(struct pt_regs regs)
806 {
807 unsigned long clone_flags;
808 unsigned long newsp;
809 int __user *parent_tidptr, *child_tidptr;
810
811 clone_flags = regs.bx;
812 newsp = regs.cx;
813 parent_tidptr = (int __user *)regs.dx;
814 child_tidptr = (int __user *)regs.di;
815 if (!newsp)
816 newsp = regs.sp;
817 return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
818 }
819
820 /*
821 * This is trivial, and on the face of it looks like it
822 * could equally well be done in user mode.
823 *
824 * Not so, for quite unobvious reasons - register pressure.
825 * In user mode vfork() cannot have a stack frame, and if
826 * done by calling the "clone()" system call directly, you
827 * do not have enough call-clobbered registers to hold all
828 * the information you need.
829 */
830 asmlinkage int sys_vfork(struct pt_regs regs)
831 {
832 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
833 }
834
835 /*
836 * sys_execve() executes a new program.
837 */
838 asmlinkage int sys_execve(struct pt_regs regs)
839 {
840 int error;
841 char * filename;
842
843 filename = getname((char __user *) regs.bx);
844 error = PTR_ERR(filename);
845 if (IS_ERR(filename))
846 goto out;
847 error = do_execve(filename,
848 (char __user * __user *) regs.cx,
849 (char __user * __user *) regs.dx,
850 &regs);
851 if (error == 0) {
852 /* Make sure we don't return using sysenter.. */
853 set_thread_flag(TIF_IRET);
854 }
855 putname(filename);
856 out:
857 return error;
858 }
859
860 #define top_esp (THREAD_SIZE - sizeof(unsigned long))
861 #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
862
863 unsigned long get_wchan(struct task_struct *p)
864 {
865 unsigned long bp, sp, ip;
866 unsigned long stack_page;
867 int count = 0;
868 if (!p || p == current || p->state == TASK_RUNNING)
869 return 0;
870 stack_page = (unsigned long)task_stack_page(p);
871 sp = p->thread.sp;
872 if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
873 return 0;
874 /* include/asm-i386/system.h:switch_to() pushes bp last. */
875 bp = *(unsigned long *) sp;
876 do {
877 if (bp < stack_page || bp > top_ebp+stack_page)
878 return 0;
879 ip = *(unsigned long *) (bp+4);
880 if (!in_sched_functions(ip))
881 return ip;
882 bp = *(unsigned long *) bp;
883 } while (count++ < 16);
884 return 0;
885 }
886
887 unsigned long arch_align_stack(unsigned long sp)
888 {
889 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
890 sp -= get_random_int() % 8192;
891 return sp & ~0xf;
892 }
893
894 unsigned long arch_randomize_brk(struct mm_struct *mm)
895 {
896 unsigned long range_end = mm->brk + 0x02000000;
897 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
898 }
This page took 0.063211 seconds and 5 git commands to generate.