Merge branch 'x86/core' into x86/unify-pci
[deliverable/linux.git] / arch / x86 / kernel / process_32.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 */
7
8 /*
9 * This file handles the architecture-dependent parts of process handling..
10 */
11
12 #include <stdarg.h>
13
14 #include <linux/cpu.h>
15 #include <linux/errno.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/elfcore.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/utsname.h>
28 #include <linux/delay.h>
29 #include <linux/reboot.h>
30 #include <linux/init.h>
31 #include <linux/mc146818rtc.h>
32 #include <linux/module.h>
33 #include <linux/kallsyms.h>
34 #include <linux/ptrace.h>
35 #include <linux/random.h>
36 #include <linux/personality.h>
37 #include <linux/tick.h>
38 #include <linux/percpu.h>
39 #include <linux/prctl.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/pgtable.h>
43 #include <asm/system.h>
44 #include <asm/io.h>
45 #include <asm/ldt.h>
46 #include <asm/processor.h>
47 #include <asm/i387.h>
48 #include <asm/desc.h>
49 #ifdef CONFIG_MATH_EMULATION
50 #include <asm/math_emu.h>
51 #endif
52
53 #include <linux/err.h>
54
55 #include <asm/tlbflush.h>
56 #include <asm/cpu.h>
57 #include <asm/kdebug.h>
58
59 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
60
61 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
62 EXPORT_PER_CPU_SYMBOL(current_task);
63
64 DEFINE_PER_CPU(int, cpu_number);
65 EXPORT_PER_CPU_SYMBOL(cpu_number);
66
67 /*
68 * Return saved PC of a blocked thread.
69 */
70 unsigned long thread_saved_pc(struct task_struct *tsk)
71 {
72 return ((unsigned long *)tsk->thread.sp)[3];
73 }
74
75 #ifdef CONFIG_HOTPLUG_CPU
76 #include <asm/nmi.h>
77
78 static void cpu_exit_clear(void)
79 {
80 int cpu = raw_smp_processor_id();
81
82 idle_task_exit();
83
84 cpu_uninit();
85 irq_ctx_exit(cpu);
86
87 cpu_clear(cpu, cpu_callout_map);
88 cpu_clear(cpu, cpu_callin_map);
89
90 numa_remove_cpu(cpu);
91 }
92
93 /* We don't actually take CPU down, just spin without interrupts. */
94 static inline void play_dead(void)
95 {
96 /* This must be done before dead CPU ack */
97 cpu_exit_clear();
98 wbinvd();
99 mb();
100 /* Ack it */
101 __get_cpu_var(cpu_state) = CPU_DEAD;
102
103 /*
104 * With physical CPU hotplug, we should halt the cpu
105 */
106 local_irq_disable();
107 while (1)
108 halt();
109 }
110 #else
111 static inline void play_dead(void)
112 {
113 BUG();
114 }
115 #endif /* CONFIG_HOTPLUG_CPU */
116
117 /*
118 * The idle thread. There's no useful work to be
119 * done, so just try to conserve power and have a
120 * low exit latency (ie sit in a loop waiting for
121 * somebody to say that they'd like to reschedule)
122 */
123 void cpu_idle(void)
124 {
125 int cpu = smp_processor_id();
126
127 current_thread_info()->status |= TS_POLLING;
128
129 /* endless idle loop with no priority at all */
130 while (1) {
131 tick_nohz_stop_sched_tick();
132 while (!need_resched()) {
133
134 check_pgt_cache();
135 rmb();
136
137 if (rcu_pending(cpu))
138 rcu_check_callbacks(cpu, 0);
139
140 if (cpu_is_offline(cpu))
141 play_dead();
142
143 local_irq_disable();
144 __get_cpu_var(irq_stat).idle_timestamp = jiffies;
145 pm_idle();
146 }
147 tick_nohz_restart_sched_tick();
148 preempt_enable_no_resched();
149 schedule();
150 preempt_disable();
151 }
152 }
153
154 void __show_registers(struct pt_regs *regs, int all)
155 {
156 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
157 unsigned long d0, d1, d2, d3, d6, d7;
158 unsigned long sp;
159 unsigned short ss, gs;
160
161 if (user_mode_vm(regs)) {
162 sp = regs->sp;
163 ss = regs->ss & 0xffff;
164 savesegment(gs, gs);
165 } else {
166 sp = (unsigned long) (&regs->sp);
167 savesegment(ss, ss);
168 savesegment(gs, gs);
169 }
170
171 printk("\n");
172 printk("Pid: %d, comm: %s %s (%s %.*s)\n",
173 task_pid_nr(current), current->comm,
174 print_tainted(), init_utsname()->release,
175 (int)strcspn(init_utsname()->version, " "),
176 init_utsname()->version);
177
178 printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
179 (u16)regs->cs, regs->ip, regs->flags,
180 smp_processor_id());
181 print_symbol("EIP is at %s\n", regs->ip);
182
183 printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
184 regs->ax, regs->bx, regs->cx, regs->dx);
185 printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
186 regs->si, regs->di, regs->bp, sp);
187 printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
188 (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
189
190 if (!all)
191 return;
192
193 cr0 = read_cr0();
194 cr2 = read_cr2();
195 cr3 = read_cr3();
196 cr4 = read_cr4_safe();
197 printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
198 cr0, cr2, cr3, cr4);
199
200 get_debugreg(d0, 0);
201 get_debugreg(d1, 1);
202 get_debugreg(d2, 2);
203 get_debugreg(d3, 3);
204 printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
205 d0, d1, d2, d3);
206
207 get_debugreg(d6, 6);
208 get_debugreg(d7, 7);
209 printk("DR6: %08lx DR7: %08lx\n",
210 d6, d7);
211 }
212
213 void show_regs(struct pt_regs *regs)
214 {
215 __show_registers(regs, 1);
216 show_trace(NULL, regs, &regs->sp, regs->bp);
217 }
218
219 /*
220 * This gets run with %bx containing the
221 * function to call, and %dx containing
222 * the "args".
223 */
224 extern void kernel_thread_helper(void);
225
226 /*
227 * Create a kernel thread
228 */
229 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
230 {
231 struct pt_regs regs;
232
233 memset(&regs, 0, sizeof(regs));
234
235 regs.bx = (unsigned long) fn;
236 regs.dx = (unsigned long) arg;
237
238 regs.ds = __USER_DS;
239 regs.es = __USER_DS;
240 regs.fs = __KERNEL_PERCPU;
241 regs.orig_ax = -1;
242 regs.ip = (unsigned long) kernel_thread_helper;
243 regs.cs = __KERNEL_CS | get_kernel_rpl();
244 regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
245
246 /* Ok, create the new process.. */
247 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
248 }
249 EXPORT_SYMBOL(kernel_thread);
250
251 /*
252 * Free current thread data structures etc..
253 */
254 void exit_thread(void)
255 {
256 /* The process may have allocated an io port bitmap... nuke it. */
257 if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
258 struct task_struct *tsk = current;
259 struct thread_struct *t = &tsk->thread;
260 int cpu = get_cpu();
261 struct tss_struct *tss = &per_cpu(init_tss, cpu);
262
263 kfree(t->io_bitmap_ptr);
264 t->io_bitmap_ptr = NULL;
265 clear_thread_flag(TIF_IO_BITMAP);
266 /*
267 * Careful, clear this in the TSS too:
268 */
269 memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
270 t->io_bitmap_max = 0;
271 tss->io_bitmap_owner = NULL;
272 tss->io_bitmap_max = 0;
273 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
274 put_cpu();
275 }
276 }
277
278 void flush_thread(void)
279 {
280 struct task_struct *tsk = current;
281
282 tsk->thread.debugreg0 = 0;
283 tsk->thread.debugreg1 = 0;
284 tsk->thread.debugreg2 = 0;
285 tsk->thread.debugreg3 = 0;
286 tsk->thread.debugreg6 = 0;
287 tsk->thread.debugreg7 = 0;
288 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
289 clear_tsk_thread_flag(tsk, TIF_DEBUG);
290 /*
291 * Forget coprocessor state..
292 */
293 tsk->fpu_counter = 0;
294 clear_fpu(tsk);
295 clear_used_math();
296 }
297
298 void release_thread(struct task_struct *dead_task)
299 {
300 BUG_ON(dead_task->mm);
301 release_vm86_irqs(dead_task);
302 }
303
304 /*
305 * This gets called before we allocate a new thread and copy
306 * the current task into it.
307 */
308 void prepare_to_copy(struct task_struct *tsk)
309 {
310 unlazy_fpu(tsk);
311 }
312
313 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
314 unsigned long unused,
315 struct task_struct * p, struct pt_regs * regs)
316 {
317 struct pt_regs * childregs;
318 struct task_struct *tsk;
319 int err;
320
321 childregs = task_pt_regs(p);
322 *childregs = *regs;
323 childregs->ax = 0;
324 childregs->sp = sp;
325
326 p->thread.sp = (unsigned long) childregs;
327 p->thread.sp0 = (unsigned long) (childregs+1);
328
329 p->thread.ip = (unsigned long) ret_from_fork;
330
331 savesegment(gs, p->thread.gs);
332
333 tsk = current;
334 if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
335 p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
336 IO_BITMAP_BYTES, GFP_KERNEL);
337 if (!p->thread.io_bitmap_ptr) {
338 p->thread.io_bitmap_max = 0;
339 return -ENOMEM;
340 }
341 set_tsk_thread_flag(p, TIF_IO_BITMAP);
342 }
343
344 err = 0;
345
346 /*
347 * Set a new TLS for the child thread?
348 */
349 if (clone_flags & CLONE_SETTLS)
350 err = do_set_thread_area(p, -1,
351 (struct user_desc __user *)childregs->si, 0);
352
353 if (err && p->thread.io_bitmap_ptr) {
354 kfree(p->thread.io_bitmap_ptr);
355 p->thread.io_bitmap_max = 0;
356 }
357 return err;
358 }
359
360 void
361 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
362 {
363 __asm__("movl %0, %%gs" :: "r"(0));
364 regs->fs = 0;
365 set_fs(USER_DS);
366 regs->ds = __USER_DS;
367 regs->es = __USER_DS;
368 regs->ss = __USER_DS;
369 regs->cs = __USER_CS;
370 regs->ip = new_ip;
371 regs->sp = new_sp;
372 /*
373 * Free the old FP and other extended state
374 */
375 free_thread_xstate(current);
376 }
377 EXPORT_SYMBOL_GPL(start_thread);
378
379 static void hard_disable_TSC(void)
380 {
381 write_cr4(read_cr4() | X86_CR4_TSD);
382 }
383
384 void disable_TSC(void)
385 {
386 preempt_disable();
387 if (!test_and_set_thread_flag(TIF_NOTSC))
388 /*
389 * Must flip the CPU state synchronously with
390 * TIF_NOTSC in the current running context.
391 */
392 hard_disable_TSC();
393 preempt_enable();
394 }
395
396 static void hard_enable_TSC(void)
397 {
398 write_cr4(read_cr4() & ~X86_CR4_TSD);
399 }
400
401 static void enable_TSC(void)
402 {
403 preempt_disable();
404 if (test_and_clear_thread_flag(TIF_NOTSC))
405 /*
406 * Must flip the CPU state synchronously with
407 * TIF_NOTSC in the current running context.
408 */
409 hard_enable_TSC();
410 preempt_enable();
411 }
412
413 int get_tsc_mode(unsigned long adr)
414 {
415 unsigned int val;
416
417 if (test_thread_flag(TIF_NOTSC))
418 val = PR_TSC_SIGSEGV;
419 else
420 val = PR_TSC_ENABLE;
421
422 return put_user(val, (unsigned int __user *)adr);
423 }
424
425 int set_tsc_mode(unsigned int val)
426 {
427 if (val == PR_TSC_SIGSEGV)
428 disable_TSC();
429 else if (val == PR_TSC_ENABLE)
430 enable_TSC();
431 else
432 return -EINVAL;
433
434 return 0;
435 }
436
437 static noinline void
438 __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
439 struct tss_struct *tss)
440 {
441 struct thread_struct *prev, *next;
442 unsigned long debugctl;
443
444 prev = &prev_p->thread;
445 next = &next_p->thread;
446
447 debugctl = prev->debugctlmsr;
448 if (next->ds_area_msr != prev->ds_area_msr) {
449 /* we clear debugctl to make sure DS
450 * is not in use when we change it */
451 debugctl = 0;
452 update_debugctlmsr(0);
453 wrmsr(MSR_IA32_DS_AREA, next->ds_area_msr, 0);
454 }
455
456 if (next->debugctlmsr != debugctl)
457 update_debugctlmsr(next->debugctlmsr);
458
459 if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
460 set_debugreg(next->debugreg0, 0);
461 set_debugreg(next->debugreg1, 1);
462 set_debugreg(next->debugreg2, 2);
463 set_debugreg(next->debugreg3, 3);
464 /* no 4 and 5 */
465 set_debugreg(next->debugreg6, 6);
466 set_debugreg(next->debugreg7, 7);
467 }
468
469 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
470 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
471 /* prev and next are different */
472 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
473 hard_disable_TSC();
474 else
475 hard_enable_TSC();
476 }
477
478 #ifdef X86_BTS
479 if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS))
480 ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS);
481
482 if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS))
483 ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES);
484 #endif
485
486
487 if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
488 /*
489 * Disable the bitmap via an invalid offset. We still cache
490 * the previous bitmap owner and the IO bitmap contents:
491 */
492 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
493 return;
494 }
495
496 if (likely(next == tss->io_bitmap_owner)) {
497 /*
498 * Previous owner of the bitmap (hence the bitmap content)
499 * matches the next task, we dont have to do anything but
500 * to set a valid offset in the TSS:
501 */
502 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
503 return;
504 }
505 /*
506 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
507 * and we let the task to get a GPF in case an I/O instruction
508 * is performed. The handler of the GPF will verify that the
509 * faulting task has a valid I/O bitmap and, it true, does the
510 * real copy and restart the instruction. This will save us
511 * redundant copies when the currently switched task does not
512 * perform any I/O during its timeslice.
513 */
514 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
515 }
516
517 /*
518 * switch_to(x,yn) should switch tasks from x to y.
519 *
520 * We fsave/fwait so that an exception goes off at the right time
521 * (as a call from the fsave or fwait in effect) rather than to
522 * the wrong process. Lazy FP saving no longer makes any sense
523 * with modern CPU's, and this simplifies a lot of things (SMP
524 * and UP become the same).
525 *
526 * NOTE! We used to use the x86 hardware context switching. The
527 * reason for not using it any more becomes apparent when you
528 * try to recover gracefully from saved state that is no longer
529 * valid (stale segment register values in particular). With the
530 * hardware task-switch, there is no way to fix up bad state in
531 * a reasonable manner.
532 *
533 * The fact that Intel documents the hardware task-switching to
534 * be slow is a fairly red herring - this code is not noticeably
535 * faster. However, there _is_ some room for improvement here,
536 * so the performance issues may eventually be a valid point.
537 * More important, however, is the fact that this allows us much
538 * more flexibility.
539 *
540 * The return value (in %ax) will be the "prev" task after
541 * the task-switch, and shows up in ret_from_fork in entry.S,
542 * for example.
543 */
544 struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
545 {
546 struct thread_struct *prev = &prev_p->thread,
547 *next = &next_p->thread;
548 int cpu = smp_processor_id();
549 struct tss_struct *tss = &per_cpu(init_tss, cpu);
550
551 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
552
553 __unlazy_fpu(prev_p);
554
555
556 /* we're going to use this soon, after a few expensive things */
557 if (next_p->fpu_counter > 5)
558 prefetch(next->xstate);
559
560 /*
561 * Reload esp0.
562 */
563 load_sp0(tss, next);
564
565 /*
566 * Save away %gs. No need to save %fs, as it was saved on the
567 * stack on entry. No need to save %es and %ds, as those are
568 * always kernel segments while inside the kernel. Doing this
569 * before setting the new TLS descriptors avoids the situation
570 * where we temporarily have non-reloadable segments in %fs
571 * and %gs. This could be an issue if the NMI handler ever
572 * used %fs or %gs (it does not today), or if the kernel is
573 * running inside of a hypervisor layer.
574 */
575 savesegment(gs, prev->gs);
576
577 /*
578 * Load the per-thread Thread-Local Storage descriptor.
579 */
580 load_TLS(next, cpu);
581
582 /*
583 * Restore IOPL if needed. In normal use, the flags restore
584 * in the switch assembly will handle this. But if the kernel
585 * is running virtualized at a non-zero CPL, the popf will
586 * not restore flags, so it must be done in a separate step.
587 */
588 if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
589 set_iopl_mask(next->iopl);
590
591 /*
592 * Now maybe handle debug registers and/or IO bitmaps
593 */
594 if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
595 task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
596 __switch_to_xtra(prev_p, next_p, tss);
597
598 /*
599 * Leave lazy mode, flushing any hypercalls made here.
600 * This must be done before restoring TLS segments so
601 * the GDT and LDT are properly updated, and must be
602 * done before math_state_restore, so the TS bit is up
603 * to date.
604 */
605 arch_leave_lazy_cpu_mode();
606
607 /* If the task has used fpu the last 5 timeslices, just do a full
608 * restore of the math state immediately to avoid the trap; the
609 * chances of needing FPU soon are obviously high now
610 *
611 * tsk_used_math() checks prevent calling math_state_restore(),
612 * which can sleep in the case of !tsk_used_math()
613 */
614 if (tsk_used_math(next_p) && next_p->fpu_counter > 5)
615 math_state_restore();
616
617 /*
618 * Restore %gs if needed (which is common)
619 */
620 if (prev->gs | next->gs)
621 loadsegment(gs, next->gs);
622
623 x86_write_percpu(current_task, next_p);
624
625 return prev_p;
626 }
627
628 asmlinkage int sys_fork(struct pt_regs regs)
629 {
630 return do_fork(SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
631 }
632
633 asmlinkage int sys_clone(struct pt_regs regs)
634 {
635 unsigned long clone_flags;
636 unsigned long newsp;
637 int __user *parent_tidptr, *child_tidptr;
638
639 clone_flags = regs.bx;
640 newsp = regs.cx;
641 parent_tidptr = (int __user *)regs.dx;
642 child_tidptr = (int __user *)regs.di;
643 if (!newsp)
644 newsp = regs.sp;
645 return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
646 }
647
648 /*
649 * This is trivial, and on the face of it looks like it
650 * could equally well be done in user mode.
651 *
652 * Not so, for quite unobvious reasons - register pressure.
653 * In user mode vfork() cannot have a stack frame, and if
654 * done by calling the "clone()" system call directly, you
655 * do not have enough call-clobbered registers to hold all
656 * the information you need.
657 */
658 asmlinkage int sys_vfork(struct pt_regs regs)
659 {
660 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
661 }
662
663 /*
664 * sys_execve() executes a new program.
665 */
666 asmlinkage int sys_execve(struct pt_regs regs)
667 {
668 int error;
669 char * filename;
670
671 filename = getname((char __user *) regs.bx);
672 error = PTR_ERR(filename);
673 if (IS_ERR(filename))
674 goto out;
675 error = do_execve(filename,
676 (char __user * __user *) regs.cx,
677 (char __user * __user *) regs.dx,
678 &regs);
679 if (error == 0) {
680 /* Make sure we don't return using sysenter.. */
681 set_thread_flag(TIF_IRET);
682 }
683 putname(filename);
684 out:
685 return error;
686 }
687
688 #define top_esp (THREAD_SIZE - sizeof(unsigned long))
689 #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
690
691 unsigned long get_wchan(struct task_struct *p)
692 {
693 unsigned long bp, sp, ip;
694 unsigned long stack_page;
695 int count = 0;
696 if (!p || p == current || p->state == TASK_RUNNING)
697 return 0;
698 stack_page = (unsigned long)task_stack_page(p);
699 sp = p->thread.sp;
700 if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
701 return 0;
702 /* include/asm-i386/system.h:switch_to() pushes bp last. */
703 bp = *(unsigned long *) sp;
704 do {
705 if (bp < stack_page || bp > top_ebp+stack_page)
706 return 0;
707 ip = *(unsigned long *) (bp+4);
708 if (!in_sched_functions(ip))
709 return ip;
710 bp = *(unsigned long *) bp;
711 } while (count++ < 16);
712 return 0;
713 }
714
715 unsigned long arch_align_stack(unsigned long sp)
716 {
717 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
718 sp -= get_random_int() % 8192;
719 return sp & ~0xf;
720 }
721
722 unsigned long arch_randomize_brk(struct mm_struct *mm)
723 {
724 unsigned long range_end = mm->brk + 0x02000000;
725 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
726 }
This page took 0.052899 seconds and 5 git commands to generate.