x86: fix synchronize_rcu(): high latency on idle system
[deliverable/linux.git] / arch / x86 / kernel / process_32.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 */
7
8 /*
9 * This file handles the architecture-dependent parts of process handling..
10 */
11
12 #include <stdarg.h>
13
14 #include <linux/cpu.h>
15 #include <linux/errno.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/elfcore.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/user.h>
26 #include <linux/a.out.h>
27 #include <linux/interrupt.h>
28 #include <linux/utsname.h>
29 #include <linux/delay.h>
30 #include <linux/reboot.h>
31 #include <linux/init.h>
32 #include <linux/mc146818rtc.h>
33 #include <linux/module.h>
34 #include <linux/kallsyms.h>
35 #include <linux/ptrace.h>
36 #include <linux/random.h>
37 #include <linux/personality.h>
38 #include <linux/tick.h>
39 #include <linux/percpu.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/pgtable.h>
43 #include <asm/system.h>
44 #include <asm/io.h>
45 #include <asm/ldt.h>
46 #include <asm/processor.h>
47 #include <asm/i387.h>
48 #include <asm/desc.h>
49 #include <asm/vm86.h>
50 #ifdef CONFIG_MATH_EMULATION
51 #include <asm/math_emu.h>
52 #endif
53
54 #include <linux/err.h>
55
56 #include <asm/tlbflush.h>
57 #include <asm/cpu.h>
58 #include <asm/kdebug.h>
59
60 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
61
62 static int hlt_counter;
63
64 unsigned long boot_option_idle_override = 0;
65 EXPORT_SYMBOL(boot_option_idle_override);
66
67 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
68 EXPORT_PER_CPU_SYMBOL(current_task);
69
70 DEFINE_PER_CPU(int, cpu_number);
71 EXPORT_PER_CPU_SYMBOL(cpu_number);
72
73 /*
74 * Return saved PC of a blocked thread.
75 */
76 unsigned long thread_saved_pc(struct task_struct *tsk)
77 {
78 return ((unsigned long *)tsk->thread.sp)[3];
79 }
80
81 /*
82 * Powermanagement idle function, if any..
83 */
84 void (*pm_idle)(void);
85 EXPORT_SYMBOL(pm_idle);
86 static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
87
88 void disable_hlt(void)
89 {
90 hlt_counter++;
91 }
92
93 EXPORT_SYMBOL(disable_hlt);
94
95 void enable_hlt(void)
96 {
97 hlt_counter--;
98 }
99
100 EXPORT_SYMBOL(enable_hlt);
101
102 /*
103 * We use this if we don't have any better
104 * idle routine..
105 */
106 void default_idle(void)
107 {
108 if (!hlt_counter && boot_cpu_data.hlt_works_ok) {
109 current_thread_info()->status &= ~TS_POLLING;
110 /*
111 * TS_POLLING-cleared state must be visible before we
112 * test NEED_RESCHED:
113 */
114 smp_mb();
115
116 local_irq_disable();
117 if (!need_resched()) {
118 ktime_t t0, t1;
119 u64 t0n, t1n;
120
121 t0 = ktime_get();
122 t0n = ktime_to_ns(t0);
123 safe_halt(); /* enables interrupts racelessly */
124 local_irq_disable();
125 t1 = ktime_get();
126 t1n = ktime_to_ns(t1);
127 sched_clock_idle_wakeup_event(t1n - t0n);
128 }
129 local_irq_enable();
130 current_thread_info()->status |= TS_POLLING;
131 } else {
132 /* loop is done by the caller */
133 cpu_relax();
134 }
135 }
136 #ifdef CONFIG_APM_MODULE
137 EXPORT_SYMBOL(default_idle);
138 #endif
139
140 /*
141 * On SMP it's slightly faster (but much more power-consuming!)
142 * to poll the ->work.need_resched flag instead of waiting for the
143 * cross-CPU IPI to arrive. Use this option with caution.
144 */
145 static void poll_idle(void)
146 {
147 cpu_relax();
148 }
149
150 #ifdef CONFIG_HOTPLUG_CPU
151 #include <asm/nmi.h>
152 /* We don't actually take CPU down, just spin without interrupts. */
153 static inline void play_dead(void)
154 {
155 /* This must be done before dead CPU ack */
156 cpu_exit_clear();
157 wbinvd();
158 mb();
159 /* Ack it */
160 __get_cpu_var(cpu_state) = CPU_DEAD;
161
162 /*
163 * With physical CPU hotplug, we should halt the cpu
164 */
165 local_irq_disable();
166 while (1)
167 halt();
168 }
169 #else
170 static inline void play_dead(void)
171 {
172 BUG();
173 }
174 #endif /* CONFIG_HOTPLUG_CPU */
175
176 /*
177 * The idle thread. There's no useful work to be
178 * done, so just try to conserve power and have a
179 * low exit latency (ie sit in a loop waiting for
180 * somebody to say that they'd like to reschedule)
181 */
182 void cpu_idle(void)
183 {
184 int cpu = smp_processor_id();
185
186 current_thread_info()->status |= TS_POLLING;
187
188 /* endless idle loop with no priority at all */
189 while (1) {
190 tick_nohz_stop_sched_tick();
191 while (!need_resched()) {
192 void (*idle)(void);
193
194 if (__get_cpu_var(cpu_idle_state))
195 __get_cpu_var(cpu_idle_state) = 0;
196
197 check_pgt_cache();
198 rmb();
199 idle = pm_idle;
200
201 if (rcu_pending(cpu))
202 rcu_check_callbacks(cpu, 0);
203
204 if (!idle)
205 idle = default_idle;
206
207 if (cpu_is_offline(cpu))
208 play_dead();
209
210 __get_cpu_var(irq_stat).idle_timestamp = jiffies;
211 idle();
212 }
213 tick_nohz_restart_sched_tick();
214 preempt_enable_no_resched();
215 schedule();
216 preempt_disable();
217 }
218 }
219
220 static void do_nothing(void *unused)
221 {
222 }
223
224 void cpu_idle_wait(void)
225 {
226 unsigned int cpu, this_cpu = get_cpu();
227 cpumask_t map, tmp = current->cpus_allowed;
228
229 set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
230 put_cpu();
231
232 cpus_clear(map);
233 for_each_online_cpu(cpu) {
234 per_cpu(cpu_idle_state, cpu) = 1;
235 cpu_set(cpu, map);
236 }
237
238 __get_cpu_var(cpu_idle_state) = 0;
239
240 wmb();
241 do {
242 ssleep(1);
243 for_each_online_cpu(cpu) {
244 if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
245 cpu_clear(cpu, map);
246 }
247 cpus_and(map, map, cpu_online_map);
248 /*
249 * We waited 1 sec, if a CPU still did not call idle
250 * it may be because it is in idle and not waking up
251 * because it has nothing to do.
252 * Give all the remaining CPUS a kick.
253 */
254 smp_call_function_mask(map, do_nothing, 0, 0);
255 } while (!cpus_empty(map));
256
257 set_cpus_allowed(current, tmp);
258 }
259 EXPORT_SYMBOL_GPL(cpu_idle_wait);
260
261 /*
262 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
263 * which can obviate IPI to trigger checking of need_resched.
264 * We execute MONITOR against need_resched and enter optimized wait state
265 * through MWAIT. Whenever someone changes need_resched, we would be woken
266 * up from MWAIT (without an IPI).
267 *
268 * New with Core Duo processors, MWAIT can take some hints based on CPU
269 * capability.
270 */
271 void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
272 {
273 if (!need_resched()) {
274 __monitor((void *)&current_thread_info()->flags, 0, 0);
275 smp_mb();
276 if (!need_resched())
277 __mwait(ax, cx);
278 }
279 }
280
281 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
282 static void mwait_idle(void)
283 {
284 local_irq_enable();
285 mwait_idle_with_hints(0, 0);
286 }
287
288 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
289 {
290 if (cpu_has(c, X86_FEATURE_MWAIT)) {
291 printk("monitor/mwait feature present.\n");
292 /*
293 * Skip, if setup has overridden idle.
294 * One CPU supports mwait => All CPUs supports mwait
295 */
296 if (!pm_idle) {
297 printk("using mwait in idle threads.\n");
298 pm_idle = mwait_idle;
299 }
300 }
301 }
302
303 static int __init idle_setup(char *str)
304 {
305 if (!strcmp(str, "poll")) {
306 printk("using polling idle threads.\n");
307 pm_idle = poll_idle;
308 #ifdef CONFIG_X86_SMP
309 if (smp_num_siblings > 1)
310 printk("WARNING: polling idle and HT enabled, performance may degrade.\n");
311 #endif
312 } else if (!strcmp(str, "mwait"))
313 force_mwait = 1;
314 else
315 return -1;
316
317 boot_option_idle_override = 1;
318 return 0;
319 }
320 early_param("idle", idle_setup);
321
322 void __show_registers(struct pt_regs *regs, int all)
323 {
324 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
325 unsigned long d0, d1, d2, d3, d6, d7;
326 unsigned long sp;
327 unsigned short ss, gs;
328
329 if (user_mode_vm(regs)) {
330 sp = regs->sp;
331 ss = regs->ss & 0xffff;
332 savesegment(gs, gs);
333 } else {
334 sp = (unsigned long) (&regs->sp);
335 savesegment(ss, ss);
336 savesegment(gs, gs);
337 }
338
339 printk("\n");
340 printk("Pid: %d, comm: %s %s (%s %.*s)\n",
341 task_pid_nr(current), current->comm,
342 print_tainted(), init_utsname()->release,
343 (int)strcspn(init_utsname()->version, " "),
344 init_utsname()->version);
345
346 printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
347 0xffff & regs->cs, regs->ip, regs->flags,
348 smp_processor_id());
349 print_symbol("EIP is at %s\n", regs->ip);
350
351 printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
352 regs->ax, regs->bx, regs->cx, regs->dx);
353 printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
354 regs->si, regs->di, regs->bp, sp);
355 printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
356 regs->ds & 0xffff, regs->es & 0xffff,
357 regs->fs & 0xffff, gs, ss);
358
359 if (!all)
360 return;
361
362 cr0 = read_cr0();
363 cr2 = read_cr2();
364 cr3 = read_cr3();
365 cr4 = read_cr4_safe();
366 printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
367 cr0, cr2, cr3, cr4);
368
369 get_debugreg(d0, 0);
370 get_debugreg(d1, 1);
371 get_debugreg(d2, 2);
372 get_debugreg(d3, 3);
373 printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
374 d0, d1, d2, d3);
375
376 get_debugreg(d6, 6);
377 get_debugreg(d7, 7);
378 printk("DR6: %08lx DR7: %08lx\n",
379 d6, d7);
380 }
381
382 void show_regs(struct pt_regs *regs)
383 {
384 __show_registers(regs, 1);
385 show_trace(NULL, regs, &regs->sp, regs->bp);
386 }
387
388 /*
389 * This gets run with %bx containing the
390 * function to call, and %dx containing
391 * the "args".
392 */
393 extern void kernel_thread_helper(void);
394
395 /*
396 * Create a kernel thread
397 */
398 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
399 {
400 struct pt_regs regs;
401
402 memset(&regs, 0, sizeof(regs));
403
404 regs.bx = (unsigned long) fn;
405 regs.dx = (unsigned long) arg;
406
407 regs.ds = __USER_DS;
408 regs.es = __USER_DS;
409 regs.fs = __KERNEL_PERCPU;
410 regs.orig_ax = -1;
411 regs.ip = (unsigned long) kernel_thread_helper;
412 regs.cs = __KERNEL_CS | get_kernel_rpl();
413 regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
414
415 /* Ok, create the new process.. */
416 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
417 }
418 EXPORT_SYMBOL(kernel_thread);
419
420 /*
421 * Free current thread data structures etc..
422 */
423 void exit_thread(void)
424 {
425 /* The process may have allocated an io port bitmap... nuke it. */
426 if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
427 struct task_struct *tsk = current;
428 struct thread_struct *t = &tsk->thread;
429 int cpu = get_cpu();
430 struct tss_struct *tss = &per_cpu(init_tss, cpu);
431
432 kfree(t->io_bitmap_ptr);
433 t->io_bitmap_ptr = NULL;
434 clear_thread_flag(TIF_IO_BITMAP);
435 /*
436 * Careful, clear this in the TSS too:
437 */
438 memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
439 t->io_bitmap_max = 0;
440 tss->io_bitmap_owner = NULL;
441 tss->io_bitmap_max = 0;
442 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
443 put_cpu();
444 }
445 }
446
447 void flush_thread(void)
448 {
449 struct task_struct *tsk = current;
450
451 tsk->thread.debugreg0 = 0;
452 tsk->thread.debugreg1 = 0;
453 tsk->thread.debugreg2 = 0;
454 tsk->thread.debugreg3 = 0;
455 tsk->thread.debugreg6 = 0;
456 tsk->thread.debugreg7 = 0;
457 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
458 clear_tsk_thread_flag(tsk, TIF_DEBUG);
459 /*
460 * Forget coprocessor state..
461 */
462 clear_fpu(tsk);
463 clear_used_math();
464 }
465
466 void release_thread(struct task_struct *dead_task)
467 {
468 BUG_ON(dead_task->mm);
469 release_vm86_irqs(dead_task);
470 }
471
472 /*
473 * This gets called before we allocate a new thread and copy
474 * the current task into it.
475 */
476 void prepare_to_copy(struct task_struct *tsk)
477 {
478 unlazy_fpu(tsk);
479 }
480
481 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
482 unsigned long unused,
483 struct task_struct * p, struct pt_regs * regs)
484 {
485 struct pt_regs * childregs;
486 struct task_struct *tsk;
487 int err;
488
489 childregs = task_pt_regs(p);
490 *childregs = *regs;
491 childregs->ax = 0;
492 childregs->sp = sp;
493
494 p->thread.sp = (unsigned long) childregs;
495 p->thread.sp0 = (unsigned long) (childregs+1);
496
497 p->thread.ip = (unsigned long) ret_from_fork;
498
499 savesegment(gs, p->thread.gs);
500
501 tsk = current;
502 if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
503 p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
504 IO_BITMAP_BYTES, GFP_KERNEL);
505 if (!p->thread.io_bitmap_ptr) {
506 p->thread.io_bitmap_max = 0;
507 return -ENOMEM;
508 }
509 set_tsk_thread_flag(p, TIF_IO_BITMAP);
510 }
511
512 err = 0;
513
514 /*
515 * Set a new TLS for the child thread?
516 */
517 if (clone_flags & CLONE_SETTLS)
518 err = do_set_thread_area(p, -1,
519 (struct user_desc __user *)childregs->si, 0);
520
521 if (err && p->thread.io_bitmap_ptr) {
522 kfree(p->thread.io_bitmap_ptr);
523 p->thread.io_bitmap_max = 0;
524 }
525 return err;
526 }
527
528 /*
529 * fill in the user structure for a core dump..
530 */
531 void dump_thread(struct pt_regs * regs, struct user * dump)
532 {
533 u16 gs;
534
535 /* changed the size calculations - should hopefully work better. lbt */
536 dump->magic = CMAGIC;
537 dump->start_code = 0;
538 dump->start_stack = regs->sp & ~(PAGE_SIZE - 1);
539 dump->u_tsize = ((unsigned long) current->mm->end_code) >> PAGE_SHIFT;
540 dump->u_dsize = ((unsigned long) (current->mm->brk + (PAGE_SIZE-1))) >> PAGE_SHIFT;
541 dump->u_dsize -= dump->u_tsize;
542 dump->u_ssize = 0;
543 dump->u_debugreg[0] = current->thread.debugreg0;
544 dump->u_debugreg[1] = current->thread.debugreg1;
545 dump->u_debugreg[2] = current->thread.debugreg2;
546 dump->u_debugreg[3] = current->thread.debugreg3;
547 dump->u_debugreg[4] = 0;
548 dump->u_debugreg[5] = 0;
549 dump->u_debugreg[6] = current->thread.debugreg6;
550 dump->u_debugreg[7] = current->thread.debugreg7;
551
552 if (dump->start_stack < TASK_SIZE)
553 dump->u_ssize = ((unsigned long) (TASK_SIZE - dump->start_stack)) >> PAGE_SHIFT;
554
555 dump->regs.bx = regs->bx;
556 dump->regs.cx = regs->cx;
557 dump->regs.dx = regs->dx;
558 dump->regs.si = regs->si;
559 dump->regs.di = regs->di;
560 dump->regs.bp = regs->bp;
561 dump->regs.ax = regs->ax;
562 dump->regs.ds = (u16)regs->ds;
563 dump->regs.es = (u16)regs->es;
564 dump->regs.fs = (u16)regs->fs;
565 savesegment(gs,gs);
566 dump->regs.orig_ax = regs->orig_ax;
567 dump->regs.ip = regs->ip;
568 dump->regs.cs = (u16)regs->cs;
569 dump->regs.flags = regs->flags;
570 dump->regs.sp = regs->sp;
571 dump->regs.ss = (u16)regs->ss;
572
573 dump->u_fpvalid = dump_fpu (regs, &dump->i387);
574 }
575 EXPORT_SYMBOL(dump_thread);
576
577 #ifdef CONFIG_SECCOMP
578 static void hard_disable_TSC(void)
579 {
580 write_cr4(read_cr4() | X86_CR4_TSD);
581 }
582 void disable_TSC(void)
583 {
584 preempt_disable();
585 if (!test_and_set_thread_flag(TIF_NOTSC))
586 /*
587 * Must flip the CPU state synchronously with
588 * TIF_NOTSC in the current running context.
589 */
590 hard_disable_TSC();
591 preempt_enable();
592 }
593 static void hard_enable_TSC(void)
594 {
595 write_cr4(read_cr4() & ~X86_CR4_TSD);
596 }
597 #endif /* CONFIG_SECCOMP */
598
599 static noinline void
600 __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
601 struct tss_struct *tss)
602 {
603 struct thread_struct *prev, *next;
604 unsigned long debugctl;
605
606 prev = &prev_p->thread;
607 next = &next_p->thread;
608
609 debugctl = prev->debugctlmsr;
610 if (next->ds_area_msr != prev->ds_area_msr) {
611 /* we clear debugctl to make sure DS
612 * is not in use when we change it */
613 debugctl = 0;
614 wrmsrl(MSR_IA32_DEBUGCTLMSR, 0);
615 wrmsr(MSR_IA32_DS_AREA, next->ds_area_msr, 0);
616 }
617
618 if (next->debugctlmsr != debugctl)
619 wrmsr(MSR_IA32_DEBUGCTLMSR, next->debugctlmsr, 0);
620
621 if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
622 set_debugreg(next->debugreg0, 0);
623 set_debugreg(next->debugreg1, 1);
624 set_debugreg(next->debugreg2, 2);
625 set_debugreg(next->debugreg3, 3);
626 /* no 4 and 5 */
627 set_debugreg(next->debugreg6, 6);
628 set_debugreg(next->debugreg7, 7);
629 }
630
631 #ifdef CONFIG_SECCOMP
632 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
633 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
634 /* prev and next are different */
635 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
636 hard_disable_TSC();
637 else
638 hard_enable_TSC();
639 }
640 #endif
641
642 if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS))
643 ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS);
644
645 if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS))
646 ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES);
647
648
649 if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
650 /*
651 * Disable the bitmap via an invalid offset. We still cache
652 * the previous bitmap owner and the IO bitmap contents:
653 */
654 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
655 return;
656 }
657
658 if (likely(next == tss->io_bitmap_owner)) {
659 /*
660 * Previous owner of the bitmap (hence the bitmap content)
661 * matches the next task, we dont have to do anything but
662 * to set a valid offset in the TSS:
663 */
664 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
665 return;
666 }
667 /*
668 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
669 * and we let the task to get a GPF in case an I/O instruction
670 * is performed. The handler of the GPF will verify that the
671 * faulting task has a valid I/O bitmap and, it true, does the
672 * real copy and restart the instruction. This will save us
673 * redundant copies when the currently switched task does not
674 * perform any I/O during its timeslice.
675 */
676 tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
677 }
678
679 /*
680 * switch_to(x,yn) should switch tasks from x to y.
681 *
682 * We fsave/fwait so that an exception goes off at the right time
683 * (as a call from the fsave or fwait in effect) rather than to
684 * the wrong process. Lazy FP saving no longer makes any sense
685 * with modern CPU's, and this simplifies a lot of things (SMP
686 * and UP become the same).
687 *
688 * NOTE! We used to use the x86 hardware context switching. The
689 * reason for not using it any more becomes apparent when you
690 * try to recover gracefully from saved state that is no longer
691 * valid (stale segment register values in particular). With the
692 * hardware task-switch, there is no way to fix up bad state in
693 * a reasonable manner.
694 *
695 * The fact that Intel documents the hardware task-switching to
696 * be slow is a fairly red herring - this code is not noticeably
697 * faster. However, there _is_ some room for improvement here,
698 * so the performance issues may eventually be a valid point.
699 * More important, however, is the fact that this allows us much
700 * more flexibility.
701 *
702 * The return value (in %ax) will be the "prev" task after
703 * the task-switch, and shows up in ret_from_fork in entry.S,
704 * for example.
705 */
706 struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
707 {
708 struct thread_struct *prev = &prev_p->thread,
709 *next = &next_p->thread;
710 int cpu = smp_processor_id();
711 struct tss_struct *tss = &per_cpu(init_tss, cpu);
712
713 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
714
715 __unlazy_fpu(prev_p);
716
717
718 /* we're going to use this soon, after a few expensive things */
719 if (next_p->fpu_counter > 5)
720 prefetch(&next->i387.fxsave);
721
722 /*
723 * Reload esp0.
724 */
725 load_sp0(tss, next);
726
727 /*
728 * Save away %gs. No need to save %fs, as it was saved on the
729 * stack on entry. No need to save %es and %ds, as those are
730 * always kernel segments while inside the kernel. Doing this
731 * before setting the new TLS descriptors avoids the situation
732 * where we temporarily have non-reloadable segments in %fs
733 * and %gs. This could be an issue if the NMI handler ever
734 * used %fs or %gs (it does not today), or if the kernel is
735 * running inside of a hypervisor layer.
736 */
737 savesegment(gs, prev->gs);
738
739 /*
740 * Load the per-thread Thread-Local Storage descriptor.
741 */
742 load_TLS(next, cpu);
743
744 /*
745 * Restore IOPL if needed. In normal use, the flags restore
746 * in the switch assembly will handle this. But if the kernel
747 * is running virtualized at a non-zero CPL, the popf will
748 * not restore flags, so it must be done in a separate step.
749 */
750 if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
751 set_iopl_mask(next->iopl);
752
753 /*
754 * Now maybe handle debug registers and/or IO bitmaps
755 */
756 if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
757 task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
758 __switch_to_xtra(prev_p, next_p, tss);
759
760 /*
761 * Leave lazy mode, flushing any hypercalls made here.
762 * This must be done before restoring TLS segments so
763 * the GDT and LDT are properly updated, and must be
764 * done before math_state_restore, so the TS bit is up
765 * to date.
766 */
767 arch_leave_lazy_cpu_mode();
768
769 /* If the task has used fpu the last 5 timeslices, just do a full
770 * restore of the math state immediately to avoid the trap; the
771 * chances of needing FPU soon are obviously high now
772 */
773 if (next_p->fpu_counter > 5)
774 math_state_restore();
775
776 /*
777 * Restore %gs if needed (which is common)
778 */
779 if (prev->gs | next->gs)
780 loadsegment(gs, next->gs);
781
782 x86_write_percpu(current_task, next_p);
783
784 return prev_p;
785 }
786
787 asmlinkage int sys_fork(struct pt_regs regs)
788 {
789 return do_fork(SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
790 }
791
792 asmlinkage int sys_clone(struct pt_regs regs)
793 {
794 unsigned long clone_flags;
795 unsigned long newsp;
796 int __user *parent_tidptr, *child_tidptr;
797
798 clone_flags = regs.bx;
799 newsp = regs.cx;
800 parent_tidptr = (int __user *)regs.dx;
801 child_tidptr = (int __user *)regs.di;
802 if (!newsp)
803 newsp = regs.sp;
804 return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
805 }
806
807 /*
808 * This is trivial, and on the face of it looks like it
809 * could equally well be done in user mode.
810 *
811 * Not so, for quite unobvious reasons - register pressure.
812 * In user mode vfork() cannot have a stack frame, and if
813 * done by calling the "clone()" system call directly, you
814 * do not have enough call-clobbered registers to hold all
815 * the information you need.
816 */
817 asmlinkage int sys_vfork(struct pt_regs regs)
818 {
819 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
820 }
821
822 /*
823 * sys_execve() executes a new program.
824 */
825 asmlinkage int sys_execve(struct pt_regs regs)
826 {
827 int error;
828 char * filename;
829
830 filename = getname((char __user *) regs.bx);
831 error = PTR_ERR(filename);
832 if (IS_ERR(filename))
833 goto out;
834 error = do_execve(filename,
835 (char __user * __user *) regs.cx,
836 (char __user * __user *) regs.dx,
837 &regs);
838 if (error == 0) {
839 /* Make sure we don't return using sysenter.. */
840 set_thread_flag(TIF_IRET);
841 }
842 putname(filename);
843 out:
844 return error;
845 }
846
847 #define top_esp (THREAD_SIZE - sizeof(unsigned long))
848 #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
849
850 unsigned long get_wchan(struct task_struct *p)
851 {
852 unsigned long bp, sp, ip;
853 unsigned long stack_page;
854 int count = 0;
855 if (!p || p == current || p->state == TASK_RUNNING)
856 return 0;
857 stack_page = (unsigned long)task_stack_page(p);
858 sp = p->thread.sp;
859 if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
860 return 0;
861 /* include/asm-i386/system.h:switch_to() pushes bp last. */
862 bp = *(unsigned long *) sp;
863 do {
864 if (bp < stack_page || bp > top_ebp+stack_page)
865 return 0;
866 ip = *(unsigned long *) (bp+4);
867 if (!in_sched_functions(ip))
868 return ip;
869 bp = *(unsigned long *) bp;
870 } while (count++ < 16);
871 return 0;
872 }
873
874 unsigned long arch_align_stack(unsigned long sp)
875 {
876 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
877 sp -= get_random_int() % 8192;
878 return sp & ~0xf;
879 }
880
881 unsigned long arch_randomize_brk(struct mm_struct *mm)
882 {
883 unsigned long range_end = mm->brk + 0x02000000;
884 return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
885 }
This page took 0.0493440000000001 seconds and 6 git commands to generate.