lockdep: x86_64: connect the sysexit hook
[deliverable/linux.git] / arch / x86 / kernel / process_64.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 *
7 * X86-64 port
8 * Andi Kleen.
9 *
10 * CPU hotplug support - ashok.raj@intel.com
11 */
12
13 /*
14 * This file handles the architecture-dependent parts of process handling..
15 */
16
17 #include <stdarg.h>
18
19 #include <linux/cpu.h>
20 #include <linux/errno.h>
21 #include <linux/sched.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/fs.h>
25 #include <linux/elfcore.h>
26 #include <linux/smp.h>
27 #include <linux/slab.h>
28 #include <linux/user.h>
29 #include <linux/module.h>
30 #include <linux/a.out.h>
31 #include <linux/interrupt.h>
32 #include <linux/delay.h>
33 #include <linux/ptrace.h>
34 #include <linux/utsname.h>
35 #include <linux/random.h>
36 #include <linux/notifier.h>
37 #include <linux/kprobes.h>
38 #include <linux/kdebug.h>
39 #include <linux/tick.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/pgtable.h>
43 #include <asm/system.h>
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/i387.h>
47 #include <asm/mmu_context.h>
48 #include <asm/pda.h>
49 #include <asm/prctl.h>
50 #include <asm/desc.h>
51 #include <asm/proto.h>
52 #include <asm/ia32.h>
53 #include <asm/idle.h>
54
55 asmlinkage extern void ret_from_fork(void);
56
57 unsigned long kernel_thread_flags = CLONE_VM | CLONE_UNTRACED;
58
59 unsigned long boot_option_idle_override = 0;
60 EXPORT_SYMBOL(boot_option_idle_override);
61
62 /*
63 * Powermanagement idle function, if any..
64 */
65 void (*pm_idle)(void);
66 EXPORT_SYMBOL(pm_idle);
67 static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
68
69 static ATOMIC_NOTIFIER_HEAD(idle_notifier);
70
71 void idle_notifier_register(struct notifier_block *n)
72 {
73 atomic_notifier_chain_register(&idle_notifier, n);
74 }
75 EXPORT_SYMBOL_GPL(idle_notifier_register);
76
77 void idle_notifier_unregister(struct notifier_block *n)
78 {
79 atomic_notifier_chain_unregister(&idle_notifier, n);
80 }
81 EXPORT_SYMBOL(idle_notifier_unregister);
82
83 void enter_idle(void)
84 {
85 write_pda(isidle, 1);
86 atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
87 }
88
89 static void __exit_idle(void)
90 {
91 if (test_and_clear_bit_pda(0, isidle) == 0)
92 return;
93 atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
94 }
95
96 /* Called from interrupts to signify idle end */
97 void exit_idle(void)
98 {
99 /* idle loop has pid 0 */
100 if (current->pid)
101 return;
102 __exit_idle();
103 }
104
105 /*
106 * We use this if we don't have any better
107 * idle routine..
108 */
109 static void default_idle(void)
110 {
111 current_thread_info()->status &= ~TS_POLLING;
112 /*
113 * TS_POLLING-cleared state must be visible before we
114 * test NEED_RESCHED:
115 */
116 smp_mb();
117 local_irq_disable();
118 if (!need_resched()) {
119 /* Enables interrupts one instruction before HLT.
120 x86 special cases this so there is no race. */
121 safe_halt();
122 } else
123 local_irq_enable();
124 current_thread_info()->status |= TS_POLLING;
125 }
126
127 /*
128 * On SMP it's slightly faster (but much more power-consuming!)
129 * to poll the ->need_resched flag instead of waiting for the
130 * cross-CPU IPI to arrive. Use this option with caution.
131 */
132 static void poll_idle (void)
133 {
134 local_irq_enable();
135 cpu_relax();
136 }
137
138 void cpu_idle_wait(void)
139 {
140 unsigned int cpu, this_cpu = get_cpu();
141 cpumask_t map, tmp = current->cpus_allowed;
142
143 set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
144 put_cpu();
145
146 cpus_clear(map);
147 for_each_online_cpu(cpu) {
148 per_cpu(cpu_idle_state, cpu) = 1;
149 cpu_set(cpu, map);
150 }
151
152 __get_cpu_var(cpu_idle_state) = 0;
153
154 wmb();
155 do {
156 ssleep(1);
157 for_each_online_cpu(cpu) {
158 if (cpu_isset(cpu, map) &&
159 !per_cpu(cpu_idle_state, cpu))
160 cpu_clear(cpu, map);
161 }
162 cpus_and(map, map, cpu_online_map);
163 } while (!cpus_empty(map));
164
165 set_cpus_allowed(current, tmp);
166 }
167 EXPORT_SYMBOL_GPL(cpu_idle_wait);
168
169 #ifdef CONFIG_HOTPLUG_CPU
170 DECLARE_PER_CPU(int, cpu_state);
171
172 #include <asm/nmi.h>
173 /* We halt the CPU with physical CPU hotplug */
174 static inline void play_dead(void)
175 {
176 idle_task_exit();
177 wbinvd();
178 mb();
179 /* Ack it */
180 __get_cpu_var(cpu_state) = CPU_DEAD;
181
182 local_irq_disable();
183 while (1)
184 halt();
185 }
186 #else
187 static inline void play_dead(void)
188 {
189 BUG();
190 }
191 #endif /* CONFIG_HOTPLUG_CPU */
192
193 /*
194 * The idle thread. There's no useful work to be
195 * done, so just try to conserve power and have a
196 * low exit latency (ie sit in a loop waiting for
197 * somebody to say that they'd like to reschedule)
198 */
199 void cpu_idle (void)
200 {
201 current_thread_info()->status |= TS_POLLING;
202 /* endless idle loop with no priority at all */
203 while (1) {
204 while (!need_resched()) {
205 void (*idle)(void);
206
207 if (__get_cpu_var(cpu_idle_state))
208 __get_cpu_var(cpu_idle_state) = 0;
209
210 tick_nohz_stop_sched_tick();
211
212 rmb();
213 idle = pm_idle;
214 if (!idle)
215 idle = default_idle;
216 if (cpu_is_offline(smp_processor_id()))
217 play_dead();
218 /*
219 * Idle routines should keep interrupts disabled
220 * from here on, until they go to idle.
221 * Otherwise, idle callbacks can misfire.
222 */
223 local_irq_disable();
224 enter_idle();
225 idle();
226 /* In many cases the interrupt that ended idle
227 has already called exit_idle. But some idle
228 loops can be woken up without interrupt. */
229 __exit_idle();
230 }
231
232 tick_nohz_restart_sched_tick();
233 preempt_enable_no_resched();
234 schedule();
235 preempt_disable();
236 }
237 }
238
239 /*
240 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
241 * which can obviate IPI to trigger checking of need_resched.
242 * We execute MONITOR against need_resched and enter optimized wait state
243 * through MWAIT. Whenever someone changes need_resched, we would be woken
244 * up from MWAIT (without an IPI).
245 *
246 * New with Core Duo processors, MWAIT can take some hints based on CPU
247 * capability.
248 */
249 void mwait_idle_with_hints(unsigned long eax, unsigned long ecx)
250 {
251 if (!need_resched()) {
252 __monitor((void *)&current_thread_info()->flags, 0, 0);
253 smp_mb();
254 if (!need_resched())
255 __mwait(eax, ecx);
256 }
257 }
258
259 /* Default MONITOR/MWAIT with no hints, used for default C1 state */
260 static void mwait_idle(void)
261 {
262 if (!need_resched()) {
263 __monitor((void *)&current_thread_info()->flags, 0, 0);
264 smp_mb();
265 if (!need_resched())
266 __sti_mwait(0, 0);
267 else
268 local_irq_enable();
269 } else {
270 local_irq_enable();
271 }
272 }
273
274 void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
275 {
276 static int printed;
277 if (cpu_has(c, X86_FEATURE_MWAIT)) {
278 /*
279 * Skip, if setup has overridden idle.
280 * One CPU supports mwait => All CPUs supports mwait
281 */
282 if (!pm_idle) {
283 if (!printed) {
284 printk(KERN_INFO "using mwait in idle threads.\n");
285 printed = 1;
286 }
287 pm_idle = mwait_idle;
288 }
289 }
290 }
291
292 static int __init idle_setup (char *str)
293 {
294 if (!strcmp(str, "poll")) {
295 printk("using polling idle threads.\n");
296 pm_idle = poll_idle;
297 } else if (!strcmp(str, "mwait"))
298 force_mwait = 1;
299 else
300 return -1;
301
302 boot_option_idle_override = 1;
303 return 0;
304 }
305 early_param("idle", idle_setup);
306
307 /* Prints also some state that isn't saved in the pt_regs */
308 void __show_regs(struct pt_regs * regs)
309 {
310 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
311 unsigned long d0, d1, d2, d3, d6, d7;
312 unsigned int fsindex,gsindex;
313 unsigned int ds,cs,es;
314
315 printk("\n");
316 print_modules();
317 printk("Pid: %d, comm: %.20s %s %s %.*s\n",
318 current->pid, current->comm, print_tainted(),
319 init_utsname()->release,
320 (int)strcspn(init_utsname()->version, " "),
321 init_utsname()->version);
322 printk("RIP: %04lx:[<%016lx>] ", regs->cs & 0xffff, regs->rip);
323 printk_address(regs->rip);
324 printk("RSP: %04lx:%016lx EFLAGS: %08lx\n", regs->ss, regs->rsp,
325 regs->eflags);
326 printk("RAX: %016lx RBX: %016lx RCX: %016lx\n",
327 regs->rax, regs->rbx, regs->rcx);
328 printk("RDX: %016lx RSI: %016lx RDI: %016lx\n",
329 regs->rdx, regs->rsi, regs->rdi);
330 printk("RBP: %016lx R08: %016lx R09: %016lx\n",
331 regs->rbp, regs->r8, regs->r9);
332 printk("R10: %016lx R11: %016lx R12: %016lx\n",
333 regs->r10, regs->r11, regs->r12);
334 printk("R13: %016lx R14: %016lx R15: %016lx\n",
335 regs->r13, regs->r14, regs->r15);
336
337 asm("movl %%ds,%0" : "=r" (ds));
338 asm("movl %%cs,%0" : "=r" (cs));
339 asm("movl %%es,%0" : "=r" (es));
340 asm("movl %%fs,%0" : "=r" (fsindex));
341 asm("movl %%gs,%0" : "=r" (gsindex));
342
343 rdmsrl(MSR_FS_BASE, fs);
344 rdmsrl(MSR_GS_BASE, gs);
345 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
346
347 cr0 = read_cr0();
348 cr2 = read_cr2();
349 cr3 = read_cr3();
350 cr4 = read_cr4();
351
352 printk("FS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
353 fs,fsindex,gs,gsindex,shadowgs);
354 printk("CS: %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds, es, cr0);
355 printk("CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3, cr4);
356
357 get_debugreg(d0, 0);
358 get_debugreg(d1, 1);
359 get_debugreg(d2, 2);
360 printk("DR0: %016lx DR1: %016lx DR2: %016lx\n", d0, d1, d2);
361 get_debugreg(d3, 3);
362 get_debugreg(d6, 6);
363 get_debugreg(d7, 7);
364 printk("DR3: %016lx DR6: %016lx DR7: %016lx\n", d3, d6, d7);
365 }
366
367 void show_regs(struct pt_regs *regs)
368 {
369 printk("CPU %d:", smp_processor_id());
370 __show_regs(regs);
371 show_trace(NULL, regs, (void *)(regs + 1));
372 }
373
374 /*
375 * Free current thread data structures etc..
376 */
377 void exit_thread(void)
378 {
379 struct task_struct *me = current;
380 struct thread_struct *t = &me->thread;
381
382 if (me->thread.io_bitmap_ptr) {
383 struct tss_struct *tss = &per_cpu(init_tss, get_cpu());
384
385 kfree(t->io_bitmap_ptr);
386 t->io_bitmap_ptr = NULL;
387 clear_thread_flag(TIF_IO_BITMAP);
388 /*
389 * Careful, clear this in the TSS too:
390 */
391 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
392 t->io_bitmap_max = 0;
393 put_cpu();
394 }
395 }
396
397 void flush_thread(void)
398 {
399 struct task_struct *tsk = current;
400
401 if (test_tsk_thread_flag(tsk, TIF_ABI_PENDING)) {
402 clear_tsk_thread_flag(tsk, TIF_ABI_PENDING);
403 if (test_tsk_thread_flag(tsk, TIF_IA32)) {
404 clear_tsk_thread_flag(tsk, TIF_IA32);
405 } else {
406 set_tsk_thread_flag(tsk, TIF_IA32);
407 current_thread_info()->status |= TS_COMPAT;
408 }
409 }
410 clear_tsk_thread_flag(tsk, TIF_DEBUG);
411
412 tsk->thread.debugreg0 = 0;
413 tsk->thread.debugreg1 = 0;
414 tsk->thread.debugreg2 = 0;
415 tsk->thread.debugreg3 = 0;
416 tsk->thread.debugreg6 = 0;
417 tsk->thread.debugreg7 = 0;
418 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
419 /*
420 * Forget coprocessor state..
421 */
422 clear_fpu(tsk);
423 clear_used_math();
424 }
425
426 void release_thread(struct task_struct *dead_task)
427 {
428 if (dead_task->mm) {
429 if (dead_task->mm->context.size) {
430 printk("WARNING: dead process %8s still has LDT? <%p/%d>\n",
431 dead_task->comm,
432 dead_task->mm->context.ldt,
433 dead_task->mm->context.size);
434 BUG();
435 }
436 }
437 }
438
439 static inline void set_32bit_tls(struct task_struct *t, int tls, u32 addr)
440 {
441 struct user_desc ud = {
442 .base_addr = addr,
443 .limit = 0xfffff,
444 .seg_32bit = 1,
445 .limit_in_pages = 1,
446 .useable = 1,
447 };
448 struct n_desc_struct *desc = (void *)t->thread.tls_array;
449 desc += tls;
450 desc->a = LDT_entry_a(&ud);
451 desc->b = LDT_entry_b(&ud);
452 }
453
454 static inline u32 read_32bit_tls(struct task_struct *t, int tls)
455 {
456 struct desc_struct *desc = (void *)t->thread.tls_array;
457 desc += tls;
458 return desc->base0 |
459 (((u32)desc->base1) << 16) |
460 (((u32)desc->base2) << 24);
461 }
462
463 /*
464 * This gets called before we allocate a new thread and copy
465 * the current task into it.
466 */
467 void prepare_to_copy(struct task_struct *tsk)
468 {
469 unlazy_fpu(tsk);
470 }
471
472 int copy_thread(int nr, unsigned long clone_flags, unsigned long rsp,
473 unsigned long unused,
474 struct task_struct * p, struct pt_regs * regs)
475 {
476 int err;
477 struct pt_regs * childregs;
478 struct task_struct *me = current;
479
480 childregs = ((struct pt_regs *)
481 (THREAD_SIZE + task_stack_page(p))) - 1;
482 *childregs = *regs;
483
484 childregs->rax = 0;
485 childregs->rsp = rsp;
486 if (rsp == ~0UL)
487 childregs->rsp = (unsigned long)childregs;
488
489 p->thread.rsp = (unsigned long) childregs;
490 p->thread.rsp0 = (unsigned long) (childregs+1);
491 p->thread.userrsp = me->thread.userrsp;
492
493 set_tsk_thread_flag(p, TIF_FORK);
494
495 p->thread.fs = me->thread.fs;
496 p->thread.gs = me->thread.gs;
497
498 asm("mov %%gs,%0" : "=m" (p->thread.gsindex));
499 asm("mov %%fs,%0" : "=m" (p->thread.fsindex));
500 asm("mov %%es,%0" : "=m" (p->thread.es));
501 asm("mov %%ds,%0" : "=m" (p->thread.ds));
502
503 if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) {
504 p->thread.io_bitmap_ptr = kmalloc(IO_BITMAP_BYTES, GFP_KERNEL);
505 if (!p->thread.io_bitmap_ptr) {
506 p->thread.io_bitmap_max = 0;
507 return -ENOMEM;
508 }
509 memcpy(p->thread.io_bitmap_ptr, me->thread.io_bitmap_ptr,
510 IO_BITMAP_BYTES);
511 set_tsk_thread_flag(p, TIF_IO_BITMAP);
512 }
513
514 /*
515 * Set a new TLS for the child thread?
516 */
517 if (clone_flags & CLONE_SETTLS) {
518 #ifdef CONFIG_IA32_EMULATION
519 if (test_thread_flag(TIF_IA32))
520 err = ia32_child_tls(p, childregs);
521 else
522 #endif
523 err = do_arch_prctl(p, ARCH_SET_FS, childregs->r8);
524 if (err)
525 goto out;
526 }
527 err = 0;
528 out:
529 if (err && p->thread.io_bitmap_ptr) {
530 kfree(p->thread.io_bitmap_ptr);
531 p->thread.io_bitmap_max = 0;
532 }
533 return err;
534 }
535
536 /*
537 * This special macro can be used to load a debugging register
538 */
539 #define loaddebug(thread,r) set_debugreg(thread->debugreg ## r, r)
540
541 static inline void __switch_to_xtra(struct task_struct *prev_p,
542 struct task_struct *next_p,
543 struct tss_struct *tss)
544 {
545 struct thread_struct *prev, *next;
546
547 prev = &prev_p->thread,
548 next = &next_p->thread;
549
550 if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
551 loaddebug(next, 0);
552 loaddebug(next, 1);
553 loaddebug(next, 2);
554 loaddebug(next, 3);
555 /* no 4 and 5 */
556 loaddebug(next, 6);
557 loaddebug(next, 7);
558 }
559
560 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
561 /*
562 * Copy the relevant range of the IO bitmap.
563 * Normally this is 128 bytes or less:
564 */
565 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
566 max(prev->io_bitmap_max, next->io_bitmap_max));
567 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
568 /*
569 * Clear any possible leftover bits:
570 */
571 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
572 }
573 }
574
575 /*
576 * switch_to(x,y) should switch tasks from x to y.
577 *
578 * This could still be optimized:
579 * - fold all the options into a flag word and test it with a single test.
580 * - could test fs/gs bitsliced
581 *
582 * Kprobes not supported here. Set the probe on schedule instead.
583 */
584 __kprobes struct task_struct *
585 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
586 {
587 struct thread_struct *prev = &prev_p->thread,
588 *next = &next_p->thread;
589 int cpu = smp_processor_id();
590 struct tss_struct *tss = &per_cpu(init_tss, cpu);
591
592 /* we're going to use this soon, after a few expensive things */
593 if (next_p->fpu_counter>5)
594 prefetch(&next->i387.fxsave);
595
596 /*
597 * Reload esp0, LDT and the page table pointer:
598 */
599 tss->rsp0 = next->rsp0;
600
601 /*
602 * Switch DS and ES.
603 * This won't pick up thread selector changes, but I guess that is ok.
604 */
605 asm volatile("mov %%es,%0" : "=m" (prev->es));
606 if (unlikely(next->es | prev->es))
607 loadsegment(es, next->es);
608
609 asm volatile ("mov %%ds,%0" : "=m" (prev->ds));
610 if (unlikely(next->ds | prev->ds))
611 loadsegment(ds, next->ds);
612
613 load_TLS(next, cpu);
614
615 /*
616 * Switch FS and GS.
617 */
618 {
619 unsigned fsindex;
620 asm volatile("movl %%fs,%0" : "=r" (fsindex));
621 /* segment register != 0 always requires a reload.
622 also reload when it has changed.
623 when prev process used 64bit base always reload
624 to avoid an information leak. */
625 if (unlikely(fsindex | next->fsindex | prev->fs)) {
626 loadsegment(fs, next->fsindex);
627 /* check if the user used a selector != 0
628 * if yes clear 64bit base, since overloaded base
629 * is always mapped to the Null selector
630 */
631 if (fsindex)
632 prev->fs = 0;
633 }
634 /* when next process has a 64bit base use it */
635 if (next->fs)
636 wrmsrl(MSR_FS_BASE, next->fs);
637 prev->fsindex = fsindex;
638 }
639 {
640 unsigned gsindex;
641 asm volatile("movl %%gs,%0" : "=r" (gsindex));
642 if (unlikely(gsindex | next->gsindex | prev->gs)) {
643 load_gs_index(next->gsindex);
644 if (gsindex)
645 prev->gs = 0;
646 }
647 if (next->gs)
648 wrmsrl(MSR_KERNEL_GS_BASE, next->gs);
649 prev->gsindex = gsindex;
650 }
651
652 /* Must be after DS reload */
653 unlazy_fpu(prev_p);
654
655 /*
656 * Switch the PDA and FPU contexts.
657 */
658 prev->userrsp = read_pda(oldrsp);
659 write_pda(oldrsp, next->userrsp);
660 write_pda(pcurrent, next_p);
661
662 write_pda(kernelstack,
663 (unsigned long)task_stack_page(next_p) + THREAD_SIZE - PDA_STACKOFFSET);
664 #ifdef CONFIG_CC_STACKPROTECTOR
665 write_pda(stack_canary, next_p->stack_canary);
666 /*
667 * Build time only check to make sure the stack_canary is at
668 * offset 40 in the pda; this is a gcc ABI requirement
669 */
670 BUILD_BUG_ON(offsetof(struct x8664_pda, stack_canary) != 40);
671 #endif
672
673 /*
674 * Now maybe reload the debug registers and handle I/O bitmaps
675 */
676 if (unlikely((task_thread_info(next_p)->flags & _TIF_WORK_CTXSW))
677 || test_tsk_thread_flag(prev_p, TIF_IO_BITMAP))
678 __switch_to_xtra(prev_p, next_p, tss);
679
680 /* If the task has used fpu the last 5 timeslices, just do a full
681 * restore of the math state immediately to avoid the trap; the
682 * chances of needing FPU soon are obviously high now
683 */
684 if (next_p->fpu_counter>5)
685 math_state_restore();
686 return prev_p;
687 }
688
689 /*
690 * sys_execve() executes a new program.
691 */
692 asmlinkage
693 long sys_execve(char __user *name, char __user * __user *argv,
694 char __user * __user *envp, struct pt_regs regs)
695 {
696 long error;
697 char * filename;
698
699 filename = getname(name);
700 error = PTR_ERR(filename);
701 if (IS_ERR(filename))
702 return error;
703 error = do_execve(filename, argv, envp, &regs);
704 if (error == 0) {
705 task_lock(current);
706 current->ptrace &= ~PT_DTRACE;
707 task_unlock(current);
708 }
709 putname(filename);
710 return error;
711 }
712
713 void set_personality_64bit(void)
714 {
715 /* inherit personality from parent */
716
717 /* Make sure to be in 64bit mode */
718 clear_thread_flag(TIF_IA32);
719
720 /* TBD: overwrites user setup. Should have two bits.
721 But 64bit processes have always behaved this way,
722 so it's not too bad. The main problem is just that
723 32bit childs are affected again. */
724 current->personality &= ~READ_IMPLIES_EXEC;
725 }
726
727 asmlinkage long sys_fork(struct pt_regs *regs)
728 {
729 return do_fork(SIGCHLD, regs->rsp, regs, 0, NULL, NULL);
730 }
731
732 asmlinkage long
733 sys_clone(unsigned long clone_flags, unsigned long newsp,
734 void __user *parent_tid, void __user *child_tid, struct pt_regs *regs)
735 {
736 if (!newsp)
737 newsp = regs->rsp;
738 return do_fork(clone_flags, newsp, regs, 0, parent_tid, child_tid);
739 }
740
741 /*
742 * This is trivial, and on the face of it looks like it
743 * could equally well be done in user mode.
744 *
745 * Not so, for quite unobvious reasons - register pressure.
746 * In user mode vfork() cannot have a stack frame, and if
747 * done by calling the "clone()" system call directly, you
748 * do not have enough call-clobbered registers to hold all
749 * the information you need.
750 */
751 asmlinkage long sys_vfork(struct pt_regs *regs)
752 {
753 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->rsp, regs, 0,
754 NULL, NULL);
755 }
756
757 unsigned long get_wchan(struct task_struct *p)
758 {
759 unsigned long stack;
760 u64 fp,rip;
761 int count = 0;
762
763 if (!p || p == current || p->state==TASK_RUNNING)
764 return 0;
765 stack = (unsigned long)task_stack_page(p);
766 if (p->thread.rsp < stack || p->thread.rsp > stack+THREAD_SIZE)
767 return 0;
768 fp = *(u64 *)(p->thread.rsp);
769 do {
770 if (fp < (unsigned long)stack ||
771 fp > (unsigned long)stack+THREAD_SIZE)
772 return 0;
773 rip = *(u64 *)(fp+8);
774 if (!in_sched_functions(rip))
775 return rip;
776 fp = *(u64 *)fp;
777 } while (count++ < 16);
778 return 0;
779 }
780
781 long do_arch_prctl(struct task_struct *task, int code, unsigned long addr)
782 {
783 int ret = 0;
784 int doit = task == current;
785 int cpu;
786
787 switch (code) {
788 case ARCH_SET_GS:
789 if (addr >= TASK_SIZE_OF(task))
790 return -EPERM;
791 cpu = get_cpu();
792 /* handle small bases via the GDT because that's faster to
793 switch. */
794 if (addr <= 0xffffffff) {
795 set_32bit_tls(task, GS_TLS, addr);
796 if (doit) {
797 load_TLS(&task->thread, cpu);
798 load_gs_index(GS_TLS_SEL);
799 }
800 task->thread.gsindex = GS_TLS_SEL;
801 task->thread.gs = 0;
802 } else {
803 task->thread.gsindex = 0;
804 task->thread.gs = addr;
805 if (doit) {
806 load_gs_index(0);
807 ret = checking_wrmsrl(MSR_KERNEL_GS_BASE, addr);
808 }
809 }
810 put_cpu();
811 break;
812 case ARCH_SET_FS:
813 /* Not strictly needed for fs, but do it for symmetry
814 with gs */
815 if (addr >= TASK_SIZE_OF(task))
816 return -EPERM;
817 cpu = get_cpu();
818 /* handle small bases via the GDT because that's faster to
819 switch. */
820 if (addr <= 0xffffffff) {
821 set_32bit_tls(task, FS_TLS, addr);
822 if (doit) {
823 load_TLS(&task->thread, cpu);
824 asm volatile("movl %0,%%fs" :: "r"(FS_TLS_SEL));
825 }
826 task->thread.fsindex = FS_TLS_SEL;
827 task->thread.fs = 0;
828 } else {
829 task->thread.fsindex = 0;
830 task->thread.fs = addr;
831 if (doit) {
832 /* set the selector to 0 to not confuse
833 __switch_to */
834 asm volatile("movl %0,%%fs" :: "r" (0));
835 ret = checking_wrmsrl(MSR_FS_BASE, addr);
836 }
837 }
838 put_cpu();
839 break;
840 case ARCH_GET_FS: {
841 unsigned long base;
842 if (task->thread.fsindex == FS_TLS_SEL)
843 base = read_32bit_tls(task, FS_TLS);
844 else if (doit)
845 rdmsrl(MSR_FS_BASE, base);
846 else
847 base = task->thread.fs;
848 ret = put_user(base, (unsigned long __user *)addr);
849 break;
850 }
851 case ARCH_GET_GS: {
852 unsigned long base;
853 unsigned gsindex;
854 if (task->thread.gsindex == GS_TLS_SEL)
855 base = read_32bit_tls(task, GS_TLS);
856 else if (doit) {
857 asm("movl %%gs,%0" : "=r" (gsindex));
858 if (gsindex)
859 rdmsrl(MSR_KERNEL_GS_BASE, base);
860 else
861 base = task->thread.gs;
862 }
863 else
864 base = task->thread.gs;
865 ret = put_user(base, (unsigned long __user *)addr);
866 break;
867 }
868
869 default:
870 ret = -EINVAL;
871 break;
872 }
873
874 return ret;
875 }
876
877 long sys_arch_prctl(int code, unsigned long addr)
878 {
879 return do_arch_prctl(current, code, addr);
880 }
881
882 /*
883 * Capture the user space registers if the task is not running (in user space)
884 */
885 int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
886 {
887 struct pt_regs *pp, ptregs;
888
889 pp = task_pt_regs(tsk);
890
891 ptregs = *pp;
892 ptregs.cs &= 0xffff;
893 ptregs.ss &= 0xffff;
894
895 elf_core_copy_regs(regs, &ptregs);
896
897 return 1;
898 }
899
900 unsigned long arch_align_stack(unsigned long sp)
901 {
902 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
903 sp -= get_random_int() % 8192;
904 return sp & ~0xf;
905 }
This page took 0.146635 seconds and 5 git commands to generate.