Merge master.kernel.org:/pub/scm/linux/kernel/git/bart/ide-2.6
[deliverable/linux.git] / arch / x86 / kernel / setup_64.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 */
4
5 /*
6 * This file handles the architecture-dependent parts of initialization
7 */
8
9 #include <linux/errno.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/stddef.h>
14 #include <linux/unistd.h>
15 #include <linux/ptrace.h>
16 #include <linux/slab.h>
17 #include <linux/user.h>
18 #include <linux/a.out.h>
19 #include <linux/screen_info.h>
20 #include <linux/ioport.h>
21 #include <linux/delay.h>
22 #include <linux/init.h>
23 #include <linux/initrd.h>
24 #include <linux/highmem.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <asm/processor.h>
28 #include <linux/console.h>
29 #include <linux/seq_file.h>
30 #include <linux/crash_dump.h>
31 #include <linux/root_dev.h>
32 #include <linux/pci.h>
33 #include <linux/acpi.h>
34 #include <linux/kallsyms.h>
35 #include <linux/edd.h>
36 #include <linux/mmzone.h>
37 #include <linux/kexec.h>
38 #include <linux/cpufreq.h>
39 #include <linux/dmi.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/ctype.h>
42
43 #include <asm/mtrr.h>
44 #include <asm/uaccess.h>
45 #include <asm/system.h>
46 #include <asm/io.h>
47 #include <asm/smp.h>
48 #include <asm/msr.h>
49 #include <asm/desc.h>
50 #include <video/edid.h>
51 #include <asm/e820.h>
52 #include <asm/dma.h>
53 #include <asm/mpspec.h>
54 #include <asm/mmu_context.h>
55 #include <asm/proto.h>
56 #include <asm/setup.h>
57 #include <asm/mach_apic.h>
58 #include <asm/numa.h>
59 #include <asm/sections.h>
60 #include <asm/dmi.h>
61
62 /*
63 * Machine setup..
64 */
65
66 struct cpuinfo_x86 boot_cpu_data __read_mostly;
67 EXPORT_SYMBOL(boot_cpu_data);
68
69 unsigned long mmu_cr4_features;
70
71 /* Boot loader ID as an integer, for the benefit of proc_dointvec */
72 int bootloader_type;
73
74 unsigned long saved_video_mode;
75
76 int force_mwait __cpuinitdata;
77
78 /*
79 * Early DMI memory
80 */
81 int dmi_alloc_index;
82 char dmi_alloc_data[DMI_MAX_DATA];
83
84 /*
85 * Setup options
86 */
87 struct screen_info screen_info;
88 EXPORT_SYMBOL(screen_info);
89 struct sys_desc_table_struct {
90 unsigned short length;
91 unsigned char table[0];
92 };
93
94 struct edid_info edid_info;
95 EXPORT_SYMBOL_GPL(edid_info);
96
97 extern int root_mountflags;
98
99 char __initdata command_line[COMMAND_LINE_SIZE];
100
101 struct resource standard_io_resources[] = {
102 { .name = "dma1", .start = 0x00, .end = 0x1f,
103 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
104 { .name = "pic1", .start = 0x20, .end = 0x21,
105 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
106 { .name = "timer0", .start = 0x40, .end = 0x43,
107 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
108 { .name = "timer1", .start = 0x50, .end = 0x53,
109 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
110 { .name = "keyboard", .start = 0x60, .end = 0x6f,
111 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
112 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
113 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
114 { .name = "pic2", .start = 0xa0, .end = 0xa1,
115 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
116 { .name = "dma2", .start = 0xc0, .end = 0xdf,
117 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
118 { .name = "fpu", .start = 0xf0, .end = 0xff,
119 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
120 };
121
122 #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
123
124 struct resource data_resource = {
125 .name = "Kernel data",
126 .start = 0,
127 .end = 0,
128 .flags = IORESOURCE_RAM,
129 };
130 struct resource code_resource = {
131 .name = "Kernel code",
132 .start = 0,
133 .end = 0,
134 .flags = IORESOURCE_RAM,
135 };
136
137 #ifdef CONFIG_PROC_VMCORE
138 /* elfcorehdr= specifies the location of elf core header
139 * stored by the crashed kernel. This option will be passed
140 * by kexec loader to the capture kernel.
141 */
142 static int __init setup_elfcorehdr(char *arg)
143 {
144 char *end;
145 if (!arg)
146 return -EINVAL;
147 elfcorehdr_addr = memparse(arg, &end);
148 return end > arg ? 0 : -EINVAL;
149 }
150 early_param("elfcorehdr", setup_elfcorehdr);
151 #endif
152
153 #ifndef CONFIG_NUMA
154 static void __init
155 contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
156 {
157 unsigned long bootmap_size, bootmap;
158
159 bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
160 bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
161 if (bootmap == -1L)
162 panic("Cannot find bootmem map of size %ld\n",bootmap_size);
163 bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
164 e820_register_active_regions(0, start_pfn, end_pfn);
165 free_bootmem_with_active_regions(0, end_pfn);
166 reserve_bootmem(bootmap, bootmap_size);
167 }
168 #endif
169
170 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
171 struct edd edd;
172 #ifdef CONFIG_EDD_MODULE
173 EXPORT_SYMBOL(edd);
174 #endif
175 /**
176 * copy_edd() - Copy the BIOS EDD information
177 * from boot_params into a safe place.
178 *
179 */
180 static inline void copy_edd(void)
181 {
182 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
183 sizeof(edd.mbr_signature));
184 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
185 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
186 edd.edd_info_nr = boot_params.eddbuf_entries;
187 }
188 #else
189 static inline void copy_edd(void)
190 {
191 }
192 #endif
193
194 #ifdef CONFIG_KEXEC
195 static void __init reserve_crashkernel(void)
196 {
197 unsigned long long free_mem;
198 unsigned long long crash_size, crash_base;
199 int ret;
200
201 free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
202
203 ret = parse_crashkernel(boot_command_line, free_mem,
204 &crash_size, &crash_base);
205 if (ret == 0 && crash_size) {
206 if (crash_base > 0) {
207 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
208 "for crashkernel (System RAM: %ldMB)\n",
209 (unsigned long)(crash_size >> 20),
210 (unsigned long)(crash_base >> 20),
211 (unsigned long)(free_mem >> 20));
212 crashk_res.start = crash_base;
213 crashk_res.end = crash_base + crash_size - 1;
214 reserve_bootmem(crash_base, crash_size);
215 } else
216 printk(KERN_INFO "crashkernel reservation failed - "
217 "you have to specify a base address\n");
218 }
219 }
220 #else
221 static inline void __init reserve_crashkernel(void)
222 {}
223 #endif
224
225 #define EBDA_ADDR_POINTER 0x40E
226
227 unsigned __initdata ebda_addr;
228 unsigned __initdata ebda_size;
229
230 static void discover_ebda(void)
231 {
232 /*
233 * there is a real-mode segmented pointer pointing to the
234 * 4K EBDA area at 0x40E
235 */
236 ebda_addr = *(unsigned short *)__va(EBDA_ADDR_POINTER);
237 ebda_addr <<= 4;
238
239 ebda_size = *(unsigned short *)__va(ebda_addr);
240
241 /* Round EBDA up to pages */
242 if (ebda_size == 0)
243 ebda_size = 1;
244 ebda_size <<= 10;
245 ebda_size = round_up(ebda_size + (ebda_addr & ~PAGE_MASK), PAGE_SIZE);
246 if (ebda_size > 64*1024)
247 ebda_size = 64*1024;
248 }
249
250 void __init setup_arch(char **cmdline_p)
251 {
252 printk(KERN_INFO "Command line: %s\n", boot_command_line);
253
254 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
255 screen_info = boot_params.screen_info;
256 edid_info = boot_params.edid_info;
257 saved_video_mode = boot_params.hdr.vid_mode;
258 bootloader_type = boot_params.hdr.type_of_loader;
259
260 #ifdef CONFIG_BLK_DEV_RAM
261 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
262 rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
263 rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
264 #endif
265 setup_memory_region();
266 copy_edd();
267
268 if (!boot_params.hdr.root_flags)
269 root_mountflags &= ~MS_RDONLY;
270 init_mm.start_code = (unsigned long) &_text;
271 init_mm.end_code = (unsigned long) &_etext;
272 init_mm.end_data = (unsigned long) &_edata;
273 init_mm.brk = (unsigned long) &_end;
274
275 code_resource.start = virt_to_phys(&_text);
276 code_resource.end = virt_to_phys(&_etext)-1;
277 data_resource.start = virt_to_phys(&_etext);
278 data_resource.end = virt_to_phys(&_edata)-1;
279
280 early_identify_cpu(&boot_cpu_data);
281
282 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
283 *cmdline_p = command_line;
284
285 parse_early_param();
286
287 finish_e820_parsing();
288
289 e820_register_active_regions(0, 0, -1UL);
290 /*
291 * partially used pages are not usable - thus
292 * we are rounding upwards:
293 */
294 end_pfn = e820_end_of_ram();
295 num_physpages = end_pfn;
296
297 check_efer();
298
299 discover_ebda();
300
301 init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
302
303 dmi_scan_machine();
304
305 #ifdef CONFIG_SMP
306 /* setup to use the static apicid table during kernel startup */
307 x86_cpu_to_apicid_ptr = (void *)&x86_cpu_to_apicid_init;
308 #endif
309
310 #ifdef CONFIG_ACPI
311 /*
312 * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
313 * Call this early for SRAT node setup.
314 */
315 acpi_boot_table_init();
316 #endif
317
318 /* How many end-of-memory variables you have, grandma! */
319 max_low_pfn = end_pfn;
320 max_pfn = end_pfn;
321 high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1;
322
323 /* Remove active ranges so rediscovery with NUMA-awareness happens */
324 remove_all_active_ranges();
325
326 #ifdef CONFIG_ACPI_NUMA
327 /*
328 * Parse SRAT to discover nodes.
329 */
330 acpi_numa_init();
331 #endif
332
333 #ifdef CONFIG_NUMA
334 numa_initmem_init(0, end_pfn);
335 #else
336 contig_initmem_init(0, end_pfn);
337 #endif
338
339 /* Reserve direct mapping */
340 reserve_bootmem_generic(table_start << PAGE_SHIFT,
341 (table_end - table_start) << PAGE_SHIFT);
342
343 /* reserve kernel */
344 reserve_bootmem_generic(__pa_symbol(&_text),
345 __pa_symbol(&_end) - __pa_symbol(&_text));
346
347 /*
348 * reserve physical page 0 - it's a special BIOS page on many boxes,
349 * enabling clean reboots, SMP operation, laptop functions.
350 */
351 reserve_bootmem_generic(0, PAGE_SIZE);
352
353 /* reserve ebda region */
354 if (ebda_addr)
355 reserve_bootmem_generic(ebda_addr, ebda_size);
356 #ifdef CONFIG_NUMA
357 /* reserve nodemap region */
358 if (nodemap_addr)
359 reserve_bootmem_generic(nodemap_addr, nodemap_size);
360 #endif
361
362 #ifdef CONFIG_SMP
363 /* Reserve SMP trampoline */
364 reserve_bootmem_generic(SMP_TRAMPOLINE_BASE, 2*PAGE_SIZE);
365 #endif
366
367 #ifdef CONFIG_ACPI_SLEEP
368 /*
369 * Reserve low memory region for sleep support.
370 */
371 acpi_reserve_bootmem();
372 #endif
373 /*
374 * Find and reserve possible boot-time SMP configuration:
375 */
376 find_smp_config();
377 #ifdef CONFIG_BLK_DEV_INITRD
378 if (boot_params.hdr.type_of_loader && boot_params.hdr.ramdisk_image) {
379 unsigned long ramdisk_image = boot_params.hdr.ramdisk_image;
380 unsigned long ramdisk_size = boot_params.hdr.ramdisk_size;
381 unsigned long ramdisk_end = ramdisk_image + ramdisk_size;
382 unsigned long end_of_mem = end_pfn << PAGE_SHIFT;
383
384 if (ramdisk_end <= end_of_mem) {
385 reserve_bootmem_generic(ramdisk_image, ramdisk_size);
386 initrd_start = ramdisk_image + PAGE_OFFSET;
387 initrd_end = initrd_start+ramdisk_size;
388 } else {
389 printk(KERN_ERR "initrd extends beyond end of memory "
390 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
391 ramdisk_end, end_of_mem);
392 initrd_start = 0;
393 }
394 }
395 #endif
396 reserve_crashkernel();
397 paging_init();
398
399 #ifdef CONFIG_PCI
400 early_quirks();
401 #endif
402
403 /*
404 * set this early, so we dont allocate cpu0
405 * if MADT list doesnt list BSP first
406 * mpparse.c/MP_processor_info() allocates logical cpu numbers.
407 */
408 cpu_set(0, cpu_present_map);
409 #ifdef CONFIG_ACPI
410 /*
411 * Read APIC and some other early information from ACPI tables.
412 */
413 acpi_boot_init();
414 #endif
415
416 init_cpu_to_node();
417
418 /*
419 * get boot-time SMP configuration:
420 */
421 if (smp_found_config)
422 get_smp_config();
423 init_apic_mappings();
424
425 /*
426 * We trust e820 completely. No explicit ROM probing in memory.
427 */
428 e820_reserve_resources();
429 e820_mark_nosave_regions();
430
431 {
432 unsigned i;
433 /* request I/O space for devices used on all i[345]86 PCs */
434 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
435 request_resource(&ioport_resource, &standard_io_resources[i]);
436 }
437
438 e820_setup_gap();
439
440 #ifdef CONFIG_VT
441 #if defined(CONFIG_VGA_CONSOLE)
442 conswitchp = &vga_con;
443 #elif defined(CONFIG_DUMMY_CONSOLE)
444 conswitchp = &dummy_con;
445 #endif
446 #endif
447 }
448
449 static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
450 {
451 unsigned int *v;
452
453 if (c->extended_cpuid_level < 0x80000004)
454 return 0;
455
456 v = (unsigned int *) c->x86_model_id;
457 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
458 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
459 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
460 c->x86_model_id[48] = 0;
461 return 1;
462 }
463
464
465 static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
466 {
467 unsigned int n, dummy, eax, ebx, ecx, edx;
468
469 n = c->extended_cpuid_level;
470
471 if (n >= 0x80000005) {
472 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
473 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
474 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
475 c->x86_cache_size=(ecx>>24)+(edx>>24);
476 /* On K8 L1 TLB is inclusive, so don't count it */
477 c->x86_tlbsize = 0;
478 }
479
480 if (n >= 0x80000006) {
481 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
482 ecx = cpuid_ecx(0x80000006);
483 c->x86_cache_size = ecx >> 16;
484 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
485
486 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
487 c->x86_cache_size, ecx & 0xFF);
488 }
489
490 if (n >= 0x80000007)
491 cpuid(0x80000007, &dummy, &dummy, &dummy, &c->x86_power);
492 if (n >= 0x80000008) {
493 cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
494 c->x86_virt_bits = (eax >> 8) & 0xff;
495 c->x86_phys_bits = eax & 0xff;
496 }
497 }
498
499 #ifdef CONFIG_NUMA
500 static int nearby_node(int apicid)
501 {
502 int i;
503 for (i = apicid - 1; i >= 0; i--) {
504 int node = apicid_to_node[i];
505 if (node != NUMA_NO_NODE && node_online(node))
506 return node;
507 }
508 for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
509 int node = apicid_to_node[i];
510 if (node != NUMA_NO_NODE && node_online(node))
511 return node;
512 }
513 return first_node(node_online_map); /* Shouldn't happen */
514 }
515 #endif
516
517 /*
518 * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
519 * Assumes number of cores is a power of two.
520 */
521 static void __init amd_detect_cmp(struct cpuinfo_x86 *c)
522 {
523 #ifdef CONFIG_SMP
524 unsigned bits;
525 #ifdef CONFIG_NUMA
526 int cpu = smp_processor_id();
527 int node = 0;
528 unsigned apicid = hard_smp_processor_id();
529 #endif
530 unsigned ecx = cpuid_ecx(0x80000008);
531
532 c->x86_max_cores = (ecx & 0xff) + 1;
533
534 /* CPU telling us the core id bits shift? */
535 bits = (ecx >> 12) & 0xF;
536
537 /* Otherwise recompute */
538 if (bits == 0) {
539 while ((1 << bits) < c->x86_max_cores)
540 bits++;
541 }
542
543 /* Low order bits define the core id (index of core in socket) */
544 c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
545 /* Convert the APIC ID into the socket ID */
546 c->phys_proc_id = phys_pkg_id(bits);
547
548 #ifdef CONFIG_NUMA
549 node = c->phys_proc_id;
550 if (apicid_to_node[apicid] != NUMA_NO_NODE)
551 node = apicid_to_node[apicid];
552 if (!node_online(node)) {
553 /* Two possibilities here:
554 - The CPU is missing memory and no node was created.
555 In that case try picking one from a nearby CPU
556 - The APIC IDs differ from the HyperTransport node IDs
557 which the K8 northbridge parsing fills in.
558 Assume they are all increased by a constant offset,
559 but in the same order as the HT nodeids.
560 If that doesn't result in a usable node fall back to the
561 path for the previous case. */
562 int ht_nodeid = apicid - (cpu_data(0).phys_proc_id << bits);
563 if (ht_nodeid >= 0 &&
564 apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
565 node = apicid_to_node[ht_nodeid];
566 /* Pick a nearby node */
567 if (!node_online(node))
568 node = nearby_node(apicid);
569 }
570 numa_set_node(cpu, node);
571
572 printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
573 #endif
574 #endif
575 }
576
577 #define ENABLE_C1E_MASK 0x18000000
578 #define CPUID_PROCESSOR_SIGNATURE 1
579 #define CPUID_XFAM 0x0ff00000
580 #define CPUID_XFAM_K8 0x00000000
581 #define CPUID_XFAM_10H 0x00100000
582 #define CPUID_XFAM_11H 0x00200000
583 #define CPUID_XMOD 0x000f0000
584 #define CPUID_XMOD_REV_F 0x00040000
585
586 /* AMD systems with C1E don't have a working lAPIC timer. Check for that. */
587 static __cpuinit int amd_apic_timer_broken(void)
588 {
589 u32 lo, hi;
590 u32 eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
591 switch (eax & CPUID_XFAM) {
592 case CPUID_XFAM_K8:
593 if ((eax & CPUID_XMOD) < CPUID_XMOD_REV_F)
594 break;
595 case CPUID_XFAM_10H:
596 case CPUID_XFAM_11H:
597 rdmsr(MSR_K8_ENABLE_C1E, lo, hi);
598 if (lo & ENABLE_C1E_MASK)
599 return 1;
600 break;
601 default:
602 /* err on the side of caution */
603 return 1;
604 }
605 return 0;
606 }
607
608 static void __cpuinit init_amd(struct cpuinfo_x86 *c)
609 {
610 unsigned level;
611
612 #ifdef CONFIG_SMP
613 unsigned long value;
614
615 /*
616 * Disable TLB flush filter by setting HWCR.FFDIS on K8
617 * bit 6 of msr C001_0015
618 *
619 * Errata 63 for SH-B3 steppings
620 * Errata 122 for all steppings (F+ have it disabled by default)
621 */
622 if (c->x86 == 15) {
623 rdmsrl(MSR_K8_HWCR, value);
624 value |= 1 << 6;
625 wrmsrl(MSR_K8_HWCR, value);
626 }
627 #endif
628
629 /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
630 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
631 clear_bit(0*32+31, &c->x86_capability);
632
633 /* On C+ stepping K8 rep microcode works well for copy/memset */
634 level = cpuid_eax(1);
635 if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58))
636 set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
637 if (c->x86 == 0x10 || c->x86 == 0x11)
638 set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
639
640 /* Enable workaround for FXSAVE leak */
641 if (c->x86 >= 6)
642 set_bit(X86_FEATURE_FXSAVE_LEAK, &c->x86_capability);
643
644 level = get_model_name(c);
645 if (!level) {
646 switch (c->x86) {
647 case 15:
648 /* Should distinguish Models here, but this is only
649 a fallback anyways. */
650 strcpy(c->x86_model_id, "Hammer");
651 break;
652 }
653 }
654 display_cacheinfo(c);
655
656 /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
657 if (c->x86_power & (1<<8))
658 set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
659
660 /* Multi core CPU? */
661 if (c->extended_cpuid_level >= 0x80000008)
662 amd_detect_cmp(c);
663
664 if (c->extended_cpuid_level >= 0x80000006 &&
665 (cpuid_edx(0x80000006) & 0xf000))
666 num_cache_leaves = 4;
667 else
668 num_cache_leaves = 3;
669
670 if (c->x86 == 0xf || c->x86 == 0x10 || c->x86 == 0x11)
671 set_bit(X86_FEATURE_K8, &c->x86_capability);
672
673 /* RDTSC can be speculated around */
674 clear_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
675
676 /* Family 10 doesn't support C states in MWAIT so don't use it */
677 if (c->x86 == 0x10 && !force_mwait)
678 clear_bit(X86_FEATURE_MWAIT, &c->x86_capability);
679
680 if (amd_apic_timer_broken())
681 disable_apic_timer = 1;
682 }
683
684 static void __cpuinit detect_ht(struct cpuinfo_x86 *c)
685 {
686 #ifdef CONFIG_SMP
687 u32 eax, ebx, ecx, edx;
688 int index_msb, core_bits;
689
690 cpuid(1, &eax, &ebx, &ecx, &edx);
691
692
693 if (!cpu_has(c, X86_FEATURE_HT))
694 return;
695 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
696 goto out;
697
698 smp_num_siblings = (ebx & 0xff0000) >> 16;
699
700 if (smp_num_siblings == 1) {
701 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
702 } else if (smp_num_siblings > 1 ) {
703
704 if (smp_num_siblings > NR_CPUS) {
705 printk(KERN_WARNING "CPU: Unsupported number of the siblings %d", smp_num_siblings);
706 smp_num_siblings = 1;
707 return;
708 }
709
710 index_msb = get_count_order(smp_num_siblings);
711 c->phys_proc_id = phys_pkg_id(index_msb);
712
713 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
714
715 index_msb = get_count_order(smp_num_siblings) ;
716
717 core_bits = get_count_order(c->x86_max_cores);
718
719 c->cpu_core_id = phys_pkg_id(index_msb) &
720 ((1 << core_bits) - 1);
721 }
722 out:
723 if ((c->x86_max_cores * smp_num_siblings) > 1) {
724 printk(KERN_INFO "CPU: Physical Processor ID: %d\n", c->phys_proc_id);
725 printk(KERN_INFO "CPU: Processor Core ID: %d\n", c->cpu_core_id);
726 }
727
728 #endif
729 }
730
731 /*
732 * find out the number of processor cores on the die
733 */
734 static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
735 {
736 unsigned int eax, t;
737
738 if (c->cpuid_level < 4)
739 return 1;
740
741 cpuid_count(4, 0, &eax, &t, &t, &t);
742
743 if (eax & 0x1f)
744 return ((eax >> 26) + 1);
745 else
746 return 1;
747 }
748
749 static void srat_detect_node(void)
750 {
751 #ifdef CONFIG_NUMA
752 unsigned node;
753 int cpu = smp_processor_id();
754 int apicid = hard_smp_processor_id();
755
756 /* Don't do the funky fallback heuristics the AMD version employs
757 for now. */
758 node = apicid_to_node[apicid];
759 if (node == NUMA_NO_NODE)
760 node = first_node(node_online_map);
761 numa_set_node(cpu, node);
762
763 printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
764 #endif
765 }
766
767 static void __cpuinit init_intel(struct cpuinfo_x86 *c)
768 {
769 /* Cache sizes */
770 unsigned n;
771
772 init_intel_cacheinfo(c);
773 if (c->cpuid_level > 9 ) {
774 unsigned eax = cpuid_eax(10);
775 /* Check for version and the number of counters */
776 if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
777 set_bit(X86_FEATURE_ARCH_PERFMON, &c->x86_capability);
778 }
779
780 if (cpu_has_ds) {
781 unsigned int l1, l2;
782 rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
783 if (!(l1 & (1<<11)))
784 set_bit(X86_FEATURE_BTS, c->x86_capability);
785 if (!(l1 & (1<<12)))
786 set_bit(X86_FEATURE_PEBS, c->x86_capability);
787 }
788
789 n = c->extended_cpuid_level;
790 if (n >= 0x80000008) {
791 unsigned eax = cpuid_eax(0x80000008);
792 c->x86_virt_bits = (eax >> 8) & 0xff;
793 c->x86_phys_bits = eax & 0xff;
794 /* CPUID workaround for Intel 0F34 CPU */
795 if (c->x86_vendor == X86_VENDOR_INTEL &&
796 c->x86 == 0xF && c->x86_model == 0x3 &&
797 c->x86_mask == 0x4)
798 c->x86_phys_bits = 36;
799 }
800
801 if (c->x86 == 15)
802 c->x86_cache_alignment = c->x86_clflush_size * 2;
803 if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
804 (c->x86 == 0x6 && c->x86_model >= 0x0e))
805 set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
806 if (c->x86 == 6)
807 set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
808 if (c->x86 == 15)
809 set_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
810 else
811 clear_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
812 c->x86_max_cores = intel_num_cpu_cores(c);
813
814 srat_detect_node();
815 }
816
817 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
818 {
819 char *v = c->x86_vendor_id;
820
821 if (!strcmp(v, "AuthenticAMD"))
822 c->x86_vendor = X86_VENDOR_AMD;
823 else if (!strcmp(v, "GenuineIntel"))
824 c->x86_vendor = X86_VENDOR_INTEL;
825 else
826 c->x86_vendor = X86_VENDOR_UNKNOWN;
827 }
828
829 struct cpu_model_info {
830 int vendor;
831 int family;
832 char *model_names[16];
833 };
834
835 /* Do some early cpuid on the boot CPU to get some parameter that are
836 needed before check_bugs. Everything advanced is in identify_cpu
837 below. */
838 void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
839 {
840 u32 tfms;
841
842 c->loops_per_jiffy = loops_per_jiffy;
843 c->x86_cache_size = -1;
844 c->x86_vendor = X86_VENDOR_UNKNOWN;
845 c->x86_model = c->x86_mask = 0; /* So far unknown... */
846 c->x86_vendor_id[0] = '\0'; /* Unset */
847 c->x86_model_id[0] = '\0'; /* Unset */
848 c->x86_clflush_size = 64;
849 c->x86_cache_alignment = c->x86_clflush_size;
850 c->x86_max_cores = 1;
851 c->extended_cpuid_level = 0;
852 memset(&c->x86_capability, 0, sizeof c->x86_capability);
853
854 /* Get vendor name */
855 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
856 (unsigned int *)&c->x86_vendor_id[0],
857 (unsigned int *)&c->x86_vendor_id[8],
858 (unsigned int *)&c->x86_vendor_id[4]);
859
860 get_cpu_vendor(c);
861
862 /* Initialize the standard set of capabilities */
863 /* Note that the vendor-specific code below might override */
864
865 /* Intel-defined flags: level 0x00000001 */
866 if (c->cpuid_level >= 0x00000001) {
867 __u32 misc;
868 cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
869 &c->x86_capability[0]);
870 c->x86 = (tfms >> 8) & 0xf;
871 c->x86_model = (tfms >> 4) & 0xf;
872 c->x86_mask = tfms & 0xf;
873 if (c->x86 == 0xf)
874 c->x86 += (tfms >> 20) & 0xff;
875 if (c->x86 >= 0x6)
876 c->x86_model += ((tfms >> 16) & 0xF) << 4;
877 if (c->x86_capability[0] & (1<<19))
878 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
879 } else {
880 /* Have CPUID level 0 only - unheard of */
881 c->x86 = 4;
882 }
883
884 #ifdef CONFIG_SMP
885 c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
886 c->cpu_index = 0;
887 #endif
888 }
889
890 /*
891 * This does the hard work of actually picking apart the CPU stuff...
892 */
893 void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
894 {
895 int i;
896 u32 xlvl;
897
898 early_identify_cpu(c);
899
900 /* AMD-defined flags: level 0x80000001 */
901 xlvl = cpuid_eax(0x80000000);
902 c->extended_cpuid_level = xlvl;
903 if ((xlvl & 0xffff0000) == 0x80000000) {
904 if (xlvl >= 0x80000001) {
905 c->x86_capability[1] = cpuid_edx(0x80000001);
906 c->x86_capability[6] = cpuid_ecx(0x80000001);
907 }
908 if (xlvl >= 0x80000004)
909 get_model_name(c); /* Default name */
910 }
911
912 /* Transmeta-defined flags: level 0x80860001 */
913 xlvl = cpuid_eax(0x80860000);
914 if ((xlvl & 0xffff0000) == 0x80860000) {
915 /* Don't set x86_cpuid_level here for now to not confuse. */
916 if (xlvl >= 0x80860001)
917 c->x86_capability[2] = cpuid_edx(0x80860001);
918 }
919
920 init_scattered_cpuid_features(c);
921
922 c->apicid = phys_pkg_id(0);
923
924 /*
925 * Vendor-specific initialization. In this section we
926 * canonicalize the feature flags, meaning if there are
927 * features a certain CPU supports which CPUID doesn't
928 * tell us, CPUID claiming incorrect flags, or other bugs,
929 * we handle them here.
930 *
931 * At the end of this section, c->x86_capability better
932 * indicate the features this CPU genuinely supports!
933 */
934 switch (c->x86_vendor) {
935 case X86_VENDOR_AMD:
936 init_amd(c);
937 break;
938
939 case X86_VENDOR_INTEL:
940 init_intel(c);
941 break;
942
943 case X86_VENDOR_UNKNOWN:
944 default:
945 display_cacheinfo(c);
946 break;
947 }
948
949 select_idle_routine(c);
950 detect_ht(c);
951
952 /*
953 * On SMP, boot_cpu_data holds the common feature set between
954 * all CPUs; so make sure that we indicate which features are
955 * common between the CPUs. The first time this routine gets
956 * executed, c == &boot_cpu_data.
957 */
958 if (c != &boot_cpu_data) {
959 /* AND the already accumulated flags with these */
960 for (i = 0 ; i < NCAPINTS ; i++)
961 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
962 }
963
964 #ifdef CONFIG_X86_MCE
965 mcheck_init(c);
966 #endif
967 if (c != &boot_cpu_data)
968 mtrr_ap_init();
969 #ifdef CONFIG_NUMA
970 numa_add_cpu(smp_processor_id());
971 #endif
972 }
973
974
975 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
976 {
977 if (c->x86_model_id[0])
978 printk("%s", c->x86_model_id);
979
980 if (c->x86_mask || c->cpuid_level >= 0)
981 printk(" stepping %02x\n", c->x86_mask);
982 else
983 printk("\n");
984 }
985
986 /*
987 * Get CPU information for use by the procfs.
988 */
989
990 static int show_cpuinfo(struct seq_file *m, void *v)
991 {
992 struct cpuinfo_x86 *c = v;
993 int cpu = 0;
994
995 /*
996 * These flag bits must match the definitions in <asm/cpufeature.h>.
997 * NULL means this bit is undefined or reserved; either way it doesn't
998 * have meaning as far as Linux is concerned. Note that it's important
999 * to realize there is a difference between this table and CPUID -- if
1000 * applications want to get the raw CPUID data, they should access
1001 * /dev/cpu/<cpu_nr>/cpuid instead.
1002 */
1003 static const char *const x86_cap_flags[] = {
1004 /* Intel-defined */
1005 "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
1006 "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
1007 "pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
1008 "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", "pbe",
1009
1010 /* AMD-defined */
1011 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1012 NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
1013 NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
1014 NULL, "fxsr_opt", "pdpe1gb", "rdtscp", NULL, "lm",
1015 "3dnowext", "3dnow",
1016
1017 /* Transmeta-defined */
1018 "recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
1019 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1020 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1021 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1022
1023 /* Other (Linux-defined) */
1024 "cxmmx", "k6_mtrr", "cyrix_arr", "centaur_mcr",
1025 NULL, NULL, NULL, NULL,
1026 "constant_tsc", "up", NULL, "arch_perfmon",
1027 "pebs", "bts", NULL, "sync_rdtsc",
1028 "rep_good", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1029 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1030
1031 /* Intel-defined (#2) */
1032 "pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
1033 "tm2", "ssse3", "cid", NULL, NULL, "cx16", "xtpr", NULL,
1034 NULL, NULL, "dca", NULL, NULL, NULL, NULL, "popcnt",
1035 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1036
1037 /* VIA/Cyrix/Centaur-defined */
1038 NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
1039 "ace2", "ace2_en", "phe", "phe_en", "pmm", "pmm_en", NULL, NULL,
1040 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1041 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1042
1043 /* AMD-defined (#2) */
1044 "lahf_lm", "cmp_legacy", "svm", "extapic", "cr8_legacy",
1045 "altmovcr8", "abm", "sse4a",
1046 "misalignsse", "3dnowprefetch",
1047 "osvw", "ibs", NULL, NULL, NULL, NULL,
1048 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1049 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1050
1051 /* Auxiliary (Linux-defined) */
1052 "ida", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1053 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1054 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1055 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1056 };
1057 static const char *const x86_power_flags[] = {
1058 "ts", /* temperature sensor */
1059 "fid", /* frequency id control */
1060 "vid", /* voltage id control */
1061 "ttp", /* thermal trip */
1062 "tm",
1063 "stc",
1064 "100mhzsteps",
1065 "hwpstate",
1066 "", /* tsc invariant mapped to constant_tsc */
1067 /* nothing */
1068 };
1069
1070
1071 #ifdef CONFIG_SMP
1072 if (!cpu_online(c->cpu_index))
1073 return 0;
1074 cpu = c->cpu_index;
1075 #endif
1076
1077 seq_printf(m,"processor\t: %u\n"
1078 "vendor_id\t: %s\n"
1079 "cpu family\t: %d\n"
1080 "model\t\t: %d\n"
1081 "model name\t: %s\n",
1082 (unsigned)cpu,
1083 c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
1084 c->x86,
1085 (int)c->x86_model,
1086 c->x86_model_id[0] ? c->x86_model_id : "unknown");
1087
1088 if (c->x86_mask || c->cpuid_level >= 0)
1089 seq_printf(m, "stepping\t: %d\n", c->x86_mask);
1090 else
1091 seq_printf(m, "stepping\t: unknown\n");
1092
1093 if (cpu_has(c,X86_FEATURE_TSC)) {
1094 unsigned int freq = cpufreq_quick_get((unsigned)cpu);
1095 if (!freq)
1096 freq = cpu_khz;
1097 seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
1098 freq / 1000, (freq % 1000));
1099 }
1100
1101 /* Cache size */
1102 if (c->x86_cache_size >= 0)
1103 seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
1104
1105 #ifdef CONFIG_SMP
1106 if (smp_num_siblings * c->x86_max_cores > 1) {
1107 seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
1108 seq_printf(m, "siblings\t: %d\n",
1109 cpus_weight(per_cpu(cpu_core_map, cpu)));
1110 seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
1111 seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
1112 }
1113 #endif
1114
1115 seq_printf(m,
1116 "fpu\t\t: yes\n"
1117 "fpu_exception\t: yes\n"
1118 "cpuid level\t: %d\n"
1119 "wp\t\t: yes\n"
1120 "flags\t\t:",
1121 c->cpuid_level);
1122
1123 {
1124 int i;
1125 for ( i = 0 ; i < 32*NCAPINTS ; i++ )
1126 if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
1127 seq_printf(m, " %s", x86_cap_flags[i]);
1128 }
1129
1130 seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
1131 c->loops_per_jiffy/(500000/HZ),
1132 (c->loops_per_jiffy/(5000/HZ)) % 100);
1133
1134 if (c->x86_tlbsize > 0)
1135 seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
1136 seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
1137 seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
1138
1139 seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
1140 c->x86_phys_bits, c->x86_virt_bits);
1141
1142 seq_printf(m, "power management:");
1143 {
1144 unsigned i;
1145 for (i = 0; i < 32; i++)
1146 if (c->x86_power & (1 << i)) {
1147 if (i < ARRAY_SIZE(x86_power_flags) &&
1148 x86_power_flags[i])
1149 seq_printf(m, "%s%s",
1150 x86_power_flags[i][0]?" ":"",
1151 x86_power_flags[i]);
1152 else
1153 seq_printf(m, " [%d]", i);
1154 }
1155 }
1156
1157 seq_printf(m, "\n\n");
1158
1159 return 0;
1160 }
1161
1162 static void *c_start(struct seq_file *m, loff_t *pos)
1163 {
1164 if (*pos == 0) /* just in case, cpu 0 is not the first */
1165 *pos = first_cpu(cpu_possible_map);
1166 if ((*pos) < NR_CPUS && cpu_possible(*pos))
1167 return &cpu_data(*pos);
1168 return NULL;
1169 }
1170
1171 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1172 {
1173 *pos = next_cpu(*pos, cpu_possible_map);
1174 return c_start(m, pos);
1175 }
1176
1177 static void c_stop(struct seq_file *m, void *v)
1178 {
1179 }
1180
1181 struct seq_operations cpuinfo_op = {
1182 .start =c_start,
1183 .next = c_next,
1184 .stop = c_stop,
1185 .show = show_cpuinfo,
1186 };
This page took 0.05515 seconds and 6 git commands to generate.