x86: Implement support to synchronize RDTSC with LFENCE on Intel CPUs
[deliverable/linux.git] / arch / x86 / kernel / setup_64.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 */
4
5 /*
6 * This file handles the architecture-dependent parts of initialization
7 */
8
9 #include <linux/errno.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/stddef.h>
14 #include <linux/unistd.h>
15 #include <linux/ptrace.h>
16 #include <linux/slab.h>
17 #include <linux/user.h>
18 #include <linux/a.out.h>
19 #include <linux/screen_info.h>
20 #include <linux/ioport.h>
21 #include <linux/delay.h>
22 #include <linux/init.h>
23 #include <linux/initrd.h>
24 #include <linux/highmem.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <asm/processor.h>
28 #include <linux/console.h>
29 #include <linux/seq_file.h>
30 #include <linux/crash_dump.h>
31 #include <linux/root_dev.h>
32 #include <linux/pci.h>
33 #include <linux/efi.h>
34 #include <linux/acpi.h>
35 #include <linux/kallsyms.h>
36 #include <linux/edd.h>
37 #include <linux/mmzone.h>
38 #include <linux/kexec.h>
39 #include <linux/cpufreq.h>
40 #include <linux/dmi.h>
41 #include <linux/dma-mapping.h>
42 #include <linux/ctype.h>
43 #include <linux/uaccess.h>
44
45 #include <asm/mtrr.h>
46 #include <asm/uaccess.h>
47 #include <asm/system.h>
48 #include <asm/io.h>
49 #include <asm/smp.h>
50 #include <asm/msr.h>
51 #include <asm/desc.h>
52 #include <video/edid.h>
53 #include <asm/e820.h>
54 #include <asm/dma.h>
55 #include <asm/mpspec.h>
56 #include <asm/mmu_context.h>
57 #include <asm/proto.h>
58 #include <asm/setup.h>
59 #include <asm/mach_apic.h>
60 #include <asm/numa.h>
61 #include <asm/sections.h>
62 #include <asm/dmi.h>
63 #include <asm/cacheflush.h>
64 #include <asm/mce.h>
65 #include <asm/ds.h>
66
67 #ifdef CONFIG_PARAVIRT
68 #include <asm/paravirt.h>
69 #else
70 #define ARCH_SETUP
71 #endif
72
73 /*
74 * Machine setup..
75 */
76
77 struct cpuinfo_x86 boot_cpu_data __read_mostly;
78 EXPORT_SYMBOL(boot_cpu_data);
79
80 unsigned long mmu_cr4_features;
81
82 /* Boot loader ID as an integer, for the benefit of proc_dointvec */
83 int bootloader_type;
84
85 unsigned long saved_video_mode;
86
87 int force_mwait __cpuinitdata;
88
89 /*
90 * Early DMI memory
91 */
92 int dmi_alloc_index;
93 char dmi_alloc_data[DMI_MAX_DATA];
94
95 /*
96 * Setup options
97 */
98 struct screen_info screen_info;
99 EXPORT_SYMBOL(screen_info);
100 struct sys_desc_table_struct {
101 unsigned short length;
102 unsigned char table[0];
103 };
104
105 struct edid_info edid_info;
106 EXPORT_SYMBOL_GPL(edid_info);
107
108 extern int root_mountflags;
109
110 char __initdata command_line[COMMAND_LINE_SIZE];
111
112 struct resource standard_io_resources[] = {
113 { .name = "dma1", .start = 0x00, .end = 0x1f,
114 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
115 { .name = "pic1", .start = 0x20, .end = 0x21,
116 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
117 { .name = "timer0", .start = 0x40, .end = 0x43,
118 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
119 { .name = "timer1", .start = 0x50, .end = 0x53,
120 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
121 { .name = "keyboard", .start = 0x60, .end = 0x6f,
122 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
123 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
124 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
125 { .name = "pic2", .start = 0xa0, .end = 0xa1,
126 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
127 { .name = "dma2", .start = 0xc0, .end = 0xdf,
128 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
129 { .name = "fpu", .start = 0xf0, .end = 0xff,
130 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
131 };
132
133 #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
134
135 static struct resource data_resource = {
136 .name = "Kernel data",
137 .start = 0,
138 .end = 0,
139 .flags = IORESOURCE_RAM,
140 };
141 static struct resource code_resource = {
142 .name = "Kernel code",
143 .start = 0,
144 .end = 0,
145 .flags = IORESOURCE_RAM,
146 };
147 static struct resource bss_resource = {
148 .name = "Kernel bss",
149 .start = 0,
150 .end = 0,
151 .flags = IORESOURCE_RAM,
152 };
153
154 static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c);
155
156 #ifdef CONFIG_PROC_VMCORE
157 /* elfcorehdr= specifies the location of elf core header
158 * stored by the crashed kernel. This option will be passed
159 * by kexec loader to the capture kernel.
160 */
161 static int __init setup_elfcorehdr(char *arg)
162 {
163 char *end;
164 if (!arg)
165 return -EINVAL;
166 elfcorehdr_addr = memparse(arg, &end);
167 return end > arg ? 0 : -EINVAL;
168 }
169 early_param("elfcorehdr", setup_elfcorehdr);
170 #endif
171
172 #ifndef CONFIG_NUMA
173 static void __init
174 contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
175 {
176 unsigned long bootmap_size, bootmap;
177
178 bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
179 bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
180 if (bootmap == -1L)
181 panic("Cannot find bootmem map of size %ld\n", bootmap_size);
182 bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
183 e820_register_active_regions(0, start_pfn, end_pfn);
184 free_bootmem_with_active_regions(0, end_pfn);
185 reserve_bootmem(bootmap, bootmap_size);
186 }
187 #endif
188
189 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
190 struct edd edd;
191 #ifdef CONFIG_EDD_MODULE
192 EXPORT_SYMBOL(edd);
193 #endif
194 /**
195 * copy_edd() - Copy the BIOS EDD information
196 * from boot_params into a safe place.
197 *
198 */
199 static inline void copy_edd(void)
200 {
201 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
202 sizeof(edd.mbr_signature));
203 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
204 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
205 edd.edd_info_nr = boot_params.eddbuf_entries;
206 }
207 #else
208 static inline void copy_edd(void)
209 {
210 }
211 #endif
212
213 #ifdef CONFIG_KEXEC
214 static void __init reserve_crashkernel(void)
215 {
216 unsigned long long free_mem;
217 unsigned long long crash_size, crash_base;
218 int ret;
219
220 free_mem =
221 ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
222
223 ret = parse_crashkernel(boot_command_line, free_mem,
224 &crash_size, &crash_base);
225 if (ret == 0 && crash_size) {
226 if (crash_base > 0) {
227 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
228 "for crashkernel (System RAM: %ldMB)\n",
229 (unsigned long)(crash_size >> 20),
230 (unsigned long)(crash_base >> 20),
231 (unsigned long)(free_mem >> 20));
232 crashk_res.start = crash_base;
233 crashk_res.end = crash_base + crash_size - 1;
234 reserve_bootmem(crash_base, crash_size);
235 } else
236 printk(KERN_INFO "crashkernel reservation failed - "
237 "you have to specify a base address\n");
238 }
239 }
240 #else
241 static inline void __init reserve_crashkernel(void)
242 {}
243 #endif
244
245 #define EBDA_ADDR_POINTER 0x40E
246
247 unsigned __initdata ebda_addr;
248 unsigned __initdata ebda_size;
249
250 static void discover_ebda(void)
251 {
252 /*
253 * there is a real-mode segmented pointer pointing to the
254 * 4K EBDA area at 0x40E
255 */
256 ebda_addr = *(unsigned short *)__va(EBDA_ADDR_POINTER);
257 /*
258 * There can be some situations, like paravirtualized guests,
259 * in which there is no available ebda information. In such
260 * case, just skip it
261 */
262 if (!ebda_addr) {
263 ebda_size = 0;
264 return;
265 }
266
267 ebda_addr <<= 4;
268
269 ebda_size = *(unsigned short *)__va(ebda_addr);
270
271 /* Round EBDA up to pages */
272 if (ebda_size == 0)
273 ebda_size = 1;
274 ebda_size <<= 10;
275 ebda_size = round_up(ebda_size + (ebda_addr & ~PAGE_MASK), PAGE_SIZE);
276 if (ebda_size > 64*1024)
277 ebda_size = 64*1024;
278 }
279
280 /* Overridden in paravirt.c if CONFIG_PARAVIRT */
281 void __attribute__((weak)) memory_setup(void)
282 {
283 machine_specific_memory_setup();
284 }
285
286 void __init setup_arch(char **cmdline_p)
287 {
288 unsigned i;
289
290 printk(KERN_INFO "Command line: %s\n", boot_command_line);
291
292 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
293 screen_info = boot_params.screen_info;
294 edid_info = boot_params.edid_info;
295 saved_video_mode = boot_params.hdr.vid_mode;
296 bootloader_type = boot_params.hdr.type_of_loader;
297
298 #ifdef CONFIG_BLK_DEV_RAM
299 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
300 rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
301 rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
302 #endif
303 #ifdef CONFIG_EFI
304 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
305 "EL64", 4))
306 efi_enabled = 1;
307 #endif
308
309 ARCH_SETUP
310
311 memory_setup();
312 copy_edd();
313
314 if (!boot_params.hdr.root_flags)
315 root_mountflags &= ~MS_RDONLY;
316 init_mm.start_code = (unsigned long) &_text;
317 init_mm.end_code = (unsigned long) &_etext;
318 init_mm.end_data = (unsigned long) &_edata;
319 init_mm.brk = (unsigned long) &_end;
320
321 code_resource.start = virt_to_phys(&_text);
322 code_resource.end = virt_to_phys(&_etext)-1;
323 data_resource.start = virt_to_phys(&_etext);
324 data_resource.end = virt_to_phys(&_edata)-1;
325 bss_resource.start = virt_to_phys(&__bss_start);
326 bss_resource.end = virt_to_phys(&__bss_stop)-1;
327
328 early_identify_cpu(&boot_cpu_data);
329
330 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
331 *cmdline_p = command_line;
332
333 parse_early_param();
334
335 finish_e820_parsing();
336
337 e820_register_active_regions(0, 0, -1UL);
338 /*
339 * partially used pages are not usable - thus
340 * we are rounding upwards:
341 */
342 end_pfn = e820_end_of_ram();
343 num_physpages = end_pfn;
344
345 check_efer();
346
347 discover_ebda();
348
349 init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
350 if (efi_enabled)
351 efi_init();
352
353 dmi_scan_machine();
354
355 io_delay_init();
356
357 #ifdef CONFIG_SMP
358 /* setup to use the static apicid table during kernel startup */
359 x86_cpu_to_apicid_ptr = (void *)&x86_cpu_to_apicid_init;
360 #endif
361
362 #ifdef CONFIG_ACPI
363 /*
364 * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
365 * Call this early for SRAT node setup.
366 */
367 acpi_boot_table_init();
368 #endif
369
370 /* How many end-of-memory variables you have, grandma! */
371 max_low_pfn = end_pfn;
372 max_pfn = end_pfn;
373 high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1;
374
375 /* Remove active ranges so rediscovery with NUMA-awareness happens */
376 remove_all_active_ranges();
377
378 #ifdef CONFIG_ACPI_NUMA
379 /*
380 * Parse SRAT to discover nodes.
381 */
382 acpi_numa_init();
383 #endif
384
385 #ifdef CONFIG_NUMA
386 numa_initmem_init(0, end_pfn);
387 #else
388 contig_initmem_init(0, end_pfn);
389 #endif
390
391 /* Reserve direct mapping */
392 reserve_bootmem_generic(table_start << PAGE_SHIFT,
393 (table_end - table_start) << PAGE_SHIFT);
394
395 /* reserve kernel */
396 reserve_bootmem_generic(__pa_symbol(&_text),
397 __pa_symbol(&_end) - __pa_symbol(&_text));
398
399 /*
400 * reserve physical page 0 - it's a special BIOS page on many boxes,
401 * enabling clean reboots, SMP operation, laptop functions.
402 */
403 reserve_bootmem_generic(0, PAGE_SIZE);
404
405 /* reserve ebda region */
406 if (ebda_addr)
407 reserve_bootmem_generic(ebda_addr, ebda_size);
408 #ifdef CONFIG_NUMA
409 /* reserve nodemap region */
410 if (nodemap_addr)
411 reserve_bootmem_generic(nodemap_addr, nodemap_size);
412 #endif
413
414 #ifdef CONFIG_SMP
415 /* Reserve SMP trampoline */
416 reserve_bootmem_generic(SMP_TRAMPOLINE_BASE, 2*PAGE_SIZE);
417 #endif
418
419 #ifdef CONFIG_ACPI_SLEEP
420 /*
421 * Reserve low memory region for sleep support.
422 */
423 acpi_reserve_bootmem();
424 #endif
425
426 if (efi_enabled) {
427 efi_map_memmap();
428 efi_reserve_bootmem();
429 }
430
431 /*
432 * Find and reserve possible boot-time SMP configuration:
433 */
434 find_smp_config();
435 #ifdef CONFIG_BLK_DEV_INITRD
436 if (boot_params.hdr.type_of_loader && boot_params.hdr.ramdisk_image) {
437 unsigned long ramdisk_image = boot_params.hdr.ramdisk_image;
438 unsigned long ramdisk_size = boot_params.hdr.ramdisk_size;
439 unsigned long ramdisk_end = ramdisk_image + ramdisk_size;
440 unsigned long end_of_mem = end_pfn << PAGE_SHIFT;
441
442 if (ramdisk_end <= end_of_mem) {
443 reserve_bootmem_generic(ramdisk_image, ramdisk_size);
444 initrd_start = ramdisk_image + PAGE_OFFSET;
445 initrd_end = initrd_start+ramdisk_size;
446 } else {
447 printk(KERN_ERR "initrd extends beyond end of memory "
448 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
449 ramdisk_end, end_of_mem);
450 initrd_start = 0;
451 }
452 }
453 #endif
454 reserve_crashkernel();
455 paging_init();
456
457 early_quirks();
458
459 /*
460 * set this early, so we dont allocate cpu0
461 * if MADT list doesnt list BSP first
462 * mpparse.c/MP_processor_info() allocates logical cpu numbers.
463 */
464 cpu_set(0, cpu_present_map);
465 #ifdef CONFIG_ACPI
466 /*
467 * Read APIC and some other early information from ACPI tables.
468 */
469 acpi_boot_init();
470 #endif
471
472 init_cpu_to_node();
473
474 /*
475 * get boot-time SMP configuration:
476 */
477 if (smp_found_config)
478 get_smp_config();
479 init_apic_mappings();
480 ioapic_init_mappings();
481
482 /*
483 * We trust e820 completely. No explicit ROM probing in memory.
484 */
485 e820_reserve_resources(&code_resource, &data_resource, &bss_resource);
486 e820_mark_nosave_regions();
487
488 /* request I/O space for devices used on all i[345]86 PCs */
489 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
490 request_resource(&ioport_resource, &standard_io_resources[i]);
491
492 e820_setup_gap();
493
494 #ifdef CONFIG_VT
495 #if defined(CONFIG_VGA_CONSOLE)
496 if (!efi_enabled || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
497 conswitchp = &vga_con;
498 #elif defined(CONFIG_DUMMY_CONSOLE)
499 conswitchp = &dummy_con;
500 #endif
501 #endif
502 }
503
504 static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
505 {
506 unsigned int *v;
507
508 if (c->extended_cpuid_level < 0x80000004)
509 return 0;
510
511 v = (unsigned int *) c->x86_model_id;
512 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
513 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
514 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
515 c->x86_model_id[48] = 0;
516 return 1;
517 }
518
519
520 static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
521 {
522 unsigned int n, dummy, eax, ebx, ecx, edx;
523
524 n = c->extended_cpuid_level;
525
526 if (n >= 0x80000005) {
527 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
528 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), "
529 "D cache %dK (%d bytes/line)\n",
530 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
531 c->x86_cache_size = (ecx>>24) + (edx>>24);
532 /* On K8 L1 TLB is inclusive, so don't count it */
533 c->x86_tlbsize = 0;
534 }
535
536 if (n >= 0x80000006) {
537 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
538 ecx = cpuid_ecx(0x80000006);
539 c->x86_cache_size = ecx >> 16;
540 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
541
542 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
543 c->x86_cache_size, ecx & 0xFF);
544 }
545
546 if (n >= 0x80000007)
547 cpuid(0x80000007, &dummy, &dummy, &dummy, &c->x86_power);
548 if (n >= 0x80000008) {
549 cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
550 c->x86_virt_bits = (eax >> 8) & 0xff;
551 c->x86_phys_bits = eax & 0xff;
552 }
553 }
554
555 #ifdef CONFIG_NUMA
556 static int nearby_node(int apicid)
557 {
558 int i, node;
559
560 for (i = apicid - 1; i >= 0; i--) {
561 node = apicid_to_node[i];
562 if (node != NUMA_NO_NODE && node_online(node))
563 return node;
564 }
565 for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
566 node = apicid_to_node[i];
567 if (node != NUMA_NO_NODE && node_online(node))
568 return node;
569 }
570 return first_node(node_online_map); /* Shouldn't happen */
571 }
572 #endif
573
574 /*
575 * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
576 * Assumes number of cores is a power of two.
577 */
578 static void __init amd_detect_cmp(struct cpuinfo_x86 *c)
579 {
580 #ifdef CONFIG_SMP
581 unsigned bits;
582 #ifdef CONFIG_NUMA
583 int cpu = smp_processor_id();
584 int node = 0;
585 unsigned apicid = hard_smp_processor_id();
586 #endif
587 bits = c->x86_coreid_bits;
588
589 /* Low order bits define the core id (index of core in socket) */
590 c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
591 /* Convert the APIC ID into the socket ID */
592 c->phys_proc_id = phys_pkg_id(bits);
593
594 #ifdef CONFIG_NUMA
595 node = c->phys_proc_id;
596 if (apicid_to_node[apicid] != NUMA_NO_NODE)
597 node = apicid_to_node[apicid];
598 if (!node_online(node)) {
599 /* Two possibilities here:
600 - The CPU is missing memory and no node was created.
601 In that case try picking one from a nearby CPU
602 - The APIC IDs differ from the HyperTransport node IDs
603 which the K8 northbridge parsing fills in.
604 Assume they are all increased by a constant offset,
605 but in the same order as the HT nodeids.
606 If that doesn't result in a usable node fall back to the
607 path for the previous case. */
608
609 int ht_nodeid = apicid - (cpu_data(0).phys_proc_id << bits);
610
611 if (ht_nodeid >= 0 &&
612 apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
613 node = apicid_to_node[ht_nodeid];
614 /* Pick a nearby node */
615 if (!node_online(node))
616 node = nearby_node(apicid);
617 }
618 numa_set_node(cpu, node);
619
620 printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
621 #endif
622 #endif
623 }
624
625 static void __cpuinit early_init_amd(struct cpuinfo_x86 *c)
626 {
627 #ifdef CONFIG_SMP
628 unsigned bits, ecx;
629
630 /* Multi core CPU? */
631 if (c->extended_cpuid_level < 0x80000008)
632 return;
633
634 ecx = cpuid_ecx(0x80000008);
635
636 c->x86_max_cores = (ecx & 0xff) + 1;
637
638 /* CPU telling us the core id bits shift? */
639 bits = (ecx >> 12) & 0xF;
640
641 /* Otherwise recompute */
642 if (bits == 0) {
643 while ((1 << bits) < c->x86_max_cores)
644 bits++;
645 }
646
647 c->x86_coreid_bits = bits;
648
649 #endif
650 }
651
652 #define ENABLE_C1E_MASK 0x18000000
653 #define CPUID_PROCESSOR_SIGNATURE 1
654 #define CPUID_XFAM 0x0ff00000
655 #define CPUID_XFAM_K8 0x00000000
656 #define CPUID_XFAM_10H 0x00100000
657 #define CPUID_XFAM_11H 0x00200000
658 #define CPUID_XMOD 0x000f0000
659 #define CPUID_XMOD_REV_F 0x00040000
660
661 /* AMD systems with C1E don't have a working lAPIC timer. Check for that. */
662 static __cpuinit int amd_apic_timer_broken(void)
663 {
664 u32 lo, hi, eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
665
666 switch (eax & CPUID_XFAM) {
667 case CPUID_XFAM_K8:
668 if ((eax & CPUID_XMOD) < CPUID_XMOD_REV_F)
669 break;
670 case CPUID_XFAM_10H:
671 case CPUID_XFAM_11H:
672 rdmsr(MSR_K8_ENABLE_C1E, lo, hi);
673 if (lo & ENABLE_C1E_MASK)
674 return 1;
675 break;
676 default:
677 /* err on the side of caution */
678 return 1;
679 }
680 return 0;
681 }
682
683 static void __cpuinit init_amd(struct cpuinfo_x86 *c)
684 {
685 unsigned level;
686
687 #ifdef CONFIG_SMP
688 unsigned long value;
689
690 /*
691 * Disable TLB flush filter by setting HWCR.FFDIS on K8
692 * bit 6 of msr C001_0015
693 *
694 * Errata 63 for SH-B3 steppings
695 * Errata 122 for all steppings (F+ have it disabled by default)
696 */
697 if (c->x86 == 15) {
698 rdmsrl(MSR_K8_HWCR, value);
699 value |= 1 << 6;
700 wrmsrl(MSR_K8_HWCR, value);
701 }
702 #endif
703
704 /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
705 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
706 clear_bit(0*32+31, (unsigned long *)&c->x86_capability);
707
708 /* On C+ stepping K8 rep microcode works well for copy/memset */
709 level = cpuid_eax(1);
710 if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) ||
711 level >= 0x0f58))
712 set_cpu_cap(c, X86_FEATURE_REP_GOOD);
713 if (c->x86 == 0x10 || c->x86 == 0x11)
714 set_cpu_cap(c, X86_FEATURE_REP_GOOD);
715
716 /* Enable workaround for FXSAVE leak */
717 if (c->x86 >= 6)
718 set_cpu_cap(c, X86_FEATURE_FXSAVE_LEAK);
719
720 level = get_model_name(c);
721 if (!level) {
722 switch (c->x86) {
723 case 15:
724 /* Should distinguish Models here, but this is only
725 a fallback anyways. */
726 strcpy(c->x86_model_id, "Hammer");
727 break;
728 }
729 }
730 display_cacheinfo(c);
731
732 /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
733 if (c->x86_power & (1<<8))
734 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
735
736 /* Multi core CPU? */
737 if (c->extended_cpuid_level >= 0x80000008)
738 amd_detect_cmp(c);
739
740 if (c->extended_cpuid_level >= 0x80000006 &&
741 (cpuid_edx(0x80000006) & 0xf000))
742 num_cache_leaves = 4;
743 else
744 num_cache_leaves = 3;
745
746 if (c->x86 == 0xf || c->x86 == 0x10 || c->x86 == 0x11)
747 set_cpu_cap(c, X86_FEATURE_K8);
748
749 /* MFENCE stops RDTSC speculation */
750 set_cpu_cap(c, X86_FEATURE_MFENCE_RDTSC);
751
752 /* Family 10 doesn't support C states in MWAIT so don't use it */
753 if (c->x86 == 0x10 && !force_mwait)
754 clear_cpu_cap(c, X86_FEATURE_MWAIT);
755
756 if (amd_apic_timer_broken())
757 disable_apic_timer = 1;
758 }
759
760 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
761 {
762 #ifdef CONFIG_SMP
763 u32 eax, ebx, ecx, edx;
764 int index_msb, core_bits;
765
766 cpuid(1, &eax, &ebx, &ecx, &edx);
767
768
769 if (!cpu_has(c, X86_FEATURE_HT))
770 return;
771 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
772 goto out;
773
774 smp_num_siblings = (ebx & 0xff0000) >> 16;
775
776 if (smp_num_siblings == 1) {
777 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
778 } else if (smp_num_siblings > 1) {
779
780 if (smp_num_siblings > NR_CPUS) {
781 printk(KERN_WARNING "CPU: Unsupported number of "
782 "siblings %d", smp_num_siblings);
783 smp_num_siblings = 1;
784 return;
785 }
786
787 index_msb = get_count_order(smp_num_siblings);
788 c->phys_proc_id = phys_pkg_id(index_msb);
789
790 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
791
792 index_msb = get_count_order(smp_num_siblings);
793
794 core_bits = get_count_order(c->x86_max_cores);
795
796 c->cpu_core_id = phys_pkg_id(index_msb) &
797 ((1 << core_bits) - 1);
798 }
799 out:
800 if ((c->x86_max_cores * smp_num_siblings) > 1) {
801 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
802 c->phys_proc_id);
803 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
804 c->cpu_core_id);
805 }
806
807 #endif
808 }
809
810 /*
811 * find out the number of processor cores on the die
812 */
813 static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
814 {
815 unsigned int eax, t;
816
817 if (c->cpuid_level < 4)
818 return 1;
819
820 cpuid_count(4, 0, &eax, &t, &t, &t);
821
822 if (eax & 0x1f)
823 return ((eax >> 26) + 1);
824 else
825 return 1;
826 }
827
828 static void srat_detect_node(void)
829 {
830 #ifdef CONFIG_NUMA
831 unsigned node;
832 int cpu = smp_processor_id();
833 int apicid = hard_smp_processor_id();
834
835 /* Don't do the funky fallback heuristics the AMD version employs
836 for now. */
837 node = apicid_to_node[apicid];
838 if (node == NUMA_NO_NODE)
839 node = first_node(node_online_map);
840 numa_set_node(cpu, node);
841
842 printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
843 #endif
844 }
845
846 static void __cpuinit init_intel(struct cpuinfo_x86 *c)
847 {
848 /* Cache sizes */
849 unsigned n;
850
851 init_intel_cacheinfo(c);
852 if (c->cpuid_level > 9) {
853 unsigned eax = cpuid_eax(10);
854 /* Check for version and the number of counters */
855 if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
856 set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
857 }
858
859 if (cpu_has_ds) {
860 unsigned int l1, l2;
861 rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
862 if (!(l1 & (1<<11)))
863 set_cpu_cap(c, X86_FEATURE_BTS);
864 if (!(l1 & (1<<12)))
865 set_cpu_cap(c, X86_FEATURE_PEBS);
866 }
867
868
869 if (cpu_has_bts)
870 ds_init_intel(c);
871
872 n = c->extended_cpuid_level;
873 if (n >= 0x80000008) {
874 unsigned eax = cpuid_eax(0x80000008);
875 c->x86_virt_bits = (eax >> 8) & 0xff;
876 c->x86_phys_bits = eax & 0xff;
877 /* CPUID workaround for Intel 0F34 CPU */
878 if (c->x86_vendor == X86_VENDOR_INTEL &&
879 c->x86 == 0xF && c->x86_model == 0x3 &&
880 c->x86_mask == 0x4)
881 c->x86_phys_bits = 36;
882 }
883
884 if (c->x86 == 15)
885 c->x86_cache_alignment = c->x86_clflush_size * 2;
886 if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
887 (c->x86 == 0x6 && c->x86_model >= 0x0e))
888 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
889 if (c->x86 == 6)
890 set_cpu_cap(c, X86_FEATURE_REP_GOOD);
891 set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
892 c->x86_max_cores = intel_num_cpu_cores(c);
893
894 srat_detect_node();
895 }
896
897 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
898 {
899 char *v = c->x86_vendor_id;
900
901 if (!strcmp(v, "AuthenticAMD"))
902 c->x86_vendor = X86_VENDOR_AMD;
903 else if (!strcmp(v, "GenuineIntel"))
904 c->x86_vendor = X86_VENDOR_INTEL;
905 else
906 c->x86_vendor = X86_VENDOR_UNKNOWN;
907 }
908
909 struct cpu_model_info {
910 int vendor;
911 int family;
912 char *model_names[16];
913 };
914
915 /* Do some early cpuid on the boot CPU to get some parameter that are
916 needed before check_bugs. Everything advanced is in identify_cpu
917 below. */
918 static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
919 {
920 u32 tfms, xlvl;
921
922 c->loops_per_jiffy = loops_per_jiffy;
923 c->x86_cache_size = -1;
924 c->x86_vendor = X86_VENDOR_UNKNOWN;
925 c->x86_model = c->x86_mask = 0; /* So far unknown... */
926 c->x86_vendor_id[0] = '\0'; /* Unset */
927 c->x86_model_id[0] = '\0'; /* Unset */
928 c->x86_clflush_size = 64;
929 c->x86_cache_alignment = c->x86_clflush_size;
930 c->x86_max_cores = 1;
931 c->x86_coreid_bits = 0;
932 c->extended_cpuid_level = 0;
933 memset(&c->x86_capability, 0, sizeof c->x86_capability);
934
935 /* Get vendor name */
936 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
937 (unsigned int *)&c->x86_vendor_id[0],
938 (unsigned int *)&c->x86_vendor_id[8],
939 (unsigned int *)&c->x86_vendor_id[4]);
940
941 get_cpu_vendor(c);
942
943 /* Initialize the standard set of capabilities */
944 /* Note that the vendor-specific code below might override */
945
946 /* Intel-defined flags: level 0x00000001 */
947 if (c->cpuid_level >= 0x00000001) {
948 __u32 misc;
949 cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
950 &c->x86_capability[0]);
951 c->x86 = (tfms >> 8) & 0xf;
952 c->x86_model = (tfms >> 4) & 0xf;
953 c->x86_mask = tfms & 0xf;
954 if (c->x86 == 0xf)
955 c->x86 += (tfms >> 20) & 0xff;
956 if (c->x86 >= 0x6)
957 c->x86_model += ((tfms >> 16) & 0xF) << 4;
958 if (c->x86_capability[0] & (1<<19))
959 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
960 } else {
961 /* Have CPUID level 0 only - unheard of */
962 c->x86 = 4;
963 }
964
965 #ifdef CONFIG_SMP
966 c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
967 #endif
968 /* AMD-defined flags: level 0x80000001 */
969 xlvl = cpuid_eax(0x80000000);
970 c->extended_cpuid_level = xlvl;
971 if ((xlvl & 0xffff0000) == 0x80000000) {
972 if (xlvl >= 0x80000001) {
973 c->x86_capability[1] = cpuid_edx(0x80000001);
974 c->x86_capability[6] = cpuid_ecx(0x80000001);
975 }
976 if (xlvl >= 0x80000004)
977 get_model_name(c); /* Default name */
978 }
979
980 /* Transmeta-defined flags: level 0x80860001 */
981 xlvl = cpuid_eax(0x80860000);
982 if ((xlvl & 0xffff0000) == 0x80860000) {
983 /* Don't set x86_cpuid_level here for now to not confuse. */
984 if (xlvl >= 0x80860001)
985 c->x86_capability[2] = cpuid_edx(0x80860001);
986 }
987
988 switch (c->x86_vendor) {
989 case X86_VENDOR_AMD:
990 early_init_amd(c);
991 break;
992 }
993
994 }
995
996 /*
997 * This does the hard work of actually picking apart the CPU stuff...
998 */
999 void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
1000 {
1001 int i;
1002
1003 early_identify_cpu(c);
1004
1005 init_scattered_cpuid_features(c);
1006
1007 c->apicid = phys_pkg_id(0);
1008
1009 /*
1010 * Vendor-specific initialization. In this section we
1011 * canonicalize the feature flags, meaning if there are
1012 * features a certain CPU supports which CPUID doesn't
1013 * tell us, CPUID claiming incorrect flags, or other bugs,
1014 * we handle them here.
1015 *
1016 * At the end of this section, c->x86_capability better
1017 * indicate the features this CPU genuinely supports!
1018 */
1019 switch (c->x86_vendor) {
1020 case X86_VENDOR_AMD:
1021 init_amd(c);
1022 break;
1023
1024 case X86_VENDOR_INTEL:
1025 init_intel(c);
1026 break;
1027
1028 case X86_VENDOR_UNKNOWN:
1029 default:
1030 display_cacheinfo(c);
1031 break;
1032 }
1033
1034 select_idle_routine(c);
1035 detect_ht(c);
1036
1037 /*
1038 * On SMP, boot_cpu_data holds the common feature set between
1039 * all CPUs; so make sure that we indicate which features are
1040 * common between the CPUs. The first time this routine gets
1041 * executed, c == &boot_cpu_data.
1042 */
1043 if (c != &boot_cpu_data) {
1044 /* AND the already accumulated flags with these */
1045 for (i = 0; i < NCAPINTS; i++)
1046 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1047 }
1048
1049 #ifdef CONFIG_X86_MCE
1050 mcheck_init(c);
1051 #endif
1052 if (c != &boot_cpu_data)
1053 mtrr_ap_init();
1054 #ifdef CONFIG_NUMA
1055 numa_add_cpu(smp_processor_id());
1056 #endif
1057 }
1058
1059 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
1060 {
1061 if (c->x86_model_id[0])
1062 printk(KERN_INFO "%s", c->x86_model_id);
1063
1064 if (c->x86_mask || c->cpuid_level >= 0)
1065 printk(KERN_CONT " stepping %02x\n", c->x86_mask);
1066 else
1067 printk(KERN_CONT "\n");
1068 }
1069
1070 /*
1071 * Get CPU information for use by the procfs.
1072 */
1073
1074 static int show_cpuinfo(struct seq_file *m, void *v)
1075 {
1076 struct cpuinfo_x86 *c = v;
1077 int cpu = 0, i;
1078
1079 /*
1080 * These flag bits must match the definitions in <asm/cpufeature.h>.
1081 * NULL means this bit is undefined or reserved; either way it doesn't
1082 * have meaning as far as Linux is concerned. Note that it's important
1083 * to realize there is a difference between this table and CPUID -- if
1084 * applications want to get the raw CPUID data, they should access
1085 * /dev/cpu/<cpu_nr>/cpuid instead.
1086 */
1087 static const char *const x86_cap_flags[] = {
1088 /* Intel-defined */
1089 "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
1090 "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
1091 "pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
1092 "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", "pbe",
1093
1094 /* AMD-defined */
1095 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1096 NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
1097 NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
1098 NULL, "fxsr_opt", "pdpe1gb", "rdtscp", NULL, "lm",
1099 "3dnowext", "3dnow",
1100
1101 /* Transmeta-defined */
1102 "recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
1103 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1104 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1105 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1106
1107 /* Other (Linux-defined) */
1108 "cxmmx", "k6_mtrr", "cyrix_arr", "centaur_mcr",
1109 NULL, NULL, NULL, NULL,
1110 "constant_tsc", "up", NULL, "arch_perfmon",
1111 "pebs", "bts", NULL, "sync_rdtsc",
1112 "rep_good", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1113 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1114
1115 /* Intel-defined (#2) */
1116 "pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
1117 "tm2", "ssse3", "cid", NULL, NULL, "cx16", "xtpr", NULL,
1118 NULL, NULL, "dca", "sse4_1", "sse4_2", NULL, NULL, "popcnt",
1119 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1120
1121 /* VIA/Cyrix/Centaur-defined */
1122 NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
1123 "ace2", "ace2_en", "phe", "phe_en", "pmm", "pmm_en", NULL, NULL,
1124 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1125 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1126
1127 /* AMD-defined (#2) */
1128 "lahf_lm", "cmp_legacy", "svm", "extapic",
1129 "cr8_legacy", "abm", "sse4a", "misalignsse",
1130 "3dnowprefetch", "osvw", "ibs", "sse5",
1131 "skinit", "wdt", NULL, NULL,
1132 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1133 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1134
1135 /* Auxiliary (Linux-defined) */
1136 "ida", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1137 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1138 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1139 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1140 };
1141 static const char *const x86_power_flags[] = {
1142 "ts", /* temperature sensor */
1143 "fid", /* frequency id control */
1144 "vid", /* voltage id control */
1145 "ttp", /* thermal trip */
1146 "tm",
1147 "stc",
1148 "100mhzsteps",
1149 "hwpstate",
1150 "", /* tsc invariant mapped to constant_tsc */
1151 /* nothing */
1152 };
1153
1154
1155 #ifdef CONFIG_SMP
1156 cpu = c->cpu_index;
1157 #endif
1158
1159 seq_printf(m, "processor\t: %u\n"
1160 "vendor_id\t: %s\n"
1161 "cpu family\t: %d\n"
1162 "model\t\t: %d\n"
1163 "model name\t: %s\n",
1164 (unsigned)cpu,
1165 c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
1166 c->x86,
1167 (int)c->x86_model,
1168 c->x86_model_id[0] ? c->x86_model_id : "unknown");
1169
1170 if (c->x86_mask || c->cpuid_level >= 0)
1171 seq_printf(m, "stepping\t: %d\n", c->x86_mask);
1172 else
1173 seq_printf(m, "stepping\t: unknown\n");
1174
1175 if (cpu_has(c, X86_FEATURE_TSC)) {
1176 unsigned int freq = cpufreq_quick_get((unsigned)cpu);
1177
1178 if (!freq)
1179 freq = cpu_khz;
1180 seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
1181 freq / 1000, (freq % 1000));
1182 }
1183
1184 /* Cache size */
1185 if (c->x86_cache_size >= 0)
1186 seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
1187
1188 #ifdef CONFIG_SMP
1189 if (smp_num_siblings * c->x86_max_cores > 1) {
1190 seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
1191 seq_printf(m, "siblings\t: %d\n",
1192 cpus_weight(per_cpu(cpu_core_map, cpu)));
1193 seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
1194 seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
1195 }
1196 #endif
1197
1198 seq_printf(m,
1199 "fpu\t\t: yes\n"
1200 "fpu_exception\t: yes\n"
1201 "cpuid level\t: %d\n"
1202 "wp\t\t: yes\n"
1203 "flags\t\t:",
1204 c->cpuid_level);
1205
1206 for (i = 0; i < 32*NCAPINTS; i++)
1207 if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
1208 seq_printf(m, " %s", x86_cap_flags[i]);
1209
1210 seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
1211 c->loops_per_jiffy/(500000/HZ),
1212 (c->loops_per_jiffy/(5000/HZ)) % 100);
1213
1214 if (c->x86_tlbsize > 0)
1215 seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
1216 seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
1217 seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
1218
1219 seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
1220 c->x86_phys_bits, c->x86_virt_bits);
1221
1222 seq_printf(m, "power management:");
1223 for (i = 0; i < 32; i++) {
1224 if (c->x86_power & (1 << i)) {
1225 if (i < ARRAY_SIZE(x86_power_flags) &&
1226 x86_power_flags[i])
1227 seq_printf(m, "%s%s",
1228 x86_power_flags[i][0]?" ":"",
1229 x86_power_flags[i]);
1230 else
1231 seq_printf(m, " [%d]", i);
1232 }
1233 }
1234
1235 seq_printf(m, "\n\n");
1236
1237 return 0;
1238 }
1239
1240 static void *c_start(struct seq_file *m, loff_t *pos)
1241 {
1242 if (*pos == 0) /* just in case, cpu 0 is not the first */
1243 *pos = first_cpu(cpu_online_map);
1244 if ((*pos) < NR_CPUS && cpu_online(*pos))
1245 return &cpu_data(*pos);
1246 return NULL;
1247 }
1248
1249 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1250 {
1251 *pos = next_cpu(*pos, cpu_online_map);
1252 return c_start(m, pos);
1253 }
1254
1255 static void c_stop(struct seq_file *m, void *v)
1256 {
1257 }
1258
1259 struct seq_operations cpuinfo_op = {
1260 .start = c_start,
1261 .next = c_next,
1262 .stop = c_stop,
1263 .show = show_cpuinfo,
1264 };
This page took 0.060885 seconds and 6 git commands to generate.