x86: change NR_CPUS arrays in numa_64
[deliverable/linux.git] / arch / x86 / kernel / setup_64.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 */
4
5 /*
6 * This file handles the architecture-dependent parts of initialization
7 */
8
9 #include <linux/errno.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/stddef.h>
14 #include <linux/unistd.h>
15 #include <linux/ptrace.h>
16 #include <linux/slab.h>
17 #include <linux/user.h>
18 #include <linux/a.out.h>
19 #include <linux/screen_info.h>
20 #include <linux/ioport.h>
21 #include <linux/delay.h>
22 #include <linux/init.h>
23 #include <linux/initrd.h>
24 #include <linux/highmem.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <asm/processor.h>
28 #include <linux/console.h>
29 #include <linux/seq_file.h>
30 #include <linux/crash_dump.h>
31 #include <linux/root_dev.h>
32 #include <linux/pci.h>
33 #include <linux/efi.h>
34 #include <linux/acpi.h>
35 #include <linux/kallsyms.h>
36 #include <linux/edd.h>
37 #include <linux/mmzone.h>
38 #include <linux/kexec.h>
39 #include <linux/cpufreq.h>
40 #include <linux/dmi.h>
41 #include <linux/dma-mapping.h>
42 #include <linux/ctype.h>
43 #include <linux/uaccess.h>
44
45 #include <asm/mtrr.h>
46 #include <asm/uaccess.h>
47 #include <asm/system.h>
48 #include <asm/vsyscall.h>
49 #include <asm/io.h>
50 #include <asm/smp.h>
51 #include <asm/msr.h>
52 #include <asm/desc.h>
53 #include <video/edid.h>
54 #include <asm/e820.h>
55 #include <asm/dma.h>
56 #include <asm/gart.h>
57 #include <asm/mpspec.h>
58 #include <asm/mmu_context.h>
59 #include <asm/proto.h>
60 #include <asm/setup.h>
61 #include <asm/mach_apic.h>
62 #include <asm/numa.h>
63 #include <asm/sections.h>
64 #include <asm/dmi.h>
65 #include <asm/cacheflush.h>
66 #include <asm/mce.h>
67 #include <asm/ds.h>
68 #include <asm/topology.h>
69
70 #ifdef CONFIG_PARAVIRT
71 #include <asm/paravirt.h>
72 #else
73 #define ARCH_SETUP
74 #endif
75
76 /*
77 * Machine setup..
78 */
79
80 struct cpuinfo_x86 boot_cpu_data __read_mostly;
81 EXPORT_SYMBOL(boot_cpu_data);
82
83 unsigned long mmu_cr4_features;
84
85 /* Boot loader ID as an integer, for the benefit of proc_dointvec */
86 int bootloader_type;
87
88 unsigned long saved_video_mode;
89
90 int force_mwait __cpuinitdata;
91
92 /*
93 * Early DMI memory
94 */
95 int dmi_alloc_index;
96 char dmi_alloc_data[DMI_MAX_DATA];
97
98 /*
99 * Setup options
100 */
101 struct screen_info screen_info;
102 EXPORT_SYMBOL(screen_info);
103 struct sys_desc_table_struct {
104 unsigned short length;
105 unsigned char table[0];
106 };
107
108 struct edid_info edid_info;
109 EXPORT_SYMBOL_GPL(edid_info);
110
111 extern int root_mountflags;
112
113 char __initdata command_line[COMMAND_LINE_SIZE];
114
115 struct resource standard_io_resources[] = {
116 { .name = "dma1", .start = 0x00, .end = 0x1f,
117 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
118 { .name = "pic1", .start = 0x20, .end = 0x21,
119 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
120 { .name = "timer0", .start = 0x40, .end = 0x43,
121 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
122 { .name = "timer1", .start = 0x50, .end = 0x53,
123 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
124 { .name = "keyboard", .start = 0x60, .end = 0x6f,
125 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
126 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
127 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
128 { .name = "pic2", .start = 0xa0, .end = 0xa1,
129 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
130 { .name = "dma2", .start = 0xc0, .end = 0xdf,
131 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
132 { .name = "fpu", .start = 0xf0, .end = 0xff,
133 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
134 };
135
136 #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
137
138 static struct resource data_resource = {
139 .name = "Kernel data",
140 .start = 0,
141 .end = 0,
142 .flags = IORESOURCE_RAM,
143 };
144 static struct resource code_resource = {
145 .name = "Kernel code",
146 .start = 0,
147 .end = 0,
148 .flags = IORESOURCE_RAM,
149 };
150 static struct resource bss_resource = {
151 .name = "Kernel bss",
152 .start = 0,
153 .end = 0,
154 .flags = IORESOURCE_RAM,
155 };
156
157 static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c);
158
159 #ifdef CONFIG_PROC_VMCORE
160 /* elfcorehdr= specifies the location of elf core header
161 * stored by the crashed kernel. This option will be passed
162 * by kexec loader to the capture kernel.
163 */
164 static int __init setup_elfcorehdr(char *arg)
165 {
166 char *end;
167 if (!arg)
168 return -EINVAL;
169 elfcorehdr_addr = memparse(arg, &end);
170 return end > arg ? 0 : -EINVAL;
171 }
172 early_param("elfcorehdr", setup_elfcorehdr);
173 #endif
174
175 #ifndef CONFIG_NUMA
176 static void __init
177 contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
178 {
179 unsigned long bootmap_size, bootmap;
180
181 bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
182 bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
183 if (bootmap == -1L)
184 panic("Cannot find bootmem map of size %ld\n", bootmap_size);
185 bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
186 e820_register_active_regions(0, start_pfn, end_pfn);
187 free_bootmem_with_active_regions(0, end_pfn);
188 reserve_bootmem(bootmap, bootmap_size);
189 }
190 #endif
191
192 #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
193 struct edd edd;
194 #ifdef CONFIG_EDD_MODULE
195 EXPORT_SYMBOL(edd);
196 #endif
197 /**
198 * copy_edd() - Copy the BIOS EDD information
199 * from boot_params into a safe place.
200 *
201 */
202 static inline void copy_edd(void)
203 {
204 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
205 sizeof(edd.mbr_signature));
206 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
207 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
208 edd.edd_info_nr = boot_params.eddbuf_entries;
209 }
210 #else
211 static inline void copy_edd(void)
212 {
213 }
214 #endif
215
216 #ifdef CONFIG_KEXEC
217 static void __init reserve_crashkernel(void)
218 {
219 unsigned long long free_mem;
220 unsigned long long crash_size, crash_base;
221 int ret;
222
223 free_mem =
224 ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
225
226 ret = parse_crashkernel(boot_command_line, free_mem,
227 &crash_size, &crash_base);
228 if (ret == 0 && crash_size) {
229 if (crash_base > 0) {
230 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
231 "for crashkernel (System RAM: %ldMB)\n",
232 (unsigned long)(crash_size >> 20),
233 (unsigned long)(crash_base >> 20),
234 (unsigned long)(free_mem >> 20));
235 crashk_res.start = crash_base;
236 crashk_res.end = crash_base + crash_size - 1;
237 reserve_bootmem(crash_base, crash_size);
238 } else
239 printk(KERN_INFO "crashkernel reservation failed - "
240 "you have to specify a base address\n");
241 }
242 }
243 #else
244 static inline void __init reserve_crashkernel(void)
245 {}
246 #endif
247
248 #define EBDA_ADDR_POINTER 0x40E
249
250 unsigned __initdata ebda_addr;
251 unsigned __initdata ebda_size;
252
253 static void __init discover_ebda(void)
254 {
255 /*
256 * there is a real-mode segmented pointer pointing to the
257 * 4K EBDA area at 0x40E
258 */
259 ebda_addr = *(unsigned short *)__va(EBDA_ADDR_POINTER);
260 /*
261 * There can be some situations, like paravirtualized guests,
262 * in which there is no available ebda information. In such
263 * case, just skip it
264 */
265 if (!ebda_addr) {
266 ebda_size = 0;
267 return;
268 }
269
270 ebda_addr <<= 4;
271
272 ebda_size = *(unsigned short *)__va(ebda_addr);
273
274 /* Round EBDA up to pages */
275 if (ebda_size == 0)
276 ebda_size = 1;
277 ebda_size <<= 10;
278 ebda_size = round_up(ebda_size + (ebda_addr & ~PAGE_MASK), PAGE_SIZE);
279 if (ebda_size > 64*1024)
280 ebda_size = 64*1024;
281 }
282
283 /* Overridden in paravirt.c if CONFIG_PARAVIRT */
284 void __attribute__((weak)) __init memory_setup(void)
285 {
286 machine_specific_memory_setup();
287 }
288
289 void __init setup_arch(char **cmdline_p)
290 {
291 unsigned i;
292
293 printk(KERN_INFO "Command line: %s\n", boot_command_line);
294
295 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
296 screen_info = boot_params.screen_info;
297 edid_info = boot_params.edid_info;
298 saved_video_mode = boot_params.hdr.vid_mode;
299 bootloader_type = boot_params.hdr.type_of_loader;
300
301 #ifdef CONFIG_BLK_DEV_RAM
302 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
303 rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
304 rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
305 #endif
306 #ifdef CONFIG_EFI
307 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
308 "EL64", 4))
309 efi_enabled = 1;
310 #endif
311
312 ARCH_SETUP
313
314 memory_setup();
315 copy_edd();
316
317 if (!boot_params.hdr.root_flags)
318 root_mountflags &= ~MS_RDONLY;
319 init_mm.start_code = (unsigned long) &_text;
320 init_mm.end_code = (unsigned long) &_etext;
321 init_mm.end_data = (unsigned long) &_edata;
322 init_mm.brk = (unsigned long) &_end;
323
324 code_resource.start = virt_to_phys(&_text);
325 code_resource.end = virt_to_phys(&_etext)-1;
326 data_resource.start = virt_to_phys(&_etext);
327 data_resource.end = virt_to_phys(&_edata)-1;
328 bss_resource.start = virt_to_phys(&__bss_start);
329 bss_resource.end = virt_to_phys(&__bss_stop)-1;
330
331 early_identify_cpu(&boot_cpu_data);
332
333 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
334 *cmdline_p = command_line;
335
336 parse_early_param();
337
338 finish_e820_parsing();
339
340 early_gart_iommu_check();
341
342 e820_register_active_regions(0, 0, -1UL);
343 /*
344 * partially used pages are not usable - thus
345 * we are rounding upwards:
346 */
347 end_pfn = e820_end_of_ram();
348 num_physpages = end_pfn;
349
350 check_efer();
351
352 discover_ebda();
353
354 init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
355 if (efi_enabled)
356 efi_init();
357
358 dmi_scan_machine();
359
360 io_delay_init();
361
362 #ifdef CONFIG_SMP
363 /* setup to use the early static init tables during kernel startup */
364 x86_cpu_to_apicid_early_ptr = (void *)&x86_cpu_to_apicid_init;
365 x86_cpu_to_node_map_early_ptr = (void *)&x86_cpu_to_node_map_init;
366 #endif
367
368 #ifdef CONFIG_ACPI
369 /*
370 * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
371 * Call this early for SRAT node setup.
372 */
373 acpi_boot_table_init();
374 #endif
375
376 /* How many end-of-memory variables you have, grandma! */
377 max_low_pfn = end_pfn;
378 max_pfn = end_pfn;
379 high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1;
380
381 /* Remove active ranges so rediscovery with NUMA-awareness happens */
382 remove_all_active_ranges();
383
384 #ifdef CONFIG_ACPI_NUMA
385 /*
386 * Parse SRAT to discover nodes.
387 */
388 acpi_numa_init();
389 #endif
390
391 #ifdef CONFIG_NUMA
392 numa_initmem_init(0, end_pfn);
393 #else
394 contig_initmem_init(0, end_pfn);
395 #endif
396
397 /* Reserve direct mapping */
398 reserve_bootmem_generic(table_start << PAGE_SHIFT,
399 (table_end - table_start) << PAGE_SHIFT);
400
401 /* reserve kernel */
402 reserve_bootmem_generic(__pa_symbol(&_text),
403 __pa_symbol(&_end) - __pa_symbol(&_text));
404
405 /*
406 * reserve physical page 0 - it's a special BIOS page on many boxes,
407 * enabling clean reboots, SMP operation, laptop functions.
408 */
409 reserve_bootmem_generic(0, PAGE_SIZE);
410
411 /* reserve ebda region */
412 if (ebda_addr)
413 reserve_bootmem_generic(ebda_addr, ebda_size);
414 #ifdef CONFIG_NUMA
415 /* reserve nodemap region */
416 if (nodemap_addr)
417 reserve_bootmem_generic(nodemap_addr, nodemap_size);
418 #endif
419
420 #ifdef CONFIG_SMP
421 /* Reserve SMP trampoline */
422 reserve_bootmem_generic(SMP_TRAMPOLINE_BASE, 2*PAGE_SIZE);
423 #endif
424
425 #ifdef CONFIG_ACPI_SLEEP
426 /*
427 * Reserve low memory region for sleep support.
428 */
429 acpi_reserve_bootmem();
430 #endif
431
432 if (efi_enabled) {
433 efi_map_memmap();
434 efi_reserve_bootmem();
435 }
436
437 /*
438 * Find and reserve possible boot-time SMP configuration:
439 */
440 find_smp_config();
441 #ifdef CONFIG_BLK_DEV_INITRD
442 if (boot_params.hdr.type_of_loader && boot_params.hdr.ramdisk_image) {
443 unsigned long ramdisk_image = boot_params.hdr.ramdisk_image;
444 unsigned long ramdisk_size = boot_params.hdr.ramdisk_size;
445 unsigned long ramdisk_end = ramdisk_image + ramdisk_size;
446 unsigned long end_of_mem = end_pfn << PAGE_SHIFT;
447
448 if (ramdisk_end <= end_of_mem) {
449 reserve_bootmem_generic(ramdisk_image, ramdisk_size);
450 initrd_start = ramdisk_image + PAGE_OFFSET;
451 initrd_end = initrd_start+ramdisk_size;
452 } else {
453 printk(KERN_ERR "initrd extends beyond end of memory "
454 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
455 ramdisk_end, end_of_mem);
456 initrd_start = 0;
457 }
458 }
459 #endif
460 reserve_crashkernel();
461 paging_init();
462 map_vsyscall();
463
464 early_quirks();
465
466 /*
467 * set this early, so we dont allocate cpu0
468 * if MADT list doesnt list BSP first
469 * mpparse.c/MP_processor_info() allocates logical cpu numbers.
470 */
471 cpu_set(0, cpu_present_map);
472 #ifdef CONFIG_ACPI
473 /*
474 * Read APIC and some other early information from ACPI tables.
475 */
476 acpi_boot_init();
477 #endif
478
479 init_cpu_to_node();
480
481 /*
482 * get boot-time SMP configuration:
483 */
484 if (smp_found_config)
485 get_smp_config();
486 init_apic_mappings();
487 ioapic_init_mappings();
488
489 /*
490 * We trust e820 completely. No explicit ROM probing in memory.
491 */
492 e820_reserve_resources(&code_resource, &data_resource, &bss_resource);
493 e820_mark_nosave_regions();
494
495 /* request I/O space for devices used on all i[345]86 PCs */
496 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
497 request_resource(&ioport_resource, &standard_io_resources[i]);
498
499 e820_setup_gap();
500
501 #ifdef CONFIG_VT
502 #if defined(CONFIG_VGA_CONSOLE)
503 if (!efi_enabled || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
504 conswitchp = &vga_con;
505 #elif defined(CONFIG_DUMMY_CONSOLE)
506 conswitchp = &dummy_con;
507 #endif
508 #endif
509 }
510
511 static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
512 {
513 unsigned int *v;
514
515 if (c->extended_cpuid_level < 0x80000004)
516 return 0;
517
518 v = (unsigned int *) c->x86_model_id;
519 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
520 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
521 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
522 c->x86_model_id[48] = 0;
523 return 1;
524 }
525
526
527 static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
528 {
529 unsigned int n, dummy, eax, ebx, ecx, edx;
530
531 n = c->extended_cpuid_level;
532
533 if (n >= 0x80000005) {
534 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
535 printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), "
536 "D cache %dK (%d bytes/line)\n",
537 edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
538 c->x86_cache_size = (ecx>>24) + (edx>>24);
539 /* On K8 L1 TLB is inclusive, so don't count it */
540 c->x86_tlbsize = 0;
541 }
542
543 if (n >= 0x80000006) {
544 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
545 ecx = cpuid_ecx(0x80000006);
546 c->x86_cache_size = ecx >> 16;
547 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
548
549 printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
550 c->x86_cache_size, ecx & 0xFF);
551 }
552 if (n >= 0x80000008) {
553 cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
554 c->x86_virt_bits = (eax >> 8) & 0xff;
555 c->x86_phys_bits = eax & 0xff;
556 }
557 }
558
559 #ifdef CONFIG_NUMA
560 static int nearby_node(int apicid)
561 {
562 int i, node;
563
564 for (i = apicid - 1; i >= 0; i--) {
565 node = apicid_to_node[i];
566 if (node != NUMA_NO_NODE && node_online(node))
567 return node;
568 }
569 for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
570 node = apicid_to_node[i];
571 if (node != NUMA_NO_NODE && node_online(node))
572 return node;
573 }
574 return first_node(node_online_map); /* Shouldn't happen */
575 }
576 #endif
577
578 /*
579 * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
580 * Assumes number of cores is a power of two.
581 */
582 static void __init amd_detect_cmp(struct cpuinfo_x86 *c)
583 {
584 #ifdef CONFIG_SMP
585 unsigned bits;
586 #ifdef CONFIG_NUMA
587 int cpu = smp_processor_id();
588 int node = 0;
589 unsigned apicid = hard_smp_processor_id();
590 #endif
591 bits = c->x86_coreid_bits;
592
593 /* Low order bits define the core id (index of core in socket) */
594 c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
595 /* Convert the APIC ID into the socket ID */
596 c->phys_proc_id = phys_pkg_id(bits);
597
598 #ifdef CONFIG_NUMA
599 node = c->phys_proc_id;
600 if (apicid_to_node[apicid] != NUMA_NO_NODE)
601 node = apicid_to_node[apicid];
602 if (!node_online(node)) {
603 /* Two possibilities here:
604 - The CPU is missing memory and no node was created.
605 In that case try picking one from a nearby CPU
606 - The APIC IDs differ from the HyperTransport node IDs
607 which the K8 northbridge parsing fills in.
608 Assume they are all increased by a constant offset,
609 but in the same order as the HT nodeids.
610 If that doesn't result in a usable node fall back to the
611 path for the previous case. */
612
613 int ht_nodeid = apicid - (cpu_data(0).phys_proc_id << bits);
614
615 if (ht_nodeid >= 0 &&
616 apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
617 node = apicid_to_node[ht_nodeid];
618 /* Pick a nearby node */
619 if (!node_online(node))
620 node = nearby_node(apicid);
621 }
622 numa_set_node(cpu, node);
623
624 printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
625 #endif
626 #endif
627 }
628
629 static void __cpuinit early_init_amd_mc(struct cpuinfo_x86 *c)
630 {
631 #ifdef CONFIG_SMP
632 unsigned bits, ecx;
633
634 /* Multi core CPU? */
635 if (c->extended_cpuid_level < 0x80000008)
636 return;
637
638 ecx = cpuid_ecx(0x80000008);
639
640 c->x86_max_cores = (ecx & 0xff) + 1;
641
642 /* CPU telling us the core id bits shift? */
643 bits = (ecx >> 12) & 0xF;
644
645 /* Otherwise recompute */
646 if (bits == 0) {
647 while ((1 << bits) < c->x86_max_cores)
648 bits++;
649 }
650
651 c->x86_coreid_bits = bits;
652
653 #endif
654 }
655
656 #define ENABLE_C1E_MASK 0x18000000
657 #define CPUID_PROCESSOR_SIGNATURE 1
658 #define CPUID_XFAM 0x0ff00000
659 #define CPUID_XFAM_K8 0x00000000
660 #define CPUID_XFAM_10H 0x00100000
661 #define CPUID_XFAM_11H 0x00200000
662 #define CPUID_XMOD 0x000f0000
663 #define CPUID_XMOD_REV_F 0x00040000
664
665 /* AMD systems with C1E don't have a working lAPIC timer. Check for that. */
666 static __cpuinit int amd_apic_timer_broken(void)
667 {
668 u32 lo, hi, eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
669
670 switch (eax & CPUID_XFAM) {
671 case CPUID_XFAM_K8:
672 if ((eax & CPUID_XMOD) < CPUID_XMOD_REV_F)
673 break;
674 case CPUID_XFAM_10H:
675 case CPUID_XFAM_11H:
676 rdmsr(MSR_K8_ENABLE_C1E, lo, hi);
677 if (lo & ENABLE_C1E_MASK)
678 return 1;
679 break;
680 default:
681 /* err on the side of caution */
682 return 1;
683 }
684 return 0;
685 }
686
687 static void __cpuinit early_init_amd(struct cpuinfo_x86 *c)
688 {
689 early_init_amd_mc(c);
690
691 /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
692 if (c->x86_power & (1<<8))
693 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
694 }
695
696 static void __cpuinit init_amd(struct cpuinfo_x86 *c)
697 {
698 unsigned level;
699
700 #ifdef CONFIG_SMP
701 unsigned long value;
702
703 /*
704 * Disable TLB flush filter by setting HWCR.FFDIS on K8
705 * bit 6 of msr C001_0015
706 *
707 * Errata 63 for SH-B3 steppings
708 * Errata 122 for all steppings (F+ have it disabled by default)
709 */
710 if (c->x86 == 15) {
711 rdmsrl(MSR_K8_HWCR, value);
712 value |= 1 << 6;
713 wrmsrl(MSR_K8_HWCR, value);
714 }
715 #endif
716
717 /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
718 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
719 clear_bit(0*32+31, (unsigned long *)&c->x86_capability);
720
721 /* On C+ stepping K8 rep microcode works well for copy/memset */
722 level = cpuid_eax(1);
723 if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) ||
724 level >= 0x0f58))
725 set_cpu_cap(c, X86_FEATURE_REP_GOOD);
726 if (c->x86 == 0x10 || c->x86 == 0x11)
727 set_cpu_cap(c, X86_FEATURE_REP_GOOD);
728
729 /* Enable workaround for FXSAVE leak */
730 if (c->x86 >= 6)
731 set_cpu_cap(c, X86_FEATURE_FXSAVE_LEAK);
732
733 level = get_model_name(c);
734 if (!level) {
735 switch (c->x86) {
736 case 15:
737 /* Should distinguish Models here, but this is only
738 a fallback anyways. */
739 strcpy(c->x86_model_id, "Hammer");
740 break;
741 }
742 }
743 display_cacheinfo(c);
744
745 /* Multi core CPU? */
746 if (c->extended_cpuid_level >= 0x80000008)
747 amd_detect_cmp(c);
748
749 if (c->extended_cpuid_level >= 0x80000006 &&
750 (cpuid_edx(0x80000006) & 0xf000))
751 num_cache_leaves = 4;
752 else
753 num_cache_leaves = 3;
754
755 if (c->x86 == 0xf || c->x86 == 0x10 || c->x86 == 0x11)
756 set_cpu_cap(c, X86_FEATURE_K8);
757
758 /* MFENCE stops RDTSC speculation */
759 set_cpu_cap(c, X86_FEATURE_MFENCE_RDTSC);
760
761 /* Family 10 doesn't support C states in MWAIT so don't use it */
762 if (c->x86 == 0x10 && !force_mwait)
763 clear_cpu_cap(c, X86_FEATURE_MWAIT);
764
765 if (amd_apic_timer_broken())
766 disable_apic_timer = 1;
767 }
768
769 void __cpuinit detect_ht(struct cpuinfo_x86 *c)
770 {
771 #ifdef CONFIG_SMP
772 u32 eax, ebx, ecx, edx;
773 int index_msb, core_bits;
774
775 cpuid(1, &eax, &ebx, &ecx, &edx);
776
777
778 if (!cpu_has(c, X86_FEATURE_HT))
779 return;
780 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
781 goto out;
782
783 smp_num_siblings = (ebx & 0xff0000) >> 16;
784
785 if (smp_num_siblings == 1) {
786 printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
787 } else if (smp_num_siblings > 1) {
788
789 if (smp_num_siblings > NR_CPUS) {
790 printk(KERN_WARNING "CPU: Unsupported number of "
791 "siblings %d", smp_num_siblings);
792 smp_num_siblings = 1;
793 return;
794 }
795
796 index_msb = get_count_order(smp_num_siblings);
797 c->phys_proc_id = phys_pkg_id(index_msb);
798
799 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
800
801 index_msb = get_count_order(smp_num_siblings);
802
803 core_bits = get_count_order(c->x86_max_cores);
804
805 c->cpu_core_id = phys_pkg_id(index_msb) &
806 ((1 << core_bits) - 1);
807 }
808 out:
809 if ((c->x86_max_cores * smp_num_siblings) > 1) {
810 printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
811 c->phys_proc_id);
812 printk(KERN_INFO "CPU: Processor Core ID: %d\n",
813 c->cpu_core_id);
814 }
815
816 #endif
817 }
818
819 /*
820 * find out the number of processor cores on the die
821 */
822 static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
823 {
824 unsigned int eax, t;
825
826 if (c->cpuid_level < 4)
827 return 1;
828
829 cpuid_count(4, 0, &eax, &t, &t, &t);
830
831 if (eax & 0x1f)
832 return ((eax >> 26) + 1);
833 else
834 return 1;
835 }
836
837 static void srat_detect_node(void)
838 {
839 #ifdef CONFIG_NUMA
840 unsigned node;
841 int cpu = smp_processor_id();
842 int apicid = hard_smp_processor_id();
843
844 /* Don't do the funky fallback heuristics the AMD version employs
845 for now. */
846 node = apicid_to_node[apicid];
847 if (node == NUMA_NO_NODE)
848 node = first_node(node_online_map);
849 numa_set_node(cpu, node);
850
851 printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
852 #endif
853 }
854
855 static void __cpuinit early_init_intel(struct cpuinfo_x86 *c)
856 {
857 if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
858 (c->x86 == 0x6 && c->x86_model >= 0x0e))
859 set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
860 }
861
862 static void __cpuinit init_intel(struct cpuinfo_x86 *c)
863 {
864 /* Cache sizes */
865 unsigned n;
866
867 init_intel_cacheinfo(c);
868 if (c->cpuid_level > 9) {
869 unsigned eax = cpuid_eax(10);
870 /* Check for version and the number of counters */
871 if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
872 set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
873 }
874
875 if (cpu_has_ds) {
876 unsigned int l1, l2;
877 rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
878 if (!(l1 & (1<<11)))
879 set_cpu_cap(c, X86_FEATURE_BTS);
880 if (!(l1 & (1<<12)))
881 set_cpu_cap(c, X86_FEATURE_PEBS);
882 }
883
884
885 if (cpu_has_bts)
886 ds_init_intel(c);
887
888 n = c->extended_cpuid_level;
889 if (n >= 0x80000008) {
890 unsigned eax = cpuid_eax(0x80000008);
891 c->x86_virt_bits = (eax >> 8) & 0xff;
892 c->x86_phys_bits = eax & 0xff;
893 /* CPUID workaround for Intel 0F34 CPU */
894 if (c->x86_vendor == X86_VENDOR_INTEL &&
895 c->x86 == 0xF && c->x86_model == 0x3 &&
896 c->x86_mask == 0x4)
897 c->x86_phys_bits = 36;
898 }
899
900 if (c->x86 == 15)
901 c->x86_cache_alignment = c->x86_clflush_size * 2;
902 if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
903 (c->x86 == 0x6 && c->x86_model >= 0x0e))
904 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
905 if (c->x86 == 6)
906 set_cpu_cap(c, X86_FEATURE_REP_GOOD);
907 set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
908 c->x86_max_cores = intel_num_cpu_cores(c);
909
910 srat_detect_node();
911 }
912
913 static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
914 {
915 char *v = c->x86_vendor_id;
916
917 if (!strcmp(v, "AuthenticAMD"))
918 c->x86_vendor = X86_VENDOR_AMD;
919 else if (!strcmp(v, "GenuineIntel"))
920 c->x86_vendor = X86_VENDOR_INTEL;
921 else
922 c->x86_vendor = X86_VENDOR_UNKNOWN;
923 }
924
925 struct cpu_model_info {
926 int vendor;
927 int family;
928 char *model_names[16];
929 };
930
931 /* Do some early cpuid on the boot CPU to get some parameter that are
932 needed before check_bugs. Everything advanced is in identify_cpu
933 below. */
934 static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
935 {
936 u32 tfms, xlvl;
937
938 c->loops_per_jiffy = loops_per_jiffy;
939 c->x86_cache_size = -1;
940 c->x86_vendor = X86_VENDOR_UNKNOWN;
941 c->x86_model = c->x86_mask = 0; /* So far unknown... */
942 c->x86_vendor_id[0] = '\0'; /* Unset */
943 c->x86_model_id[0] = '\0'; /* Unset */
944 c->x86_clflush_size = 64;
945 c->x86_cache_alignment = c->x86_clflush_size;
946 c->x86_max_cores = 1;
947 c->x86_coreid_bits = 0;
948 c->extended_cpuid_level = 0;
949 memset(&c->x86_capability, 0, sizeof c->x86_capability);
950
951 /* Get vendor name */
952 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
953 (unsigned int *)&c->x86_vendor_id[0],
954 (unsigned int *)&c->x86_vendor_id[8],
955 (unsigned int *)&c->x86_vendor_id[4]);
956
957 get_cpu_vendor(c);
958
959 /* Initialize the standard set of capabilities */
960 /* Note that the vendor-specific code below might override */
961
962 /* Intel-defined flags: level 0x00000001 */
963 if (c->cpuid_level >= 0x00000001) {
964 __u32 misc;
965 cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
966 &c->x86_capability[0]);
967 c->x86 = (tfms >> 8) & 0xf;
968 c->x86_model = (tfms >> 4) & 0xf;
969 c->x86_mask = tfms & 0xf;
970 if (c->x86 == 0xf)
971 c->x86 += (tfms >> 20) & 0xff;
972 if (c->x86 >= 0x6)
973 c->x86_model += ((tfms >> 16) & 0xF) << 4;
974 if (c->x86_capability[0] & (1<<19))
975 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
976 } else {
977 /* Have CPUID level 0 only - unheard of */
978 c->x86 = 4;
979 }
980
981 #ifdef CONFIG_SMP
982 c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
983 #endif
984 /* AMD-defined flags: level 0x80000001 */
985 xlvl = cpuid_eax(0x80000000);
986 c->extended_cpuid_level = xlvl;
987 if ((xlvl & 0xffff0000) == 0x80000000) {
988 if (xlvl >= 0x80000001) {
989 c->x86_capability[1] = cpuid_edx(0x80000001);
990 c->x86_capability[6] = cpuid_ecx(0x80000001);
991 }
992 if (xlvl >= 0x80000004)
993 get_model_name(c); /* Default name */
994 }
995
996 /* Transmeta-defined flags: level 0x80860001 */
997 xlvl = cpuid_eax(0x80860000);
998 if ((xlvl & 0xffff0000) == 0x80860000) {
999 /* Don't set x86_cpuid_level here for now to not confuse. */
1000 if (xlvl >= 0x80860001)
1001 c->x86_capability[2] = cpuid_edx(0x80860001);
1002 }
1003
1004 c->extended_cpuid_level = cpuid_eax(0x80000000);
1005 if (c->extended_cpuid_level >= 0x80000007)
1006 c->x86_power = cpuid_edx(0x80000007);
1007
1008 switch (c->x86_vendor) {
1009 case X86_VENDOR_AMD:
1010 early_init_amd(c);
1011 break;
1012 }
1013
1014 }
1015
1016 /*
1017 * This does the hard work of actually picking apart the CPU stuff...
1018 */
1019 void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
1020 {
1021 int i;
1022
1023 early_identify_cpu(c);
1024
1025 init_scattered_cpuid_features(c);
1026
1027 c->apicid = phys_pkg_id(0);
1028
1029 /*
1030 * Vendor-specific initialization. In this section we
1031 * canonicalize the feature flags, meaning if there are
1032 * features a certain CPU supports which CPUID doesn't
1033 * tell us, CPUID claiming incorrect flags, or other bugs,
1034 * we handle them here.
1035 *
1036 * At the end of this section, c->x86_capability better
1037 * indicate the features this CPU genuinely supports!
1038 */
1039 switch (c->x86_vendor) {
1040 case X86_VENDOR_AMD:
1041 init_amd(c);
1042 break;
1043
1044 case X86_VENDOR_INTEL:
1045 init_intel(c);
1046 break;
1047
1048 case X86_VENDOR_UNKNOWN:
1049 default:
1050 display_cacheinfo(c);
1051 break;
1052 }
1053
1054 select_idle_routine(c);
1055 detect_ht(c);
1056
1057 /*
1058 * On SMP, boot_cpu_data holds the common feature set between
1059 * all CPUs; so make sure that we indicate which features are
1060 * common between the CPUs. The first time this routine gets
1061 * executed, c == &boot_cpu_data.
1062 */
1063 if (c != &boot_cpu_data) {
1064 /* AND the already accumulated flags with these */
1065 for (i = 0; i < NCAPINTS; i++)
1066 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1067 }
1068
1069 #ifdef CONFIG_X86_MCE
1070 mcheck_init(c);
1071 #endif
1072 if (c != &boot_cpu_data)
1073 mtrr_ap_init();
1074 #ifdef CONFIG_NUMA
1075 numa_add_cpu(smp_processor_id());
1076 #endif
1077
1078 switch (c->x86_vendor) {
1079 case X86_VENDOR_AMD:
1080 early_init_amd(c);
1081 break;
1082 case X86_VENDOR_INTEL:
1083 early_init_intel(c);
1084 break;
1085 }
1086 }
1087
1088 void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
1089 {
1090 if (c->x86_model_id[0])
1091 printk(KERN_INFO "%s", c->x86_model_id);
1092
1093 if (c->x86_mask || c->cpuid_level >= 0)
1094 printk(KERN_CONT " stepping %02x\n", c->x86_mask);
1095 else
1096 printk(KERN_CONT "\n");
1097 }
1098
1099 /*
1100 * Get CPU information for use by the procfs.
1101 */
1102
1103 static int show_cpuinfo(struct seq_file *m, void *v)
1104 {
1105 struct cpuinfo_x86 *c = v;
1106 int cpu = 0, i;
1107
1108 /*
1109 * These flag bits must match the definitions in <asm/cpufeature.h>.
1110 * NULL means this bit is undefined or reserved; either way it doesn't
1111 * have meaning as far as Linux is concerned. Note that it's important
1112 * to realize there is a difference between this table and CPUID -- if
1113 * applications want to get the raw CPUID data, they should access
1114 * /dev/cpu/<cpu_nr>/cpuid instead.
1115 */
1116 static const char *const x86_cap_flags[] = {
1117 /* Intel-defined */
1118 "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
1119 "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
1120 "pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
1121 "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", "pbe",
1122
1123 /* AMD-defined */
1124 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1125 NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
1126 NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
1127 NULL, "fxsr_opt", "pdpe1gb", "rdtscp", NULL, "lm",
1128 "3dnowext", "3dnow",
1129
1130 /* Transmeta-defined */
1131 "recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
1132 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1133 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1134 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1135
1136 /* Other (Linux-defined) */
1137 "cxmmx", "k6_mtrr", "cyrix_arr", "centaur_mcr",
1138 NULL, NULL, NULL, NULL,
1139 "constant_tsc", "up", NULL, "arch_perfmon",
1140 "pebs", "bts", NULL, "sync_rdtsc",
1141 "rep_good", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1142 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1143
1144 /* Intel-defined (#2) */
1145 "pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
1146 "tm2", "ssse3", "cid", NULL, NULL, "cx16", "xtpr", NULL,
1147 NULL, NULL, "dca", "sse4_1", "sse4_2", NULL, NULL, "popcnt",
1148 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1149
1150 /* VIA/Cyrix/Centaur-defined */
1151 NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
1152 "ace2", "ace2_en", "phe", "phe_en", "pmm", "pmm_en", NULL, NULL,
1153 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1154 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1155
1156 /* AMD-defined (#2) */
1157 "lahf_lm", "cmp_legacy", "svm", "extapic",
1158 "cr8_legacy", "abm", "sse4a", "misalignsse",
1159 "3dnowprefetch", "osvw", "ibs", "sse5",
1160 "skinit", "wdt", NULL, NULL,
1161 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1162 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1163
1164 /* Auxiliary (Linux-defined) */
1165 "ida", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1166 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1167 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1168 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
1169 };
1170 static const char *const x86_power_flags[] = {
1171 "ts", /* temperature sensor */
1172 "fid", /* frequency id control */
1173 "vid", /* voltage id control */
1174 "ttp", /* thermal trip */
1175 "tm",
1176 "stc",
1177 "100mhzsteps",
1178 "hwpstate",
1179 "", /* tsc invariant mapped to constant_tsc */
1180 /* nothing */
1181 };
1182
1183
1184 #ifdef CONFIG_SMP
1185 cpu = c->cpu_index;
1186 #endif
1187
1188 seq_printf(m, "processor\t: %u\n"
1189 "vendor_id\t: %s\n"
1190 "cpu family\t: %d\n"
1191 "model\t\t: %d\n"
1192 "model name\t: %s\n",
1193 (unsigned)cpu,
1194 c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
1195 c->x86,
1196 (int)c->x86_model,
1197 c->x86_model_id[0] ? c->x86_model_id : "unknown");
1198
1199 if (c->x86_mask || c->cpuid_level >= 0)
1200 seq_printf(m, "stepping\t: %d\n", c->x86_mask);
1201 else
1202 seq_printf(m, "stepping\t: unknown\n");
1203
1204 if (cpu_has(c, X86_FEATURE_TSC)) {
1205 unsigned int freq = cpufreq_quick_get((unsigned)cpu);
1206
1207 if (!freq)
1208 freq = cpu_khz;
1209 seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
1210 freq / 1000, (freq % 1000));
1211 }
1212
1213 /* Cache size */
1214 if (c->x86_cache_size >= 0)
1215 seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
1216
1217 #ifdef CONFIG_SMP
1218 if (smp_num_siblings * c->x86_max_cores > 1) {
1219 seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
1220 seq_printf(m, "siblings\t: %d\n",
1221 cpus_weight(per_cpu(cpu_core_map, cpu)));
1222 seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
1223 seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
1224 }
1225 #endif
1226
1227 seq_printf(m,
1228 "fpu\t\t: yes\n"
1229 "fpu_exception\t: yes\n"
1230 "cpuid level\t: %d\n"
1231 "wp\t\t: yes\n"
1232 "flags\t\t:",
1233 c->cpuid_level);
1234
1235 for (i = 0; i < 32*NCAPINTS; i++)
1236 if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
1237 seq_printf(m, " %s", x86_cap_flags[i]);
1238
1239 seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
1240 c->loops_per_jiffy/(500000/HZ),
1241 (c->loops_per_jiffy/(5000/HZ)) % 100);
1242
1243 if (c->x86_tlbsize > 0)
1244 seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
1245 seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
1246 seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
1247
1248 seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
1249 c->x86_phys_bits, c->x86_virt_bits);
1250
1251 seq_printf(m, "power management:");
1252 for (i = 0; i < 32; i++) {
1253 if (c->x86_power & (1 << i)) {
1254 if (i < ARRAY_SIZE(x86_power_flags) &&
1255 x86_power_flags[i])
1256 seq_printf(m, "%s%s",
1257 x86_power_flags[i][0]?" ":"",
1258 x86_power_flags[i]);
1259 else
1260 seq_printf(m, " [%d]", i);
1261 }
1262 }
1263
1264 seq_printf(m, "\n\n");
1265
1266 return 0;
1267 }
1268
1269 static void *c_start(struct seq_file *m, loff_t *pos)
1270 {
1271 if (*pos == 0) /* just in case, cpu 0 is not the first */
1272 *pos = first_cpu(cpu_online_map);
1273 if ((*pos) < NR_CPUS && cpu_online(*pos))
1274 return &cpu_data(*pos);
1275 return NULL;
1276 }
1277
1278 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1279 {
1280 *pos = next_cpu(*pos, cpu_online_map);
1281 return c_start(m, pos);
1282 }
1283
1284 static void c_stop(struct seq_file *m, void *v)
1285 {
1286 }
1287
1288 struct seq_operations cpuinfo_op = {
1289 .start = c_start,
1290 .next = c_next,
1291 .stop = c_stop,
1292 .show = show_cpuinfo,
1293 };
This page took 0.065253 seconds and 6 git commands to generate.