x86: create smpcommon.c
[deliverable/linux.git] / arch / x86 / kernel / smp_64.c
1 /*
2 * Intel SMP support routines.
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
6 * (c) 2002,2003 Andi Kleen, SuSE Labs.
7 *
8 * This code is released under the GNU General Public License version 2 or
9 * later.
10 */
11
12 #include <linux/init.h>
13
14 #include <linux/mm.h>
15 #include <linux/delay.h>
16 #include <linux/spinlock.h>
17 #include <linux/smp.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/mc146818rtc.h>
20 #include <linux/interrupt.h>
21
22 #include <asm/mtrr.h>
23 #include <asm/pgalloc.h>
24 #include <asm/tlbflush.h>
25 #include <asm/mach_apic.h>
26 #include <asm/mmu_context.h>
27 #include <asm/proto.h>
28 #include <asm/apicdef.h>
29 #include <asm/idle.h>
30
31 /*
32 * Smarter SMP flushing macros.
33 * c/o Linus Torvalds.
34 *
35 * These mean you can really definitely utterly forget about
36 * writing to user space from interrupts. (Its not allowed anyway).
37 *
38 * Optimizations Manfred Spraul <manfred@colorfullife.com>
39 *
40 * More scalable flush, from Andi Kleen
41 *
42 * To avoid global state use 8 different call vectors.
43 * Each CPU uses a specific vector to trigger flushes on other
44 * CPUs. Depending on the received vector the target CPUs look into
45 * the right per cpu variable for the flush data.
46 *
47 * With more than 8 CPUs they are hashed to the 8 available
48 * vectors. The limited global vector space forces us to this right now.
49 * In future when interrupts are split into per CPU domains this could be
50 * fixed, at the cost of triggering multiple IPIs in some cases.
51 */
52
53 union smp_flush_state {
54 struct {
55 cpumask_t flush_cpumask;
56 struct mm_struct *flush_mm;
57 unsigned long flush_va;
58 spinlock_t tlbstate_lock;
59 };
60 char pad[SMP_CACHE_BYTES];
61 } ____cacheline_aligned;
62
63 /* State is put into the per CPU data section, but padded
64 to a full cache line because other CPUs can access it and we don't
65 want false sharing in the per cpu data segment. */
66 static DEFINE_PER_CPU(union smp_flush_state, flush_state);
67
68 /*
69 * We cannot call mmdrop() because we are in interrupt context,
70 * instead update mm->cpu_vm_mask.
71 */
72 void leave_mm(int cpu)
73 {
74 if (read_pda(mmu_state) == TLBSTATE_OK)
75 BUG();
76 cpu_clear(cpu, read_pda(active_mm)->cpu_vm_mask);
77 load_cr3(swapper_pg_dir);
78 }
79 EXPORT_SYMBOL_GPL(leave_mm);
80
81 /*
82 *
83 * The flush IPI assumes that a thread switch happens in this order:
84 * [cpu0: the cpu that switches]
85 * 1) switch_mm() either 1a) or 1b)
86 * 1a) thread switch to a different mm
87 * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
88 * Stop ipi delivery for the old mm. This is not synchronized with
89 * the other cpus, but smp_invalidate_interrupt ignore flush ipis
90 * for the wrong mm, and in the worst case we perform a superfluous
91 * tlb flush.
92 * 1a2) set cpu mmu_state to TLBSTATE_OK
93 * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
94 * was in lazy tlb mode.
95 * 1a3) update cpu active_mm
96 * Now cpu0 accepts tlb flushes for the new mm.
97 * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
98 * Now the other cpus will send tlb flush ipis.
99 * 1a4) change cr3.
100 * 1b) thread switch without mm change
101 * cpu active_mm is correct, cpu0 already handles
102 * flush ipis.
103 * 1b1) set cpu mmu_state to TLBSTATE_OK
104 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
105 * Atomically set the bit [other cpus will start sending flush ipis],
106 * and test the bit.
107 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
108 * 2) switch %%esp, ie current
109 *
110 * The interrupt must handle 2 special cases:
111 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
112 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
113 * runs in kernel space, the cpu could load tlb entries for user space
114 * pages.
115 *
116 * The good news is that cpu mmu_state is local to each cpu, no
117 * write/read ordering problems.
118 */
119
120 /*
121 * TLB flush IPI:
122 *
123 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
124 * 2) Leave the mm if we are in the lazy tlb mode.
125 *
126 * Interrupts are disabled.
127 */
128
129 asmlinkage void smp_invalidate_interrupt(struct pt_regs *regs)
130 {
131 int cpu;
132 int sender;
133 union smp_flush_state *f;
134
135 cpu = smp_processor_id();
136 /*
137 * orig_rax contains the negated interrupt vector.
138 * Use that to determine where the sender put the data.
139 */
140 sender = ~regs->orig_ax - INVALIDATE_TLB_VECTOR_START;
141 f = &per_cpu(flush_state, sender);
142
143 if (!cpu_isset(cpu, f->flush_cpumask))
144 goto out;
145 /*
146 * This was a BUG() but until someone can quote me the
147 * line from the intel manual that guarantees an IPI to
148 * multiple CPUs is retried _only_ on the erroring CPUs
149 * its staying as a return
150 *
151 * BUG();
152 */
153
154 if (f->flush_mm == read_pda(active_mm)) {
155 if (read_pda(mmu_state) == TLBSTATE_OK) {
156 if (f->flush_va == TLB_FLUSH_ALL)
157 local_flush_tlb();
158 else
159 __flush_tlb_one(f->flush_va);
160 } else
161 leave_mm(cpu);
162 }
163 out:
164 ack_APIC_irq();
165 cpu_clear(cpu, f->flush_cpumask);
166 add_pda(irq_tlb_count, 1);
167 }
168
169 void native_flush_tlb_others(const cpumask_t *cpumaskp, struct mm_struct *mm,
170 unsigned long va)
171 {
172 int sender;
173 union smp_flush_state *f;
174 cpumask_t cpumask = *cpumaskp;
175
176 /* Caller has disabled preemption */
177 sender = smp_processor_id() % NUM_INVALIDATE_TLB_VECTORS;
178 f = &per_cpu(flush_state, sender);
179
180 /*
181 * Could avoid this lock when
182 * num_online_cpus() <= NUM_INVALIDATE_TLB_VECTORS, but it is
183 * probably not worth checking this for a cache-hot lock.
184 */
185 spin_lock(&f->tlbstate_lock);
186
187 f->flush_mm = mm;
188 f->flush_va = va;
189 cpus_or(f->flush_cpumask, cpumask, f->flush_cpumask);
190
191 /*
192 * We have to send the IPI only to
193 * CPUs affected.
194 */
195 send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR_START + sender);
196
197 while (!cpus_empty(f->flush_cpumask))
198 cpu_relax();
199
200 f->flush_mm = NULL;
201 f->flush_va = 0;
202 spin_unlock(&f->tlbstate_lock);
203 }
204
205 int __cpuinit init_smp_flush(void)
206 {
207 int i;
208
209 for_each_cpu_mask(i, cpu_possible_map) {
210 spin_lock_init(&per_cpu(flush_state, i).tlbstate_lock);
211 }
212 return 0;
213 }
214 core_initcall(init_smp_flush);
215
216 void flush_tlb_current_task(void)
217 {
218 struct mm_struct *mm = current->mm;
219 cpumask_t cpu_mask;
220
221 preempt_disable();
222 cpu_mask = mm->cpu_vm_mask;
223 cpu_clear(smp_processor_id(), cpu_mask);
224
225 local_flush_tlb();
226 if (!cpus_empty(cpu_mask))
227 flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
228 preempt_enable();
229 }
230
231 void flush_tlb_mm (struct mm_struct * mm)
232 {
233 cpumask_t cpu_mask;
234
235 preempt_disable();
236 cpu_mask = mm->cpu_vm_mask;
237 cpu_clear(smp_processor_id(), cpu_mask);
238
239 if (current->active_mm == mm) {
240 if (current->mm)
241 local_flush_tlb();
242 else
243 leave_mm(smp_processor_id());
244 }
245 if (!cpus_empty(cpu_mask))
246 flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
247
248 preempt_enable();
249 }
250
251 void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
252 {
253 struct mm_struct *mm = vma->vm_mm;
254 cpumask_t cpu_mask;
255
256 preempt_disable();
257 cpu_mask = mm->cpu_vm_mask;
258 cpu_clear(smp_processor_id(), cpu_mask);
259
260 if (current->active_mm == mm) {
261 if(current->mm)
262 __flush_tlb_one(va);
263 else
264 leave_mm(smp_processor_id());
265 }
266
267 if (!cpus_empty(cpu_mask))
268 flush_tlb_others(cpu_mask, mm, va);
269
270 preempt_enable();
271 }
272
273 static void do_flush_tlb_all(void* info)
274 {
275 unsigned long cpu = smp_processor_id();
276
277 __flush_tlb_all();
278 if (read_pda(mmu_state) == TLBSTATE_LAZY)
279 leave_mm(cpu);
280 }
281
282 void flush_tlb_all(void)
283 {
284 on_each_cpu(do_flush_tlb_all, NULL, 1, 1);
285 }
286
287 /*
288 * this function sends a 'reschedule' IPI to another CPU.
289 * it goes straight through and wastes no time serializing
290 * anything. Worst case is that we lose a reschedule ...
291 */
292
293 static void native_smp_send_reschedule(int cpu)
294 {
295 WARN_ON(cpu_is_offline(cpu));
296 send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR);
297 }
298
299 /*
300 * Structure and data for smp_call_function(). This is designed to minimise
301 * static memory requirements. It also looks cleaner.
302 */
303 static DEFINE_SPINLOCK(call_lock);
304
305 struct call_data_struct {
306 void (*func) (void *info);
307 void *info;
308 atomic_t started;
309 atomic_t finished;
310 int wait;
311 };
312
313 static struct call_data_struct * call_data;
314
315 void lock_ipi_call_lock(void)
316 {
317 spin_lock_irq(&call_lock);
318 }
319
320 void unlock_ipi_call_lock(void)
321 {
322 spin_unlock_irq(&call_lock);
323 }
324
325 /*
326 * this function sends a 'generic call function' IPI to all other CPU
327 * of the system defined in the mask.
328 */
329 static int __smp_call_function_mask(cpumask_t mask,
330 void (*func)(void *), void *info,
331 int wait)
332 {
333 struct call_data_struct data;
334 cpumask_t allbutself;
335 int cpus;
336
337 allbutself = cpu_online_map;
338 cpu_clear(smp_processor_id(), allbutself);
339
340 cpus_and(mask, mask, allbutself);
341 cpus = cpus_weight(mask);
342
343 if (!cpus)
344 return 0;
345
346 data.func = func;
347 data.info = info;
348 atomic_set(&data.started, 0);
349 data.wait = wait;
350 if (wait)
351 atomic_set(&data.finished, 0);
352
353 call_data = &data;
354 wmb();
355
356 /* Send a message to other CPUs */
357 if (cpus_equal(mask, allbutself))
358 send_IPI_allbutself(CALL_FUNCTION_VECTOR);
359 else
360 send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
361
362 /* Wait for response */
363 while (atomic_read(&data.started) != cpus)
364 cpu_relax();
365
366 if (!wait)
367 return 0;
368
369 while (atomic_read(&data.finished) != cpus)
370 cpu_relax();
371
372 return 0;
373 }
374 /**
375 * smp_call_function_mask(): Run a function on a set of other CPUs.
376 * @mask: The set of cpus to run on. Must not include the current cpu.
377 * @func: The function to run. This must be fast and non-blocking.
378 * @info: An arbitrary pointer to pass to the function.
379 * @wait: If true, wait (atomically) until function has completed on other CPUs.
380 *
381 * Returns 0 on success, else a negative status code.
382 *
383 * If @wait is true, then returns once @func has returned; otherwise
384 * it returns just before the target cpu calls @func.
385 *
386 * You must not call this function with disabled interrupts or from a
387 * hardware interrupt handler or from a bottom half handler.
388 */
389 int native_smp_call_function_mask(cpumask_t mask,
390 void (*func)(void *), void *info,
391 int wait)
392 {
393 int ret;
394
395 /* Can deadlock when called with interrupts disabled */
396 WARN_ON(irqs_disabled());
397
398 spin_lock(&call_lock);
399 ret = __smp_call_function_mask(mask, func, info, wait);
400 spin_unlock(&call_lock);
401 return ret;
402 }
403
404 static void stop_this_cpu(void *dummy)
405 {
406 local_irq_disable();
407 /*
408 * Remove this CPU:
409 */
410 cpu_clear(smp_processor_id(), cpu_online_map);
411 disable_local_APIC();
412 for (;;)
413 halt();
414 }
415
416 void smp_send_stop(void)
417 {
418 int nolock;
419 unsigned long flags;
420
421 if (reboot_force)
422 return;
423
424 /* Don't deadlock on the call lock in panic */
425 nolock = !spin_trylock(&call_lock);
426 local_irq_save(flags);
427 __smp_call_function_mask(cpu_online_map, stop_this_cpu, NULL, 0);
428 if (!nolock)
429 spin_unlock(&call_lock);
430 disable_local_APIC();
431 local_irq_restore(flags);
432 }
433
434 /*
435 * Reschedule call back. Nothing to do,
436 * all the work is done automatically when
437 * we return from the interrupt.
438 */
439 asmlinkage void smp_reschedule_interrupt(void)
440 {
441 ack_APIC_irq();
442 add_pda(irq_resched_count, 1);
443 }
444
445 asmlinkage void smp_call_function_interrupt(void)
446 {
447 void (*func) (void *info) = call_data->func;
448 void *info = call_data->info;
449 int wait = call_data->wait;
450
451 ack_APIC_irq();
452 /*
453 * Notify initiating CPU that I've grabbed the data and am
454 * about to execute the function
455 */
456 mb();
457 atomic_inc(&call_data->started);
458 /*
459 * At this point the info structure may be out of scope unless wait==1
460 */
461 exit_idle();
462 irq_enter();
463 (*func)(info);
464 add_pda(irq_call_count, 1);
465 irq_exit();
466 if (wait) {
467 mb();
468 atomic_inc(&call_data->finished);
469 }
470 }
471
472 struct smp_ops smp_ops = {
473 .smp_prepare_boot_cpu = native_smp_prepare_boot_cpu,
474 .smp_prepare_cpus = native_smp_prepare_cpus,
475 .smp_cpus_done = native_smp_cpus_done,
476
477 .smp_send_reschedule = native_smp_send_reschedule,
478 .smp_call_function_mask = native_smp_call_function_mask,
479 .cpu_up = native_cpu_up,
480 };
481 EXPORT_SYMBOL_GPL(smp_ops);
This page took 0.044123 seconds and 5 git commands to generate.