x86, hotplug: Wake up CPU0 via NMI instead of INIT, SIPI, SIPI
[deliverable/linux.git] / arch / x86 / kernel / smpboot.c
1 /*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
5 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
7 *
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
10 *
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
14 *
15 * This code is released under the GNU General Public License version 2 or
16 * later.
17 *
18 * Fixes
19 * Felix Koop : NR_CPUS used properly
20 * Jose Renau : Handle single CPU case.
21 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
22 * Greg Wright : Fix for kernel stacks panic.
23 * Erich Boleyn : MP v1.4 and additional changes.
24 * Matthias Sattler : Changes for 2.1 kernel map.
25 * Michel Lespinasse : Changes for 2.1 kernel map.
26 * Michael Chastain : Change trampoline.S to gnu as.
27 * Alan Cox : Dumb bug: 'B' step PPro's are fine
28 * Ingo Molnar : Added APIC timers, based on code
29 * from Jose Renau
30 * Ingo Molnar : various cleanups and rewrites
31 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
32 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
33 * Andi Kleen : Changed for SMP boot into long mode.
34 * Martin J. Bligh : Added support for multi-quad systems
35 * Dave Jones : Report invalid combinations of Athlon CPUs.
36 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
37 * Andi Kleen : Converted to new state machine.
38 * Ashok Raj : CPU hotplug support
39 * Glauber Costa : i386 and x86_64 integration
40 */
41
42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
43
44 #include <linux/init.h>
45 #include <linux/smp.h>
46 #include <linux/module.h>
47 #include <linux/sched.h>
48 #include <linux/percpu.h>
49 #include <linux/bootmem.h>
50 #include <linux/err.h>
51 #include <linux/nmi.h>
52 #include <linux/tboot.h>
53 #include <linux/stackprotector.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56
57 #include <asm/acpi.h>
58 #include <asm/desc.h>
59 #include <asm/nmi.h>
60 #include <asm/irq.h>
61 #include <asm/idle.h>
62 #include <asm/realmode.h>
63 #include <asm/cpu.h>
64 #include <asm/numa.h>
65 #include <asm/pgtable.h>
66 #include <asm/tlbflush.h>
67 #include <asm/mtrr.h>
68 #include <asm/mwait.h>
69 #include <asm/apic.h>
70 #include <asm/io_apic.h>
71 #include <asm/setup.h>
72 #include <asm/uv/uv.h>
73 #include <linux/mc146818rtc.h>
74
75 #include <asm/smpboot_hooks.h>
76 #include <asm/i8259.h>
77
78 #include <asm/realmode.h>
79
80 /* State of each CPU */
81 DEFINE_PER_CPU(int, cpu_state) = { 0 };
82
83 #ifdef CONFIG_HOTPLUG_CPU
84 /*
85 * We need this for trampoline_base protection from concurrent accesses when
86 * off- and onlining cores wildly.
87 */
88 static DEFINE_MUTEX(x86_cpu_hotplug_driver_mutex);
89
90 void cpu_hotplug_driver_lock(void)
91 {
92 mutex_lock(&x86_cpu_hotplug_driver_mutex);
93 }
94
95 void cpu_hotplug_driver_unlock(void)
96 {
97 mutex_unlock(&x86_cpu_hotplug_driver_mutex);
98 }
99
100 ssize_t arch_cpu_probe(const char *buf, size_t count) { return -1; }
101 ssize_t arch_cpu_release(const char *buf, size_t count) { return -1; }
102 #endif
103
104 /* Number of siblings per CPU package */
105 int smp_num_siblings = 1;
106 EXPORT_SYMBOL(smp_num_siblings);
107
108 /* Last level cache ID of each logical CPU */
109 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
110
111 /* representing HT siblings of each logical CPU */
112 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
113 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
114
115 /* representing HT and core siblings of each logical CPU */
116 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
117 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
118
119 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
120
121 /* Per CPU bogomips and other parameters */
122 DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info);
123 EXPORT_PER_CPU_SYMBOL(cpu_info);
124
125 atomic_t init_deasserted;
126
127 /*
128 * Report back to the Boot Processor during boot time or to the caller processor
129 * during CPU online.
130 */
131 static void __cpuinit smp_callin(void)
132 {
133 int cpuid, phys_id;
134 unsigned long timeout;
135
136 /*
137 * If waken up by an INIT in an 82489DX configuration
138 * we may get here before an INIT-deassert IPI reaches
139 * our local APIC. We have to wait for the IPI or we'll
140 * lock up on an APIC access.
141 *
142 * Since CPU0 is not wakened up by INIT, it doesn't wait for the IPI.
143 */
144 cpuid = smp_processor_id();
145 if (apic->wait_for_init_deassert && cpuid != 0)
146 apic->wait_for_init_deassert(&init_deasserted);
147
148 /*
149 * (This works even if the APIC is not enabled.)
150 */
151 phys_id = read_apic_id();
152 if (cpumask_test_cpu(cpuid, cpu_callin_mask)) {
153 panic("%s: phys CPU#%d, CPU#%d already present??\n", __func__,
154 phys_id, cpuid);
155 }
156 pr_debug("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
157
158 /*
159 * STARTUP IPIs are fragile beasts as they might sometimes
160 * trigger some glue motherboard logic. Complete APIC bus
161 * silence for 1 second, this overestimates the time the
162 * boot CPU is spending to send the up to 2 STARTUP IPIs
163 * by a factor of two. This should be enough.
164 */
165
166 /*
167 * Waiting 2s total for startup (udelay is not yet working)
168 */
169 timeout = jiffies + 2*HZ;
170 while (time_before(jiffies, timeout)) {
171 /*
172 * Has the boot CPU finished it's STARTUP sequence?
173 */
174 if (cpumask_test_cpu(cpuid, cpu_callout_mask))
175 break;
176 cpu_relax();
177 }
178
179 if (!time_before(jiffies, timeout)) {
180 panic("%s: CPU%d started up but did not get a callout!\n",
181 __func__, cpuid);
182 }
183
184 /*
185 * the boot CPU has finished the init stage and is spinning
186 * on callin_map until we finish. We are free to set up this
187 * CPU, first the APIC. (this is probably redundant on most
188 * boards)
189 */
190
191 pr_debug("CALLIN, before setup_local_APIC()\n");
192 if (apic->smp_callin_clear_local_apic)
193 apic->smp_callin_clear_local_apic();
194 setup_local_APIC();
195 end_local_APIC_setup();
196
197 /*
198 * Need to setup vector mappings before we enable interrupts.
199 */
200 setup_vector_irq(smp_processor_id());
201
202 /*
203 * Save our processor parameters. Note: this information
204 * is needed for clock calibration.
205 */
206 smp_store_cpu_info(cpuid);
207
208 /*
209 * Get our bogomips.
210 * Update loops_per_jiffy in cpu_data. Previous call to
211 * smp_store_cpu_info() stored a value that is close but not as
212 * accurate as the value just calculated.
213 */
214 calibrate_delay();
215 cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
216 pr_debug("Stack at about %p\n", &cpuid);
217
218 /*
219 * This must be done before setting cpu_online_mask
220 * or calling notify_cpu_starting.
221 */
222 set_cpu_sibling_map(raw_smp_processor_id());
223 wmb();
224
225 notify_cpu_starting(cpuid);
226
227 /*
228 * Allow the master to continue.
229 */
230 cpumask_set_cpu(cpuid, cpu_callin_mask);
231 }
232
233 static int cpu0_logical_apicid;
234 static int enable_start_cpu0;
235 /*
236 * Activate a secondary processor.
237 */
238 notrace static void __cpuinit start_secondary(void *unused)
239 {
240 /*
241 * Don't put *anything* before cpu_init(), SMP booting is too
242 * fragile that we want to limit the things done here to the
243 * most necessary things.
244 */
245 cpu_init();
246 x86_cpuinit.early_percpu_clock_init();
247 preempt_disable();
248 smp_callin();
249
250 enable_start_cpu0 = 0;
251
252 #ifdef CONFIG_X86_32
253 /* switch away from the initial page table */
254 load_cr3(swapper_pg_dir);
255 __flush_tlb_all();
256 #endif
257
258 /* otherwise gcc will move up smp_processor_id before the cpu_init */
259 barrier();
260 /*
261 * Check TSC synchronization with the BP:
262 */
263 check_tsc_sync_target();
264
265 /*
266 * We need to hold vector_lock so there the set of online cpus
267 * does not change while we are assigning vectors to cpus. Holding
268 * this lock ensures we don't half assign or remove an irq from a cpu.
269 */
270 lock_vector_lock();
271 set_cpu_online(smp_processor_id(), true);
272 unlock_vector_lock();
273 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
274 x86_platform.nmi_init();
275
276 /* enable local interrupts */
277 local_irq_enable();
278
279 /* to prevent fake stack check failure in clock setup */
280 boot_init_stack_canary();
281
282 x86_cpuinit.setup_percpu_clockev();
283
284 wmb();
285 cpu_idle();
286 }
287
288 void __init smp_store_boot_cpu_info(void)
289 {
290 int id = 0; /* CPU 0 */
291 struct cpuinfo_x86 *c = &cpu_data(id);
292
293 *c = boot_cpu_data;
294 c->cpu_index = id;
295 }
296
297 /*
298 * The bootstrap kernel entry code has set these up. Save them for
299 * a given CPU
300 */
301 void __cpuinit smp_store_cpu_info(int id)
302 {
303 struct cpuinfo_x86 *c = &cpu_data(id);
304
305 *c = boot_cpu_data;
306 c->cpu_index = id;
307 /*
308 * During boot time, CPU0 has this setup already. Save the info when
309 * bringing up AP or offlined CPU0.
310 */
311 identify_secondary_cpu(c);
312 }
313
314 static bool __cpuinit
315 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
316 {
317 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
318
319 return !WARN_ONCE(cpu_to_node(cpu1) != cpu_to_node(cpu2),
320 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
321 "[node: %d != %d]. Ignoring dependency.\n",
322 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
323 }
324
325 #define link_mask(_m, c1, c2) \
326 do { \
327 cpumask_set_cpu((c1), cpu_##_m##_mask(c2)); \
328 cpumask_set_cpu((c2), cpu_##_m##_mask(c1)); \
329 } while (0)
330
331 static bool __cpuinit match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
332 {
333 if (cpu_has(c, X86_FEATURE_TOPOEXT)) {
334 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
335
336 if (c->phys_proc_id == o->phys_proc_id &&
337 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2) &&
338 c->compute_unit_id == o->compute_unit_id)
339 return topology_sane(c, o, "smt");
340
341 } else if (c->phys_proc_id == o->phys_proc_id &&
342 c->cpu_core_id == o->cpu_core_id) {
343 return topology_sane(c, o, "smt");
344 }
345
346 return false;
347 }
348
349 static bool __cpuinit match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
350 {
351 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
352
353 if (per_cpu(cpu_llc_id, cpu1) != BAD_APICID &&
354 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2))
355 return topology_sane(c, o, "llc");
356
357 return false;
358 }
359
360 static bool __cpuinit match_mc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
361 {
362 if (c->phys_proc_id == o->phys_proc_id) {
363 if (cpu_has(c, X86_FEATURE_AMD_DCM))
364 return true;
365
366 return topology_sane(c, o, "mc");
367 }
368 return false;
369 }
370
371 void __cpuinit set_cpu_sibling_map(int cpu)
372 {
373 bool has_mc = boot_cpu_data.x86_max_cores > 1;
374 bool has_smt = smp_num_siblings > 1;
375 struct cpuinfo_x86 *c = &cpu_data(cpu);
376 struct cpuinfo_x86 *o;
377 int i;
378
379 cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
380
381 if (!has_smt && !has_mc) {
382 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
383 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
384 cpumask_set_cpu(cpu, cpu_core_mask(cpu));
385 c->booted_cores = 1;
386 return;
387 }
388
389 for_each_cpu(i, cpu_sibling_setup_mask) {
390 o = &cpu_data(i);
391
392 if ((i == cpu) || (has_smt && match_smt(c, o)))
393 link_mask(sibling, cpu, i);
394
395 if ((i == cpu) || (has_mc && match_llc(c, o)))
396 link_mask(llc_shared, cpu, i);
397
398 }
399
400 /*
401 * This needs a separate iteration over the cpus because we rely on all
402 * cpu_sibling_mask links to be set-up.
403 */
404 for_each_cpu(i, cpu_sibling_setup_mask) {
405 o = &cpu_data(i);
406
407 if ((i == cpu) || (has_mc && match_mc(c, o))) {
408 link_mask(core, cpu, i);
409
410 /*
411 * Does this new cpu bringup a new core?
412 */
413 if (cpumask_weight(cpu_sibling_mask(cpu)) == 1) {
414 /*
415 * for each core in package, increment
416 * the booted_cores for this new cpu
417 */
418 if (cpumask_first(cpu_sibling_mask(i)) == i)
419 c->booted_cores++;
420 /*
421 * increment the core count for all
422 * the other cpus in this package
423 */
424 if (i != cpu)
425 cpu_data(i).booted_cores++;
426 } else if (i != cpu && !c->booted_cores)
427 c->booted_cores = cpu_data(i).booted_cores;
428 }
429 }
430 }
431
432 /* maps the cpu to the sched domain representing multi-core */
433 const struct cpumask *cpu_coregroup_mask(int cpu)
434 {
435 return cpu_llc_shared_mask(cpu);
436 }
437
438 static void impress_friends(void)
439 {
440 int cpu;
441 unsigned long bogosum = 0;
442 /*
443 * Allow the user to impress friends.
444 */
445 pr_debug("Before bogomips\n");
446 for_each_possible_cpu(cpu)
447 if (cpumask_test_cpu(cpu, cpu_callout_mask))
448 bogosum += cpu_data(cpu).loops_per_jiffy;
449 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
450 num_online_cpus(),
451 bogosum/(500000/HZ),
452 (bogosum/(5000/HZ))%100);
453
454 pr_debug("Before bogocount - setting activated=1\n");
455 }
456
457 void __inquire_remote_apic(int apicid)
458 {
459 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
460 const char * const names[] = { "ID", "VERSION", "SPIV" };
461 int timeout;
462 u32 status;
463
464 pr_info("Inquiring remote APIC 0x%x...\n", apicid);
465
466 for (i = 0; i < ARRAY_SIZE(regs); i++) {
467 pr_info("... APIC 0x%x %s: ", apicid, names[i]);
468
469 /*
470 * Wait for idle.
471 */
472 status = safe_apic_wait_icr_idle();
473 if (status)
474 pr_cont("a previous APIC delivery may have failed\n");
475
476 apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
477
478 timeout = 0;
479 do {
480 udelay(100);
481 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
482 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
483
484 switch (status) {
485 case APIC_ICR_RR_VALID:
486 status = apic_read(APIC_RRR);
487 pr_cont("%08x\n", status);
488 break;
489 default:
490 pr_cont("failed\n");
491 }
492 }
493 }
494
495 /*
496 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
497 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
498 * won't ... remember to clear down the APIC, etc later.
499 */
500 int __cpuinit
501 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
502 {
503 unsigned long send_status, accept_status = 0;
504 int maxlvt;
505
506 /* Target chip */
507 /* Boot on the stack */
508 /* Kick the second */
509 apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
510
511 pr_debug("Waiting for send to finish...\n");
512 send_status = safe_apic_wait_icr_idle();
513
514 /*
515 * Give the other CPU some time to accept the IPI.
516 */
517 udelay(200);
518 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
519 maxlvt = lapic_get_maxlvt();
520 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
521 apic_write(APIC_ESR, 0);
522 accept_status = (apic_read(APIC_ESR) & 0xEF);
523 }
524 pr_debug("NMI sent\n");
525
526 if (send_status)
527 pr_err("APIC never delivered???\n");
528 if (accept_status)
529 pr_err("APIC delivery error (%lx)\n", accept_status);
530
531 return (send_status | accept_status);
532 }
533
534 static int __cpuinit
535 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
536 {
537 unsigned long send_status, accept_status = 0;
538 int maxlvt, num_starts, j;
539
540 maxlvt = lapic_get_maxlvt();
541
542 /*
543 * Be paranoid about clearing APIC errors.
544 */
545 if (APIC_INTEGRATED(apic_version[phys_apicid])) {
546 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
547 apic_write(APIC_ESR, 0);
548 apic_read(APIC_ESR);
549 }
550
551 pr_debug("Asserting INIT\n");
552
553 /*
554 * Turn INIT on target chip
555 */
556 /*
557 * Send IPI
558 */
559 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
560 phys_apicid);
561
562 pr_debug("Waiting for send to finish...\n");
563 send_status = safe_apic_wait_icr_idle();
564
565 mdelay(10);
566
567 pr_debug("Deasserting INIT\n");
568
569 /* Target chip */
570 /* Send IPI */
571 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
572
573 pr_debug("Waiting for send to finish...\n");
574 send_status = safe_apic_wait_icr_idle();
575
576 mb();
577 atomic_set(&init_deasserted, 1);
578
579 /*
580 * Should we send STARTUP IPIs ?
581 *
582 * Determine this based on the APIC version.
583 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
584 */
585 if (APIC_INTEGRATED(apic_version[phys_apicid]))
586 num_starts = 2;
587 else
588 num_starts = 0;
589
590 /*
591 * Paravirt / VMI wants a startup IPI hook here to set up the
592 * target processor state.
593 */
594 startup_ipi_hook(phys_apicid, (unsigned long) start_secondary,
595 stack_start);
596
597 /*
598 * Run STARTUP IPI loop.
599 */
600 pr_debug("#startup loops: %d\n", num_starts);
601
602 for (j = 1; j <= num_starts; j++) {
603 pr_debug("Sending STARTUP #%d\n", j);
604 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
605 apic_write(APIC_ESR, 0);
606 apic_read(APIC_ESR);
607 pr_debug("After apic_write\n");
608
609 /*
610 * STARTUP IPI
611 */
612
613 /* Target chip */
614 /* Boot on the stack */
615 /* Kick the second */
616 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
617 phys_apicid);
618
619 /*
620 * Give the other CPU some time to accept the IPI.
621 */
622 udelay(300);
623
624 pr_debug("Startup point 1\n");
625
626 pr_debug("Waiting for send to finish...\n");
627 send_status = safe_apic_wait_icr_idle();
628
629 /*
630 * Give the other CPU some time to accept the IPI.
631 */
632 udelay(200);
633 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
634 apic_write(APIC_ESR, 0);
635 accept_status = (apic_read(APIC_ESR) & 0xEF);
636 if (send_status || accept_status)
637 break;
638 }
639 pr_debug("After Startup\n");
640
641 if (send_status)
642 pr_err("APIC never delivered???\n");
643 if (accept_status)
644 pr_err("APIC delivery error (%lx)\n", accept_status);
645
646 return (send_status | accept_status);
647 }
648
649 /* reduce the number of lines printed when booting a large cpu count system */
650 static void __cpuinit announce_cpu(int cpu, int apicid)
651 {
652 static int current_node = -1;
653 int node = early_cpu_to_node(cpu);
654
655 if (system_state == SYSTEM_BOOTING) {
656 if (node != current_node) {
657 if (current_node > (-1))
658 pr_cont(" OK\n");
659 current_node = node;
660 pr_info("Booting Node %3d, Processors ", node);
661 }
662 pr_cont(" #%d%s", cpu, cpu == (nr_cpu_ids - 1) ? " OK\n" : "");
663 return;
664 } else
665 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
666 node, cpu, apicid);
667 }
668
669 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
670 {
671 int cpu;
672
673 cpu = smp_processor_id();
674 if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
675 return NMI_HANDLED;
676
677 return NMI_DONE;
678 }
679
680 /*
681 * Wake up AP by INIT, INIT, STARTUP sequence.
682 *
683 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
684 * boot-strap code which is not a desired behavior for waking up BSP. To
685 * void the boot-strap code, wake up CPU0 by NMI instead.
686 *
687 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
688 * (i.e. physically hot removed and then hot added), NMI won't wake it up.
689 * We'll change this code in the future to wake up hard offlined CPU0 if
690 * real platform and request are available.
691 */
692 static int __cpuinit
693 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
694 int *cpu0_nmi_registered)
695 {
696 int id;
697 int boot_error;
698
699 /*
700 * Wake up AP by INIT, INIT, STARTUP sequence.
701 */
702 if (cpu)
703 return wakeup_secondary_cpu_via_init(apicid, start_ip);
704
705 /*
706 * Wake up BSP by nmi.
707 *
708 * Register a NMI handler to help wake up CPU0.
709 */
710 boot_error = register_nmi_handler(NMI_LOCAL,
711 wakeup_cpu0_nmi, 0, "wake_cpu0");
712
713 if (!boot_error) {
714 enable_start_cpu0 = 1;
715 *cpu0_nmi_registered = 1;
716 if (apic->dest_logical == APIC_DEST_LOGICAL)
717 id = cpu0_logical_apicid;
718 else
719 id = apicid;
720 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
721 }
722
723 return boot_error;
724 }
725
726 /*
727 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
728 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
729 * Returns zero if CPU booted OK, else error code from
730 * ->wakeup_secondary_cpu.
731 */
732 static int __cpuinit do_boot_cpu(int apicid, int cpu, struct task_struct *idle)
733 {
734 volatile u32 *trampoline_status =
735 (volatile u32 *) __va(real_mode_header->trampoline_status);
736 /* start_ip had better be page-aligned! */
737 unsigned long start_ip = real_mode_header->trampoline_start;
738
739 unsigned long boot_error = 0;
740 int timeout;
741 int cpu0_nmi_registered = 0;
742
743 /* Just in case we booted with a single CPU. */
744 alternatives_enable_smp();
745
746 idle->thread.sp = (unsigned long) (((struct pt_regs *)
747 (THREAD_SIZE + task_stack_page(idle))) - 1);
748 per_cpu(current_task, cpu) = idle;
749
750 #ifdef CONFIG_X86_32
751 /* Stack for startup_32 can be just as for start_secondary onwards */
752 irq_ctx_init(cpu);
753 #else
754 clear_tsk_thread_flag(idle, TIF_FORK);
755 initial_gs = per_cpu_offset(cpu);
756 per_cpu(kernel_stack, cpu) =
757 (unsigned long)task_stack_page(idle) -
758 KERNEL_STACK_OFFSET + THREAD_SIZE;
759 #endif
760 early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
761 initial_code = (unsigned long)start_secondary;
762 stack_start = idle->thread.sp;
763
764 /* So we see what's up */
765 announce_cpu(cpu, apicid);
766
767 /*
768 * This grunge runs the startup process for
769 * the targeted processor.
770 */
771
772 atomic_set(&init_deasserted, 0);
773
774 if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
775
776 pr_debug("Setting warm reset code and vector.\n");
777
778 smpboot_setup_warm_reset_vector(start_ip);
779 /*
780 * Be paranoid about clearing APIC errors.
781 */
782 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
783 apic_write(APIC_ESR, 0);
784 apic_read(APIC_ESR);
785 }
786 }
787
788 /*
789 * Wake up a CPU in difference cases:
790 * - Use the method in the APIC driver if it's defined
791 * Otherwise,
792 * - Use an INIT boot APIC message for APs or NMI for BSP.
793 */
794 if (apic->wakeup_secondary_cpu)
795 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
796 else
797 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
798 &cpu0_nmi_registered);
799
800 if (!boot_error) {
801 /*
802 * allow APs to start initializing.
803 */
804 pr_debug("Before Callout %d\n", cpu);
805 cpumask_set_cpu(cpu, cpu_callout_mask);
806 pr_debug("After Callout %d\n", cpu);
807
808 /*
809 * Wait 5s total for a response
810 */
811 for (timeout = 0; timeout < 50000; timeout++) {
812 if (cpumask_test_cpu(cpu, cpu_callin_mask))
813 break; /* It has booted */
814 udelay(100);
815 /*
816 * Allow other tasks to run while we wait for the
817 * AP to come online. This also gives a chance
818 * for the MTRR work(triggered by the AP coming online)
819 * to be completed in the stop machine context.
820 */
821 schedule();
822 }
823
824 if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
825 print_cpu_msr(&cpu_data(cpu));
826 pr_debug("CPU%d: has booted.\n", cpu);
827 } else {
828 boot_error = 1;
829 if (*trampoline_status == 0xA5A5A5A5)
830 /* trampoline started but...? */
831 pr_err("CPU%d: Stuck ??\n", cpu);
832 else
833 /* trampoline code not run */
834 pr_err("CPU%d: Not responding\n", cpu);
835 if (apic->inquire_remote_apic)
836 apic->inquire_remote_apic(apicid);
837 }
838 }
839
840 if (boot_error) {
841 /* Try to put things back the way they were before ... */
842 numa_remove_cpu(cpu); /* was set by numa_add_cpu */
843
844 /* was set by do_boot_cpu() */
845 cpumask_clear_cpu(cpu, cpu_callout_mask);
846
847 /* was set by cpu_init() */
848 cpumask_clear_cpu(cpu, cpu_initialized_mask);
849
850 set_cpu_present(cpu, false);
851 per_cpu(x86_cpu_to_apicid, cpu) = BAD_APICID;
852 }
853
854 /* mark "stuck" area as not stuck */
855 *trampoline_status = 0;
856
857 if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
858 /*
859 * Cleanup possible dangling ends...
860 */
861 smpboot_restore_warm_reset_vector();
862 }
863 /*
864 * Clean up the nmi handler. Do this after the callin and callout sync
865 * to avoid impact of possible long unregister time.
866 */
867 if (cpu0_nmi_registered)
868 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
869
870 return boot_error;
871 }
872
873 int __cpuinit native_cpu_up(unsigned int cpu, struct task_struct *tidle)
874 {
875 int apicid = apic->cpu_present_to_apicid(cpu);
876 unsigned long flags;
877 int err;
878
879 WARN_ON(irqs_disabled());
880
881 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
882
883 if (apicid == BAD_APICID ||
884 !physid_isset(apicid, phys_cpu_present_map) ||
885 !apic->apic_id_valid(apicid)) {
886 pr_err("%s: bad cpu %d\n", __func__, cpu);
887 return -EINVAL;
888 }
889
890 /*
891 * Already booted CPU?
892 */
893 if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
894 pr_debug("do_boot_cpu %d Already started\n", cpu);
895 return -ENOSYS;
896 }
897
898 /*
899 * Save current MTRR state in case it was changed since early boot
900 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
901 */
902 mtrr_save_state();
903
904 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
905
906 err = do_boot_cpu(apicid, cpu, tidle);
907 if (err) {
908 pr_debug("do_boot_cpu failed %d\n", err);
909 return -EIO;
910 }
911
912 /*
913 * Check TSC synchronization with the AP (keep irqs disabled
914 * while doing so):
915 */
916 local_irq_save(flags);
917 check_tsc_sync_source(cpu);
918 local_irq_restore(flags);
919
920 while (!cpu_online(cpu)) {
921 cpu_relax();
922 touch_nmi_watchdog();
923 }
924
925 return 0;
926 }
927
928 /**
929 * arch_disable_smp_support() - disables SMP support for x86 at runtime
930 */
931 void arch_disable_smp_support(void)
932 {
933 disable_ioapic_support();
934 }
935
936 /*
937 * Fall back to non SMP mode after errors.
938 *
939 * RED-PEN audit/test this more. I bet there is more state messed up here.
940 */
941 static __init void disable_smp(void)
942 {
943 init_cpu_present(cpumask_of(0));
944 init_cpu_possible(cpumask_of(0));
945 smpboot_clear_io_apic_irqs();
946
947 if (smp_found_config)
948 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
949 else
950 physid_set_mask_of_physid(0, &phys_cpu_present_map);
951 cpumask_set_cpu(0, cpu_sibling_mask(0));
952 cpumask_set_cpu(0, cpu_core_mask(0));
953 }
954
955 /*
956 * Various sanity checks.
957 */
958 static int __init smp_sanity_check(unsigned max_cpus)
959 {
960 preempt_disable();
961
962 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
963 if (def_to_bigsmp && nr_cpu_ids > 8) {
964 unsigned int cpu;
965 unsigned nr;
966
967 pr_warn("More than 8 CPUs detected - skipping them\n"
968 "Use CONFIG_X86_BIGSMP\n");
969
970 nr = 0;
971 for_each_present_cpu(cpu) {
972 if (nr >= 8)
973 set_cpu_present(cpu, false);
974 nr++;
975 }
976
977 nr = 0;
978 for_each_possible_cpu(cpu) {
979 if (nr >= 8)
980 set_cpu_possible(cpu, false);
981 nr++;
982 }
983
984 nr_cpu_ids = 8;
985 }
986 #endif
987
988 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
989 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
990 hard_smp_processor_id());
991
992 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
993 }
994
995 /*
996 * If we couldn't find an SMP configuration at boot time,
997 * get out of here now!
998 */
999 if (!smp_found_config && !acpi_lapic) {
1000 preempt_enable();
1001 pr_notice("SMP motherboard not detected\n");
1002 disable_smp();
1003 if (APIC_init_uniprocessor())
1004 pr_notice("Local APIC not detected. Using dummy APIC emulation.\n");
1005 return -1;
1006 }
1007
1008 /*
1009 * Should not be necessary because the MP table should list the boot
1010 * CPU too, but we do it for the sake of robustness anyway.
1011 */
1012 if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1013 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1014 boot_cpu_physical_apicid);
1015 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1016 }
1017 preempt_enable();
1018
1019 /*
1020 * If we couldn't find a local APIC, then get out of here now!
1021 */
1022 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) &&
1023 !cpu_has_apic) {
1024 if (!disable_apic) {
1025 pr_err("BIOS bug, local APIC #%d not detected!...\n",
1026 boot_cpu_physical_apicid);
1027 pr_err("... forcing use of dummy APIC emulation (tell your hw vendor)\n");
1028 }
1029 smpboot_clear_io_apic();
1030 disable_ioapic_support();
1031 return -1;
1032 }
1033
1034 verify_local_APIC();
1035
1036 /*
1037 * If SMP should be disabled, then really disable it!
1038 */
1039 if (!max_cpus) {
1040 pr_info("SMP mode deactivated\n");
1041 smpboot_clear_io_apic();
1042
1043 connect_bsp_APIC();
1044 setup_local_APIC();
1045 bsp_end_local_APIC_setup();
1046 return -1;
1047 }
1048
1049 return 0;
1050 }
1051
1052 static void __init smp_cpu_index_default(void)
1053 {
1054 int i;
1055 struct cpuinfo_x86 *c;
1056
1057 for_each_possible_cpu(i) {
1058 c = &cpu_data(i);
1059 /* mark all to hotplug */
1060 c->cpu_index = nr_cpu_ids;
1061 }
1062 }
1063
1064 /*
1065 * Prepare for SMP bootup. The MP table or ACPI has been read
1066 * earlier. Just do some sanity checking here and enable APIC mode.
1067 */
1068 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1069 {
1070 unsigned int i;
1071
1072 preempt_disable();
1073 smp_cpu_index_default();
1074
1075 /*
1076 * Setup boot CPU information
1077 */
1078 smp_store_boot_cpu_info(); /* Final full version of the data */
1079 cpumask_copy(cpu_callin_mask, cpumask_of(0));
1080 mb();
1081
1082 current_thread_info()->cpu = 0; /* needed? */
1083 for_each_possible_cpu(i) {
1084 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1085 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1086 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1087 }
1088 set_cpu_sibling_map(0);
1089
1090
1091 if (smp_sanity_check(max_cpus) < 0) {
1092 pr_info("SMP disabled\n");
1093 disable_smp();
1094 goto out;
1095 }
1096
1097 default_setup_apic_routing();
1098
1099 preempt_disable();
1100 if (read_apic_id() != boot_cpu_physical_apicid) {
1101 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1102 read_apic_id(), boot_cpu_physical_apicid);
1103 /* Or can we switch back to PIC here? */
1104 }
1105 preempt_enable();
1106
1107 connect_bsp_APIC();
1108
1109 /*
1110 * Switch from PIC to APIC mode.
1111 */
1112 setup_local_APIC();
1113
1114 if (x2apic_mode)
1115 cpu0_logical_apicid = apic_read(APIC_LDR);
1116 else
1117 cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1118
1119 /*
1120 * Enable IO APIC before setting up error vector
1121 */
1122 if (!skip_ioapic_setup && nr_ioapics)
1123 enable_IO_APIC();
1124
1125 bsp_end_local_APIC_setup();
1126
1127 if (apic->setup_portio_remap)
1128 apic->setup_portio_remap();
1129
1130 smpboot_setup_io_apic();
1131 /*
1132 * Set up local APIC timer on boot CPU.
1133 */
1134
1135 pr_info("CPU%d: ", 0);
1136 print_cpu_info(&cpu_data(0));
1137 x86_init.timers.setup_percpu_clockev();
1138
1139 if (is_uv_system())
1140 uv_system_init();
1141
1142 set_mtrr_aps_delayed_init();
1143 out:
1144 preempt_enable();
1145 }
1146
1147 void arch_enable_nonboot_cpus_begin(void)
1148 {
1149 set_mtrr_aps_delayed_init();
1150 }
1151
1152 void arch_enable_nonboot_cpus_end(void)
1153 {
1154 mtrr_aps_init();
1155 }
1156
1157 /*
1158 * Early setup to make printk work.
1159 */
1160 void __init native_smp_prepare_boot_cpu(void)
1161 {
1162 int me = smp_processor_id();
1163 switch_to_new_gdt(me);
1164 /* already set me in cpu_online_mask in boot_cpu_init() */
1165 cpumask_set_cpu(me, cpu_callout_mask);
1166 per_cpu(cpu_state, me) = CPU_ONLINE;
1167 }
1168
1169 void __init native_smp_cpus_done(unsigned int max_cpus)
1170 {
1171 pr_debug("Boot done\n");
1172
1173 nmi_selftest();
1174 impress_friends();
1175 #ifdef CONFIG_X86_IO_APIC
1176 setup_ioapic_dest();
1177 #endif
1178 mtrr_aps_init();
1179 }
1180
1181 static int __initdata setup_possible_cpus = -1;
1182 static int __init _setup_possible_cpus(char *str)
1183 {
1184 get_option(&str, &setup_possible_cpus);
1185 return 0;
1186 }
1187 early_param("possible_cpus", _setup_possible_cpus);
1188
1189
1190 /*
1191 * cpu_possible_mask should be static, it cannot change as cpu's
1192 * are onlined, or offlined. The reason is per-cpu data-structures
1193 * are allocated by some modules at init time, and dont expect to
1194 * do this dynamically on cpu arrival/departure.
1195 * cpu_present_mask on the other hand can change dynamically.
1196 * In case when cpu_hotplug is not compiled, then we resort to current
1197 * behaviour, which is cpu_possible == cpu_present.
1198 * - Ashok Raj
1199 *
1200 * Three ways to find out the number of additional hotplug CPUs:
1201 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1202 * - The user can overwrite it with possible_cpus=NUM
1203 * - Otherwise don't reserve additional CPUs.
1204 * We do this because additional CPUs waste a lot of memory.
1205 * -AK
1206 */
1207 __init void prefill_possible_map(void)
1208 {
1209 int i, possible;
1210
1211 /* no processor from mptable or madt */
1212 if (!num_processors)
1213 num_processors = 1;
1214
1215 i = setup_max_cpus ?: 1;
1216 if (setup_possible_cpus == -1) {
1217 possible = num_processors;
1218 #ifdef CONFIG_HOTPLUG_CPU
1219 if (setup_max_cpus)
1220 possible += disabled_cpus;
1221 #else
1222 if (possible > i)
1223 possible = i;
1224 #endif
1225 } else
1226 possible = setup_possible_cpus;
1227
1228 total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1229
1230 /* nr_cpu_ids could be reduced via nr_cpus= */
1231 if (possible > nr_cpu_ids) {
1232 pr_warn("%d Processors exceeds NR_CPUS limit of %d\n",
1233 possible, nr_cpu_ids);
1234 possible = nr_cpu_ids;
1235 }
1236
1237 #ifdef CONFIG_HOTPLUG_CPU
1238 if (!setup_max_cpus)
1239 #endif
1240 if (possible > i) {
1241 pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1242 possible, setup_max_cpus);
1243 possible = i;
1244 }
1245
1246 pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1247 possible, max_t(int, possible - num_processors, 0));
1248
1249 for (i = 0; i < possible; i++)
1250 set_cpu_possible(i, true);
1251 for (; i < NR_CPUS; i++)
1252 set_cpu_possible(i, false);
1253
1254 nr_cpu_ids = possible;
1255 }
1256
1257 #ifdef CONFIG_HOTPLUG_CPU
1258
1259 static void remove_siblinginfo(int cpu)
1260 {
1261 int sibling;
1262 struct cpuinfo_x86 *c = &cpu_data(cpu);
1263
1264 for_each_cpu(sibling, cpu_core_mask(cpu)) {
1265 cpumask_clear_cpu(cpu, cpu_core_mask(sibling));
1266 /*/
1267 * last thread sibling in this cpu core going down
1268 */
1269 if (cpumask_weight(cpu_sibling_mask(cpu)) == 1)
1270 cpu_data(sibling).booted_cores--;
1271 }
1272
1273 for_each_cpu(sibling, cpu_sibling_mask(cpu))
1274 cpumask_clear_cpu(cpu, cpu_sibling_mask(sibling));
1275 cpumask_clear(cpu_sibling_mask(cpu));
1276 cpumask_clear(cpu_core_mask(cpu));
1277 c->phys_proc_id = 0;
1278 c->cpu_core_id = 0;
1279 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1280 }
1281
1282 static void __ref remove_cpu_from_maps(int cpu)
1283 {
1284 set_cpu_online(cpu, false);
1285 cpumask_clear_cpu(cpu, cpu_callout_mask);
1286 cpumask_clear_cpu(cpu, cpu_callin_mask);
1287 /* was set by cpu_init() */
1288 cpumask_clear_cpu(cpu, cpu_initialized_mask);
1289 numa_remove_cpu(cpu);
1290 }
1291
1292 void cpu_disable_common(void)
1293 {
1294 int cpu = smp_processor_id();
1295
1296 remove_siblinginfo(cpu);
1297
1298 /* It's now safe to remove this processor from the online map */
1299 lock_vector_lock();
1300 remove_cpu_from_maps(cpu);
1301 unlock_vector_lock();
1302 fixup_irqs();
1303 }
1304
1305 int native_cpu_disable(void)
1306 {
1307 clear_local_APIC();
1308
1309 cpu_disable_common();
1310 return 0;
1311 }
1312
1313 void native_cpu_die(unsigned int cpu)
1314 {
1315 /* We don't do anything here: idle task is faking death itself. */
1316 unsigned int i;
1317
1318 for (i = 0; i < 10; i++) {
1319 /* They ack this in play_dead by setting CPU_DEAD */
1320 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1321 if (system_state == SYSTEM_RUNNING)
1322 pr_info("CPU %u is now offline\n", cpu);
1323 return;
1324 }
1325 msleep(100);
1326 }
1327 pr_err("CPU %u didn't die...\n", cpu);
1328 }
1329
1330 void play_dead_common(void)
1331 {
1332 idle_task_exit();
1333 reset_lazy_tlbstate();
1334 amd_e400_remove_cpu(raw_smp_processor_id());
1335
1336 mb();
1337 /* Ack it */
1338 __this_cpu_write(cpu_state, CPU_DEAD);
1339
1340 /*
1341 * With physical CPU hotplug, we should halt the cpu
1342 */
1343 local_irq_disable();
1344 }
1345
1346 static bool wakeup_cpu0(void)
1347 {
1348 if (smp_processor_id() == 0 && enable_start_cpu0)
1349 return true;
1350
1351 return false;
1352 }
1353
1354 /*
1355 * We need to flush the caches before going to sleep, lest we have
1356 * dirty data in our caches when we come back up.
1357 */
1358 static inline void mwait_play_dead(void)
1359 {
1360 unsigned int eax, ebx, ecx, edx;
1361 unsigned int highest_cstate = 0;
1362 unsigned int highest_subcstate = 0;
1363 int i;
1364 void *mwait_ptr;
1365 struct cpuinfo_x86 *c = __this_cpu_ptr(&cpu_info);
1366
1367 if (!(this_cpu_has(X86_FEATURE_MWAIT) && mwait_usable(c)))
1368 return;
1369 if (!this_cpu_has(X86_FEATURE_CLFLSH))
1370 return;
1371 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1372 return;
1373
1374 eax = CPUID_MWAIT_LEAF;
1375 ecx = 0;
1376 native_cpuid(&eax, &ebx, &ecx, &edx);
1377
1378 /*
1379 * eax will be 0 if EDX enumeration is not valid.
1380 * Initialized below to cstate, sub_cstate value when EDX is valid.
1381 */
1382 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1383 eax = 0;
1384 } else {
1385 edx >>= MWAIT_SUBSTATE_SIZE;
1386 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1387 if (edx & MWAIT_SUBSTATE_MASK) {
1388 highest_cstate = i;
1389 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1390 }
1391 }
1392 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1393 (highest_subcstate - 1);
1394 }
1395
1396 /*
1397 * This should be a memory location in a cache line which is
1398 * unlikely to be touched by other processors. The actual
1399 * content is immaterial as it is not actually modified in any way.
1400 */
1401 mwait_ptr = &current_thread_info()->flags;
1402
1403 wbinvd();
1404
1405 while (1) {
1406 /*
1407 * The CLFLUSH is a workaround for erratum AAI65 for
1408 * the Xeon 7400 series. It's not clear it is actually
1409 * needed, but it should be harmless in either case.
1410 * The WBINVD is insufficient due to the spurious-wakeup
1411 * case where we return around the loop.
1412 */
1413 clflush(mwait_ptr);
1414 __monitor(mwait_ptr, 0, 0);
1415 mb();
1416 __mwait(eax, 0);
1417 /*
1418 * If NMI wants to wake up CPU0, start CPU0.
1419 */
1420 if (wakeup_cpu0())
1421 start_cpu0();
1422 }
1423 }
1424
1425 static inline void hlt_play_dead(void)
1426 {
1427 if (__this_cpu_read(cpu_info.x86) >= 4)
1428 wbinvd();
1429
1430 while (1) {
1431 native_halt();
1432 /*
1433 * If NMI wants to wake up CPU0, start CPU0.
1434 */
1435 if (wakeup_cpu0())
1436 start_cpu0();
1437 }
1438 }
1439
1440 void native_play_dead(void)
1441 {
1442 play_dead_common();
1443 tboot_shutdown(TB_SHUTDOWN_WFS);
1444
1445 mwait_play_dead(); /* Only returns on failure */
1446 if (cpuidle_play_dead())
1447 hlt_play_dead();
1448 }
1449
1450 #else /* ... !CONFIG_HOTPLUG_CPU */
1451 int native_cpu_disable(void)
1452 {
1453 return -ENOSYS;
1454 }
1455
1456 void native_cpu_die(unsigned int cpu)
1457 {
1458 /* We said "no" in __cpu_disable */
1459 BUG();
1460 }
1461
1462 void native_play_dead(void)
1463 {
1464 BUG();
1465 }
1466
1467 #endif
This page took 0.282412 seconds and 5 git commands to generate.