x86, 32-bit: trim memory not covered by wb mtrrs
[deliverable/linux.git] / arch / x86 / kernel / suspend_64.c
1 /*
2 * Suspend support specific for i386.
3 *
4 * Distribute under GPLv2
5 *
6 * Copyright (c) 2002 Pavel Machek <pavel@suse.cz>
7 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
8 */
9
10 #include <linux/smp.h>
11 #include <linux/suspend.h>
12 #include <asm/proto.h>
13 #include <asm/page.h>
14 #include <asm/pgtable.h>
15 #include <asm/mtrr.h>
16
17 /* References to section boundaries */
18 extern const void __nosave_begin, __nosave_end;
19
20 static void fix_processor_context(void);
21
22 struct saved_context saved_context;
23
24 /**
25 * __save_processor_state - save CPU registers before creating a
26 * hibernation image and before restoring the memory state from it
27 * @ctxt - structure to store the registers contents in
28 *
29 * NOTE: If there is a CPU register the modification of which by the
30 * boot kernel (ie. the kernel used for loading the hibernation image)
31 * might affect the operations of the restored target kernel (ie. the one
32 * saved in the hibernation image), then its contents must be saved by this
33 * function. In other words, if kernel A is hibernated and different
34 * kernel B is used for loading the hibernation image into memory, the
35 * kernel A's __save_processor_state() function must save all registers
36 * needed by kernel A, so that it can operate correctly after the resume
37 * regardless of what kernel B does in the meantime.
38 */
39 static void __save_processor_state(struct saved_context *ctxt)
40 {
41 kernel_fpu_begin();
42
43 /*
44 * descriptor tables
45 */
46 store_gdt((struct desc_ptr *)&ctxt->gdt_limit);
47 store_idt((struct desc_ptr *)&ctxt->idt_limit);
48 store_tr(ctxt->tr);
49
50 /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
51 /*
52 * segment registers
53 */
54 asm volatile ("movw %%ds, %0" : "=m" (ctxt->ds));
55 asm volatile ("movw %%es, %0" : "=m" (ctxt->es));
56 asm volatile ("movw %%fs, %0" : "=m" (ctxt->fs));
57 asm volatile ("movw %%gs, %0" : "=m" (ctxt->gs));
58 asm volatile ("movw %%ss, %0" : "=m" (ctxt->ss));
59
60 rdmsrl(MSR_FS_BASE, ctxt->fs_base);
61 rdmsrl(MSR_GS_BASE, ctxt->gs_base);
62 rdmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
63 mtrr_save_fixed_ranges(NULL);
64
65 /*
66 * control registers
67 */
68 rdmsrl(MSR_EFER, ctxt->efer);
69 ctxt->cr0 = read_cr0();
70 ctxt->cr2 = read_cr2();
71 ctxt->cr3 = read_cr3();
72 ctxt->cr4 = read_cr4();
73 ctxt->cr8 = read_cr8();
74 }
75
76 void save_processor_state(void)
77 {
78 __save_processor_state(&saved_context);
79 }
80
81 static void do_fpu_end(void)
82 {
83 /*
84 * Restore FPU regs if necessary
85 */
86 kernel_fpu_end();
87 }
88
89 /**
90 * __restore_processor_state - restore the contents of CPU registers saved
91 * by __save_processor_state()
92 * @ctxt - structure to load the registers contents from
93 */
94 static void __restore_processor_state(struct saved_context *ctxt)
95 {
96 /*
97 * control registers
98 */
99 wrmsrl(MSR_EFER, ctxt->efer);
100 write_cr8(ctxt->cr8);
101 write_cr4(ctxt->cr4);
102 write_cr3(ctxt->cr3);
103 write_cr2(ctxt->cr2);
104 write_cr0(ctxt->cr0);
105
106 /*
107 * now restore the descriptor tables to their proper values
108 * ltr is done i fix_processor_context().
109 */
110 load_gdt((const struct desc_ptr *)&ctxt->gdt_limit);
111 load_idt((const struct desc_ptr *)&ctxt->idt_limit);
112
113
114 /*
115 * segment registers
116 */
117 asm volatile ("movw %0, %%ds" :: "r" (ctxt->ds));
118 asm volatile ("movw %0, %%es" :: "r" (ctxt->es));
119 asm volatile ("movw %0, %%fs" :: "r" (ctxt->fs));
120 load_gs_index(ctxt->gs);
121 asm volatile ("movw %0, %%ss" :: "r" (ctxt->ss));
122
123 wrmsrl(MSR_FS_BASE, ctxt->fs_base);
124 wrmsrl(MSR_GS_BASE, ctxt->gs_base);
125 wrmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
126
127 fix_processor_context();
128
129 do_fpu_end();
130 mtrr_ap_init();
131 }
132
133 void restore_processor_state(void)
134 {
135 __restore_processor_state(&saved_context);
136 }
137
138 static void fix_processor_context(void)
139 {
140 int cpu = smp_processor_id();
141 struct tss_struct *t = &per_cpu(init_tss, cpu);
142
143 set_tss_desc(cpu,t); /* This just modifies memory; should not be necessary. But... This is necessary, because 386 hardware has concept of busy TSS or some similar stupidity. */
144
145 get_cpu_gdt_table(cpu)[GDT_ENTRY_TSS].type = 9;
146
147 syscall_init(); /* This sets MSR_*STAR and related */
148 load_TR_desc(); /* This does ltr */
149 load_LDT(&current->active_mm->context); /* This does lldt */
150
151 /*
152 * Now maybe reload the debug registers
153 */
154 if (current->thread.debugreg7){
155 loaddebug(&current->thread, 0);
156 loaddebug(&current->thread, 1);
157 loaddebug(&current->thread, 2);
158 loaddebug(&current->thread, 3);
159 /* no 4 and 5 */
160 loaddebug(&current->thread, 6);
161 loaddebug(&current->thread, 7);
162 }
163
164 }
165
166 #ifdef CONFIG_HIBERNATION
167 /* Defined in arch/x86_64/kernel/suspend_asm.S */
168 extern int restore_image(void);
169
170 /*
171 * Address to jump to in the last phase of restore in order to get to the image
172 * kernel's text (this value is passed in the image header).
173 */
174 unsigned long restore_jump_address;
175
176 /*
177 * Value of the cr3 register from before the hibernation (this value is passed
178 * in the image header).
179 */
180 unsigned long restore_cr3;
181
182 pgd_t *temp_level4_pgt;
183
184 void *relocated_restore_code;
185
186 static int res_phys_pud_init(pud_t *pud, unsigned long address, unsigned long end)
187 {
188 long i, j;
189
190 i = pud_index(address);
191 pud = pud + i;
192 for (; i < PTRS_PER_PUD; pud++, i++) {
193 unsigned long paddr;
194 pmd_t *pmd;
195
196 paddr = address + i*PUD_SIZE;
197 if (paddr >= end)
198 break;
199
200 pmd = (pmd_t *)get_safe_page(GFP_ATOMIC);
201 if (!pmd)
202 return -ENOMEM;
203 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
204 for (j = 0; j < PTRS_PER_PMD; pmd++, j++, paddr += PMD_SIZE) {
205 unsigned long pe;
206
207 if (paddr >= end)
208 break;
209 pe = __PAGE_KERNEL_LARGE_EXEC | paddr;
210 pe &= __supported_pte_mask;
211 set_pmd(pmd, __pmd(pe));
212 }
213 }
214 return 0;
215 }
216
217 static int set_up_temporary_mappings(void)
218 {
219 unsigned long start, end, next;
220 int error;
221
222 temp_level4_pgt = (pgd_t *)get_safe_page(GFP_ATOMIC);
223 if (!temp_level4_pgt)
224 return -ENOMEM;
225
226 /* It is safe to reuse the original kernel mapping */
227 set_pgd(temp_level4_pgt + pgd_index(__START_KERNEL_map),
228 init_level4_pgt[pgd_index(__START_KERNEL_map)]);
229
230 /* Set up the direct mapping from scratch */
231 start = (unsigned long)pfn_to_kaddr(0);
232 end = (unsigned long)pfn_to_kaddr(end_pfn);
233
234 for (; start < end; start = next) {
235 pud_t *pud = (pud_t *)get_safe_page(GFP_ATOMIC);
236 if (!pud)
237 return -ENOMEM;
238 next = start + PGDIR_SIZE;
239 if (next > end)
240 next = end;
241 if ((error = res_phys_pud_init(pud, __pa(start), __pa(next))))
242 return error;
243 set_pgd(temp_level4_pgt + pgd_index(start),
244 mk_kernel_pgd(__pa(pud)));
245 }
246 return 0;
247 }
248
249 int swsusp_arch_resume(void)
250 {
251 int error;
252
253 /* We have got enough memory and from now on we cannot recover */
254 if ((error = set_up_temporary_mappings()))
255 return error;
256
257 relocated_restore_code = (void *)get_safe_page(GFP_ATOMIC);
258 if (!relocated_restore_code)
259 return -ENOMEM;
260 memcpy(relocated_restore_code, &core_restore_code,
261 &restore_registers - &core_restore_code);
262
263 restore_image();
264 return 0;
265 }
266
267 /*
268 * pfn_is_nosave - check if given pfn is in the 'nosave' section
269 */
270
271 int pfn_is_nosave(unsigned long pfn)
272 {
273 unsigned long nosave_begin_pfn = __pa_symbol(&__nosave_begin) >> PAGE_SHIFT;
274 unsigned long nosave_end_pfn = PAGE_ALIGN(__pa_symbol(&__nosave_end)) >> PAGE_SHIFT;
275 return (pfn >= nosave_begin_pfn) && (pfn < nosave_end_pfn);
276 }
277
278 struct restore_data_record {
279 unsigned long jump_address;
280 unsigned long cr3;
281 unsigned long magic;
282 };
283
284 #define RESTORE_MAGIC 0x0123456789ABCDEFUL
285
286 /**
287 * arch_hibernation_header_save - populate the architecture specific part
288 * of a hibernation image header
289 * @addr: address to save the data at
290 */
291 int arch_hibernation_header_save(void *addr, unsigned int max_size)
292 {
293 struct restore_data_record *rdr = addr;
294
295 if (max_size < sizeof(struct restore_data_record))
296 return -EOVERFLOW;
297 rdr->jump_address = restore_jump_address;
298 rdr->cr3 = restore_cr3;
299 rdr->magic = RESTORE_MAGIC;
300 return 0;
301 }
302
303 /**
304 * arch_hibernation_header_restore - read the architecture specific data
305 * from the hibernation image header
306 * @addr: address to read the data from
307 */
308 int arch_hibernation_header_restore(void *addr)
309 {
310 struct restore_data_record *rdr = addr;
311
312 restore_jump_address = rdr->jump_address;
313 restore_cr3 = rdr->cr3;
314 return (rdr->magic == RESTORE_MAGIC) ? 0 : -EINVAL;
315 }
316 #endif /* CONFIG_HIBERNATION */
This page took 0.040835 seconds and 5 git commands to generate.