x86: Unspaghettize do_general_protection()
[deliverable/linux.git] / arch / x86 / kernel / traps.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8
9 /*
10 * Handle hardware traps and faults.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/interrupt.h>
16 #include <linux/kallsyms.h>
17 #include <linux/spinlock.h>
18 #include <linux/kprobes.h>
19 #include <linux/uaccess.h>
20 #include <linux/kdebug.h>
21 #include <linux/kgdb.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/ptrace.h>
25 #include <linux/string.h>
26 #include <linux/delay.h>
27 #include <linux/errno.h>
28 #include <linux/kexec.h>
29 #include <linux/sched.h>
30 #include <linux/timer.h>
31 #include <linux/init.h>
32 #include <linux/bug.h>
33 #include <linux/nmi.h>
34 #include <linux/mm.h>
35 #include <linux/smp.h>
36 #include <linux/io.h>
37
38 #ifdef CONFIG_EISA
39 #include <linux/ioport.h>
40 #include <linux/eisa.h>
41 #endif
42
43 #if defined(CONFIG_EDAC)
44 #include <linux/edac.h>
45 #endif
46
47 #include <asm/kmemcheck.h>
48 #include <asm/stacktrace.h>
49 #include <asm/processor.h>
50 #include <asm/debugreg.h>
51 #include <linux/atomic.h>
52 #include <asm/ftrace.h>
53 #include <asm/traps.h>
54 #include <asm/desc.h>
55 #include <asm/i387.h>
56 #include <asm/fpu-internal.h>
57 #include <asm/mce.h>
58
59 #include <asm/mach_traps.h>
60
61 #ifdef CONFIG_X86_64
62 #include <asm/x86_init.h>
63 #include <asm/pgalloc.h>
64 #include <asm/proto.h>
65 #else
66 #include <asm/processor-flags.h>
67 #include <asm/setup.h>
68
69 asmlinkage int system_call(void);
70
71 /* Do we ignore FPU interrupts ? */
72 char ignore_fpu_irq;
73
74 /*
75 * The IDT has to be page-aligned to simplify the Pentium
76 * F0 0F bug workaround.
77 */
78 gate_desc idt_table[NR_VECTORS] __page_aligned_data = { { { { 0, 0 } } }, };
79 #endif
80
81 DECLARE_BITMAP(used_vectors, NR_VECTORS);
82 EXPORT_SYMBOL_GPL(used_vectors);
83
84 static inline void conditional_sti(struct pt_regs *regs)
85 {
86 if (regs->flags & X86_EFLAGS_IF)
87 local_irq_enable();
88 }
89
90 static inline void preempt_conditional_sti(struct pt_regs *regs)
91 {
92 inc_preempt_count();
93 if (regs->flags & X86_EFLAGS_IF)
94 local_irq_enable();
95 }
96
97 static inline void conditional_cli(struct pt_regs *regs)
98 {
99 if (regs->flags & X86_EFLAGS_IF)
100 local_irq_disable();
101 }
102
103 static inline void preempt_conditional_cli(struct pt_regs *regs)
104 {
105 if (regs->flags & X86_EFLAGS_IF)
106 local_irq_disable();
107 dec_preempt_count();
108 }
109
110 static void __kprobes
111 do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
112 long error_code, siginfo_t *info)
113 {
114 struct task_struct *tsk = current;
115
116 #ifdef CONFIG_X86_32
117 if (regs->flags & X86_VM_MASK) {
118 /*
119 * traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
120 * On nmi (interrupt 2), do_trap should not be called.
121 */
122 if (trapnr < X86_TRAP_UD)
123 goto vm86_trap;
124 goto trap_signal;
125 }
126 #endif
127
128 if (!user_mode(regs))
129 goto kernel_trap;
130
131 #ifdef CONFIG_X86_32
132 trap_signal:
133 #endif
134 /*
135 * We want error_code and trap_nr set for userspace faults and
136 * kernelspace faults which result in die(), but not
137 * kernelspace faults which are fixed up. die() gives the
138 * process no chance to handle the signal and notice the
139 * kernel fault information, so that won't result in polluting
140 * the information about previously queued, but not yet
141 * delivered, faults. See also do_general_protection below.
142 */
143 tsk->thread.error_code = error_code;
144 tsk->thread.trap_nr = trapnr;
145
146 #ifdef CONFIG_X86_64
147 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
148 printk_ratelimit()) {
149 pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
150 tsk->comm, tsk->pid, str,
151 regs->ip, regs->sp, error_code);
152 print_vma_addr(" in ", regs->ip);
153 pr_cont("\n");
154 }
155 #endif
156
157 if (info)
158 force_sig_info(signr, info, tsk);
159 else
160 force_sig(signr, tsk);
161 return;
162
163 kernel_trap:
164 if (!fixup_exception(regs)) {
165 tsk->thread.error_code = error_code;
166 tsk->thread.trap_nr = trapnr;
167 die(str, regs, error_code);
168 }
169 return;
170
171 #ifdef CONFIG_X86_32
172 vm86_trap:
173 if (handle_vm86_trap((struct kernel_vm86_regs *) regs,
174 error_code, trapnr))
175 goto trap_signal;
176 return;
177 #endif
178 }
179
180 #define DO_ERROR(trapnr, signr, str, name) \
181 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
182 { \
183 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
184 == NOTIFY_STOP) \
185 return; \
186 conditional_sti(regs); \
187 do_trap(trapnr, signr, str, regs, error_code, NULL); \
188 }
189
190 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
191 dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
192 { \
193 siginfo_t info; \
194 info.si_signo = signr; \
195 info.si_errno = 0; \
196 info.si_code = sicode; \
197 info.si_addr = (void __user *)siaddr; \
198 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
199 == NOTIFY_STOP) \
200 return; \
201 conditional_sti(regs); \
202 do_trap(trapnr, signr, str, regs, error_code, &info); \
203 }
204
205 DO_ERROR_INFO(X86_TRAP_DE, SIGFPE, "divide error", divide_error, FPE_INTDIV,
206 regs->ip)
207 DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow)
208 DO_ERROR(X86_TRAP_BR, SIGSEGV, "bounds", bounds)
209 DO_ERROR_INFO(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN,
210 regs->ip)
211 DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun",
212 coprocessor_segment_overrun)
213 DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS)
214 DO_ERROR(X86_TRAP_NP, SIGBUS, "segment not present", segment_not_present)
215 #ifdef CONFIG_X86_32
216 DO_ERROR(X86_TRAP_SS, SIGBUS, "stack segment", stack_segment)
217 #endif
218 DO_ERROR_INFO(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check,
219 BUS_ADRALN, 0)
220
221 #ifdef CONFIG_X86_64
222 /* Runs on IST stack */
223 dotraplinkage void do_stack_segment(struct pt_regs *regs, long error_code)
224 {
225 if (notify_die(DIE_TRAP, "stack segment", regs, error_code,
226 X86_TRAP_SS, SIGBUS) == NOTIFY_STOP)
227 return;
228 preempt_conditional_sti(regs);
229 do_trap(X86_TRAP_SS, SIGBUS, "stack segment", regs, error_code, NULL);
230 preempt_conditional_cli(regs);
231 }
232
233 dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
234 {
235 static const char str[] = "double fault";
236 struct task_struct *tsk = current;
237
238 /* Return not checked because double check cannot be ignored */
239 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
240
241 tsk->thread.error_code = error_code;
242 tsk->thread.trap_nr = X86_TRAP_DF;
243
244 /*
245 * This is always a kernel trap and never fixable (and thus must
246 * never return).
247 */
248 for (;;)
249 die(str, regs, error_code);
250 }
251 #endif
252
253 dotraplinkage void __kprobes
254 do_general_protection(struct pt_regs *regs, long error_code)
255 {
256 struct task_struct *tsk;
257
258 conditional_sti(regs);
259
260 #ifdef CONFIG_X86_32
261 if (regs->flags & X86_VM_MASK) {
262 local_irq_enable();
263 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
264 return;
265 }
266 #endif
267
268 tsk = current;
269 if (!user_mode(regs)) {
270 if (fixup_exception(regs))
271 return;
272
273 tsk->thread.error_code = error_code;
274 tsk->thread.trap_nr = X86_TRAP_GP;
275 if (!notify_die(DIE_GPF, "general protection fault", regs, error_code,
276 X86_TRAP_GP, SIGSEGV) == NOTIFY_STOP)
277 die("general protection fault", regs, error_code);
278 return;
279 }
280
281 tsk->thread.error_code = error_code;
282 tsk->thread.trap_nr = X86_TRAP_GP;
283
284 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
285 printk_ratelimit()) {
286 pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
287 tsk->comm, task_pid_nr(tsk),
288 regs->ip, regs->sp, error_code);
289 print_vma_addr(" in ", regs->ip);
290 pr_cont("\n");
291 }
292
293 force_sig(SIGSEGV, tsk);
294 return;
295 }
296
297 /* May run on IST stack. */
298 dotraplinkage void __kprobes notrace do_int3(struct pt_regs *regs, long error_code)
299 {
300 #ifdef CONFIG_DYNAMIC_FTRACE
301 /*
302 * ftrace must be first, everything else may cause a recursive crash.
303 * See note by declaration of modifying_ftrace_code in ftrace.c
304 */
305 if (unlikely(atomic_read(&modifying_ftrace_code)) &&
306 ftrace_int3_handler(regs))
307 return;
308 #endif
309 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
310 if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
311 SIGTRAP) == NOTIFY_STOP)
312 return;
313 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
314
315 if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
316 SIGTRAP) == NOTIFY_STOP)
317 return;
318
319 /*
320 * Let others (NMI) know that the debug stack is in use
321 * as we may switch to the interrupt stack.
322 */
323 debug_stack_usage_inc();
324 preempt_conditional_sti(regs);
325 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
326 preempt_conditional_cli(regs);
327 debug_stack_usage_dec();
328 }
329
330 #ifdef CONFIG_X86_64
331 /*
332 * Help handler running on IST stack to switch back to user stack
333 * for scheduling or signal handling. The actual stack switch is done in
334 * entry.S
335 */
336 asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs)
337 {
338 struct pt_regs *regs = eregs;
339 /* Did already sync */
340 if (eregs == (struct pt_regs *)eregs->sp)
341 ;
342 /* Exception from user space */
343 else if (user_mode(eregs))
344 regs = task_pt_regs(current);
345 /*
346 * Exception from kernel and interrupts are enabled. Move to
347 * kernel process stack.
348 */
349 else if (eregs->flags & X86_EFLAGS_IF)
350 regs = (struct pt_regs *)(eregs->sp -= sizeof(struct pt_regs));
351 if (eregs != regs)
352 *regs = *eregs;
353 return regs;
354 }
355 #endif
356
357 /*
358 * Our handling of the processor debug registers is non-trivial.
359 * We do not clear them on entry and exit from the kernel. Therefore
360 * it is possible to get a watchpoint trap here from inside the kernel.
361 * However, the code in ./ptrace.c has ensured that the user can
362 * only set watchpoints on userspace addresses. Therefore the in-kernel
363 * watchpoint trap can only occur in code which is reading/writing
364 * from user space. Such code must not hold kernel locks (since it
365 * can equally take a page fault), therefore it is safe to call
366 * force_sig_info even though that claims and releases locks.
367 *
368 * Code in ./signal.c ensures that the debug control register
369 * is restored before we deliver any signal, and therefore that
370 * user code runs with the correct debug control register even though
371 * we clear it here.
372 *
373 * Being careful here means that we don't have to be as careful in a
374 * lot of more complicated places (task switching can be a bit lazy
375 * about restoring all the debug state, and ptrace doesn't have to
376 * find every occurrence of the TF bit that could be saved away even
377 * by user code)
378 *
379 * May run on IST stack.
380 */
381 dotraplinkage void __kprobes do_debug(struct pt_regs *regs, long error_code)
382 {
383 struct task_struct *tsk = current;
384 int user_icebp = 0;
385 unsigned long dr6;
386 int si_code;
387
388 get_debugreg(dr6, 6);
389
390 /* Filter out all the reserved bits which are preset to 1 */
391 dr6 &= ~DR6_RESERVED;
392
393 /*
394 * If dr6 has no reason to give us about the origin of this trap,
395 * then it's very likely the result of an icebp/int01 trap.
396 * User wants a sigtrap for that.
397 */
398 if (!dr6 && user_mode(regs))
399 user_icebp = 1;
400
401 /* Catch kmemcheck conditions first of all! */
402 if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
403 return;
404
405 /* DR6 may or may not be cleared by the CPU */
406 set_debugreg(0, 6);
407
408 /*
409 * The processor cleared BTF, so don't mark that we need it set.
410 */
411 clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
412
413 /* Store the virtualized DR6 value */
414 tsk->thread.debugreg6 = dr6;
415
416 if (notify_die(DIE_DEBUG, "debug", regs, PTR_ERR(&dr6), error_code,
417 SIGTRAP) == NOTIFY_STOP)
418 return;
419
420 /*
421 * Let others (NMI) know that the debug stack is in use
422 * as we may switch to the interrupt stack.
423 */
424 debug_stack_usage_inc();
425
426 /* It's safe to allow irq's after DR6 has been saved */
427 preempt_conditional_sti(regs);
428
429 if (regs->flags & X86_VM_MASK) {
430 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
431 X86_TRAP_DB);
432 preempt_conditional_cli(regs);
433 debug_stack_usage_dec();
434 return;
435 }
436
437 /*
438 * Single-stepping through system calls: ignore any exceptions in
439 * kernel space, but re-enable TF when returning to user mode.
440 *
441 * We already checked v86 mode above, so we can check for kernel mode
442 * by just checking the CPL of CS.
443 */
444 if ((dr6 & DR_STEP) && !user_mode(regs)) {
445 tsk->thread.debugreg6 &= ~DR_STEP;
446 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
447 regs->flags &= ~X86_EFLAGS_TF;
448 }
449 si_code = get_si_code(tsk->thread.debugreg6);
450 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
451 send_sigtrap(tsk, regs, error_code, si_code);
452 preempt_conditional_cli(regs);
453 debug_stack_usage_dec();
454
455 return;
456 }
457
458 /*
459 * Note that we play around with the 'TS' bit in an attempt to get
460 * the correct behaviour even in the presence of the asynchronous
461 * IRQ13 behaviour
462 */
463 void math_error(struct pt_regs *regs, int error_code, int trapnr)
464 {
465 struct task_struct *task = current;
466 siginfo_t info;
467 unsigned short err;
468 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
469 "simd exception";
470
471 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
472 return;
473 conditional_sti(regs);
474
475 if (!user_mode_vm(regs))
476 {
477 if (!fixup_exception(regs)) {
478 task->thread.error_code = error_code;
479 task->thread.trap_nr = trapnr;
480 die(str, regs, error_code);
481 }
482 return;
483 }
484
485 /*
486 * Save the info for the exception handler and clear the error.
487 */
488 save_init_fpu(task);
489 task->thread.trap_nr = trapnr;
490 task->thread.error_code = error_code;
491 info.si_signo = SIGFPE;
492 info.si_errno = 0;
493 info.si_addr = (void __user *)regs->ip;
494 if (trapnr == X86_TRAP_MF) {
495 unsigned short cwd, swd;
496 /*
497 * (~cwd & swd) will mask out exceptions that are not set to unmasked
498 * status. 0x3f is the exception bits in these regs, 0x200 is the
499 * C1 reg you need in case of a stack fault, 0x040 is the stack
500 * fault bit. We should only be taking one exception at a time,
501 * so if this combination doesn't produce any single exception,
502 * then we have a bad program that isn't synchronizing its FPU usage
503 * and it will suffer the consequences since we won't be able to
504 * fully reproduce the context of the exception
505 */
506 cwd = get_fpu_cwd(task);
507 swd = get_fpu_swd(task);
508
509 err = swd & ~cwd;
510 } else {
511 /*
512 * The SIMD FPU exceptions are handled a little differently, as there
513 * is only a single status/control register. Thus, to determine which
514 * unmasked exception was caught we must mask the exception mask bits
515 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
516 */
517 unsigned short mxcsr = get_fpu_mxcsr(task);
518 err = ~(mxcsr >> 7) & mxcsr;
519 }
520
521 if (err & 0x001) { /* Invalid op */
522 /*
523 * swd & 0x240 == 0x040: Stack Underflow
524 * swd & 0x240 == 0x240: Stack Overflow
525 * User must clear the SF bit (0x40) if set
526 */
527 info.si_code = FPE_FLTINV;
528 } else if (err & 0x004) { /* Divide by Zero */
529 info.si_code = FPE_FLTDIV;
530 } else if (err & 0x008) { /* Overflow */
531 info.si_code = FPE_FLTOVF;
532 } else if (err & 0x012) { /* Denormal, Underflow */
533 info.si_code = FPE_FLTUND;
534 } else if (err & 0x020) { /* Precision */
535 info.si_code = FPE_FLTRES;
536 } else {
537 /*
538 * If we're using IRQ 13, or supposedly even some trap
539 * X86_TRAP_MF implementations, it's possible
540 * we get a spurious trap, which is not an error.
541 */
542 return;
543 }
544 force_sig_info(SIGFPE, &info, task);
545 }
546
547 dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
548 {
549 #ifdef CONFIG_X86_32
550 ignore_fpu_irq = 1;
551 #endif
552
553 math_error(regs, error_code, X86_TRAP_MF);
554 }
555
556 dotraplinkage void
557 do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
558 {
559 math_error(regs, error_code, X86_TRAP_XF);
560 }
561
562 dotraplinkage void
563 do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
564 {
565 conditional_sti(regs);
566 #if 0
567 /* No need to warn about this any longer. */
568 pr_info("Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
569 #endif
570 }
571
572 asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void)
573 {
574 }
575
576 asmlinkage void __attribute__((weak)) smp_threshold_interrupt(void)
577 {
578 }
579
580 /*
581 * 'math_state_restore()' saves the current math information in the
582 * old math state array, and gets the new ones from the current task
583 *
584 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
585 * Don't touch unless you *really* know how it works.
586 *
587 * Must be called with kernel preemption disabled (eg with local
588 * local interrupts as in the case of do_device_not_available).
589 */
590 void math_state_restore(void)
591 {
592 struct task_struct *tsk = current;
593
594 if (!tsk_used_math(tsk)) {
595 local_irq_enable();
596 /*
597 * does a slab alloc which can sleep
598 */
599 if (init_fpu(tsk)) {
600 /*
601 * ran out of memory!
602 */
603 do_group_exit(SIGKILL);
604 return;
605 }
606 local_irq_disable();
607 }
608
609 __thread_fpu_begin(tsk);
610 /*
611 * Paranoid restore. send a SIGSEGV if we fail to restore the state.
612 */
613 if (unlikely(restore_fpu_checking(tsk))) {
614 __thread_fpu_end(tsk);
615 force_sig(SIGSEGV, tsk);
616 return;
617 }
618
619 tsk->fpu_counter++;
620 }
621 EXPORT_SYMBOL_GPL(math_state_restore);
622
623 dotraplinkage void __kprobes
624 do_device_not_available(struct pt_regs *regs, long error_code)
625 {
626 #ifdef CONFIG_MATH_EMULATION
627 if (read_cr0() & X86_CR0_EM) {
628 struct math_emu_info info = { };
629
630 conditional_sti(regs);
631
632 info.regs = regs;
633 math_emulate(&info);
634 return;
635 }
636 #endif
637 math_state_restore(); /* interrupts still off */
638 #ifdef CONFIG_X86_32
639 conditional_sti(regs);
640 #endif
641 }
642
643 #ifdef CONFIG_X86_32
644 dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
645 {
646 siginfo_t info;
647 local_irq_enable();
648
649 info.si_signo = SIGILL;
650 info.si_errno = 0;
651 info.si_code = ILL_BADSTK;
652 info.si_addr = NULL;
653 if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
654 X86_TRAP_IRET, SIGILL) == NOTIFY_STOP)
655 return;
656 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
657 &info);
658 }
659 #endif
660
661 /* Set of traps needed for early debugging. */
662 void __init early_trap_init(void)
663 {
664 set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
665 /* int3 can be called from all */
666 set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);
667 set_intr_gate(X86_TRAP_PF, &page_fault);
668 load_idt(&idt_descr);
669 }
670
671 void __init trap_init(void)
672 {
673 int i;
674
675 #ifdef CONFIG_EISA
676 void __iomem *p = early_ioremap(0x0FFFD9, 4);
677
678 if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
679 EISA_bus = 1;
680 early_iounmap(p, 4);
681 #endif
682
683 set_intr_gate(X86_TRAP_DE, &divide_error);
684 set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK);
685 /* int4 can be called from all */
686 set_system_intr_gate(X86_TRAP_OF, &overflow);
687 set_intr_gate(X86_TRAP_BR, &bounds);
688 set_intr_gate(X86_TRAP_UD, &invalid_op);
689 set_intr_gate(X86_TRAP_NM, &device_not_available);
690 #ifdef CONFIG_X86_32
691 set_task_gate(X86_TRAP_DF, GDT_ENTRY_DOUBLEFAULT_TSS);
692 #else
693 set_intr_gate_ist(X86_TRAP_DF, &double_fault, DOUBLEFAULT_STACK);
694 #endif
695 set_intr_gate(X86_TRAP_OLD_MF, &coprocessor_segment_overrun);
696 set_intr_gate(X86_TRAP_TS, &invalid_TSS);
697 set_intr_gate(X86_TRAP_NP, &segment_not_present);
698 set_intr_gate_ist(X86_TRAP_SS, &stack_segment, STACKFAULT_STACK);
699 set_intr_gate(X86_TRAP_GP, &general_protection);
700 set_intr_gate(X86_TRAP_SPURIOUS, &spurious_interrupt_bug);
701 set_intr_gate(X86_TRAP_MF, &coprocessor_error);
702 set_intr_gate(X86_TRAP_AC, &alignment_check);
703 #ifdef CONFIG_X86_MCE
704 set_intr_gate_ist(X86_TRAP_MC, &machine_check, MCE_STACK);
705 #endif
706 set_intr_gate(X86_TRAP_XF, &simd_coprocessor_error);
707
708 /* Reserve all the builtin and the syscall vector: */
709 for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
710 set_bit(i, used_vectors);
711
712 #ifdef CONFIG_IA32_EMULATION
713 set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
714 set_bit(IA32_SYSCALL_VECTOR, used_vectors);
715 #endif
716
717 #ifdef CONFIG_X86_32
718 set_system_trap_gate(SYSCALL_VECTOR, &system_call);
719 set_bit(SYSCALL_VECTOR, used_vectors);
720 #endif
721
722 /*
723 * Should be a barrier for any external CPU state:
724 */
725 cpu_init();
726
727 x86_init.irqs.trap_init();
728
729 #ifdef CONFIG_X86_64
730 memcpy(&nmi_idt_table, &idt_table, IDT_ENTRIES * 16);
731 set_nmi_gate(X86_TRAP_DB, &debug);
732 set_nmi_gate(X86_TRAP_BP, &int3);
733 #endif
734 }
This page took 0.058299 seconds and 5 git commands to generate.