b22c01e05a1841d4a3960a2e62a2881ee9c5babc
[deliverable/linux.git] / arch / x86 / kernel / traps_32.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 */
7
8 /*
9 * 'Traps.c' handles hardware traps and faults after we have saved some
10 * state in 'asm.s'.
11 */
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
14 #include <linux/string.h>
15 #include <linux/errno.h>
16 #include <linux/timer.h>
17 #include <linux/mm.h>
18 #include <linux/init.h>
19 #include <linux/delay.h>
20 #include <linux/spinlock.h>
21 #include <linux/interrupt.h>
22 #include <linux/highmem.h>
23 #include <linux/kallsyms.h>
24 #include <linux/ptrace.h>
25 #include <linux/utsname.h>
26 #include <linux/kprobes.h>
27 #include <linux/kexec.h>
28 #include <linux/unwind.h>
29 #include <linux/uaccess.h>
30 #include <linux/nmi.h>
31 #include <linux/bug.h>
32
33 #ifdef CONFIG_EISA
34 #include <linux/ioport.h>
35 #include <linux/eisa.h>
36 #endif
37
38 #ifdef CONFIG_MCA
39 #include <linux/mca.h>
40 #endif
41
42 #if defined(CONFIG_EDAC)
43 #include <linux/edac.h>
44 #endif
45
46 #include <asm/processor.h>
47 #include <asm/system.h>
48 #include <asm/io.h>
49 #include <asm/atomic.h>
50 #include <asm/debugreg.h>
51 #include <asm/desc.h>
52 #include <asm/i387.h>
53 #include <asm/nmi.h>
54 #include <asm/unwind.h>
55 #include <asm/smp.h>
56 #include <asm/arch_hooks.h>
57 #include <linux/kdebug.h>
58 #include <asm/stacktrace.h>
59
60 #include <linux/module.h>
61
62 #include "mach_traps.h"
63
64 int panic_on_unrecovered_nmi;
65
66 DECLARE_BITMAP(used_vectors, NR_VECTORS);
67 EXPORT_SYMBOL_GPL(used_vectors);
68
69 asmlinkage int system_call(void);
70
71 /* Do we ignore FPU interrupts ? */
72 char ignore_fpu_irq = 0;
73
74 /*
75 * The IDT has to be page-aligned to simplify the Pentium
76 * F0 0F bug workaround.. We have a special link segment
77 * for this.
78 */
79 gate_desc idt_table[256]
80 __attribute__((__section__(".data.idt"))) = { { { { 0, 0 } } }, };
81
82 asmlinkage void divide_error(void);
83 asmlinkage void debug(void);
84 asmlinkage void nmi(void);
85 asmlinkage void int3(void);
86 asmlinkage void overflow(void);
87 asmlinkage void bounds(void);
88 asmlinkage void invalid_op(void);
89 asmlinkage void device_not_available(void);
90 asmlinkage void coprocessor_segment_overrun(void);
91 asmlinkage void invalid_TSS(void);
92 asmlinkage void segment_not_present(void);
93 asmlinkage void stack_segment(void);
94 asmlinkage void general_protection(void);
95 asmlinkage void page_fault(void);
96 asmlinkage void coprocessor_error(void);
97 asmlinkage void simd_coprocessor_error(void);
98 asmlinkage void alignment_check(void);
99 asmlinkage void spurious_interrupt_bug(void);
100 asmlinkage void machine_check(void);
101
102 int kstack_depth_to_print = 24;
103 static unsigned int code_bytes = 64;
104
105 void printk_address(unsigned long address, int reliable)
106 {
107 #ifdef CONFIG_KALLSYMS
108 unsigned long offset = 0, symsize;
109 const char *symname;
110 char *modname;
111 char *delim = ":";
112 char namebuf[128];
113 char reliab[4] = "";
114
115 symname = kallsyms_lookup(address, &symsize, &offset,
116 &modname, namebuf);
117 if (!symname) {
118 printk(" [<%08lx>]\n", address);
119 return;
120 }
121 if (!reliable)
122 strcpy(reliab, "? ");
123
124 if (!modname)
125 modname = delim = "";
126 printk(" [<%08lx>] %s%s%s%s%s+0x%lx/0x%lx\n",
127 address, reliab, delim, modname, delim, symname, offset, symsize);
128 #else
129 printk(" [<%08lx>]\n", address);
130 #endif
131 }
132
133 static inline int valid_stack_ptr(struct thread_info *tinfo, void *p, unsigned size)
134 {
135 return p > (void *)tinfo &&
136 p <= (void *)tinfo + THREAD_SIZE - size;
137 }
138
139 /* The form of the top of the frame on the stack */
140 struct stack_frame {
141 struct stack_frame *next_frame;
142 unsigned long return_address;
143 };
144
145 static inline unsigned long print_context_stack(struct thread_info *tinfo,
146 unsigned long *stack, unsigned long bp,
147 const struct stacktrace_ops *ops, void *data)
148 {
149 struct stack_frame *frame = (struct stack_frame *)bp;
150
151 while (valid_stack_ptr(tinfo, stack, sizeof(*stack))) {
152 unsigned long addr;
153
154 addr = *stack;
155 if (__kernel_text_address(addr)) {
156 if ((unsigned long) stack == bp + 4) {
157 ops->address(data, addr, 1);
158 frame = frame->next_frame;
159 bp = (unsigned long) frame;
160 } else {
161 ops->address(data, addr, bp == 0);
162 }
163 }
164 stack++;
165 }
166 return bp;
167 }
168
169 #define MSG(msg) ops->warning(data, msg)
170
171 void dump_trace(struct task_struct *task, struct pt_regs *regs,
172 unsigned long *stack, unsigned long bp,
173 const struct stacktrace_ops *ops, void *data)
174 {
175 if (!task)
176 task = current;
177
178 if (!stack) {
179 unsigned long dummy;
180 stack = &dummy;
181 if (task != current)
182 stack = (unsigned long *)task->thread.sp;
183 }
184
185 #ifdef CONFIG_FRAME_POINTER
186 if (!bp) {
187 if (task == current) {
188 /* Grab bp right from our regs */
189 asm ("movl %%ebp, %0" : "=r" (bp) : );
190 } else {
191 /* bp is the last reg pushed by switch_to */
192 bp = *(unsigned long *) task->thread.sp;
193 }
194 }
195 #endif
196
197 while (1) {
198 struct thread_info *context;
199 context = (struct thread_info *)
200 ((unsigned long)stack & (~(THREAD_SIZE - 1)));
201 bp = print_context_stack(context, stack, bp, ops, data);
202 /* Should be after the line below, but somewhere
203 in early boot context comes out corrupted and we
204 can't reference it -AK */
205 if (ops->stack(data, "IRQ") < 0)
206 break;
207 stack = (unsigned long*)context->previous_esp;
208 if (!stack)
209 break;
210 touch_nmi_watchdog();
211 }
212 }
213 EXPORT_SYMBOL(dump_trace);
214
215 static void
216 print_trace_warning_symbol(void *data, char *msg, unsigned long symbol)
217 {
218 printk(data);
219 print_symbol(msg, symbol);
220 printk("\n");
221 }
222
223 static void print_trace_warning(void *data, char *msg)
224 {
225 printk("%s%s\n", (char *)data, msg);
226 }
227
228 static int print_trace_stack(void *data, char *name)
229 {
230 return 0;
231 }
232
233 /*
234 * Print one address/symbol entries per line.
235 */
236 static void print_trace_address(void *data, unsigned long addr, int reliable)
237 {
238 printk("%s [<%08lx>] ", (char *)data, addr);
239 if (!reliable)
240 printk("? ");
241 print_symbol("%s\n", addr);
242 touch_nmi_watchdog();
243 }
244
245 static const struct stacktrace_ops print_trace_ops = {
246 .warning = print_trace_warning,
247 .warning_symbol = print_trace_warning_symbol,
248 .stack = print_trace_stack,
249 .address = print_trace_address,
250 };
251
252 static void
253 show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
254 unsigned long *stack, unsigned long bp, char *log_lvl)
255 {
256 dump_trace(task, regs, stack, bp, &print_trace_ops, log_lvl);
257 printk("%s =======================\n", log_lvl);
258 }
259
260 void show_trace(struct task_struct *task, struct pt_regs *regs,
261 unsigned long *stack, unsigned long bp)
262 {
263 show_trace_log_lvl(task, regs, stack, bp, "");
264 }
265
266 static void show_stack_log_lvl(struct task_struct *task, struct pt_regs *regs,
267 unsigned long *sp, unsigned long bp, char *log_lvl)
268 {
269 unsigned long *stack;
270 int i;
271
272 if (sp == NULL) {
273 if (task)
274 sp = (unsigned long*)task->thread.sp;
275 else
276 sp = (unsigned long *)&sp;
277 }
278
279 stack = sp;
280 for(i = 0; i < kstack_depth_to_print; i++) {
281 if (kstack_end(stack))
282 break;
283 if (i && ((i % 8) == 0))
284 printk("\n%s ", log_lvl);
285 printk("%08lx ", *stack++);
286 }
287 printk("\n%sCall Trace:\n", log_lvl);
288 show_trace_log_lvl(task, regs, sp, bp, log_lvl);
289 }
290
291 void show_stack(struct task_struct *task, unsigned long *sp)
292 {
293 printk(" ");
294 show_stack_log_lvl(task, NULL, sp, 0, "");
295 }
296
297 /*
298 * The architecture-independent dump_stack generator
299 */
300 void dump_stack(void)
301 {
302 unsigned long stack;
303 unsigned long bp = 0;
304
305 #ifdef CONFIG_FRAME_POINTER
306 if (!bp)
307 asm("movl %%ebp, %0" : "=r" (bp):);
308 #endif
309
310 printk("Pid: %d, comm: %.20s %s %s %.*s\n",
311 current->pid, current->comm, print_tainted(),
312 init_utsname()->release,
313 (int)strcspn(init_utsname()->version, " "),
314 init_utsname()->version);
315 show_trace(current, NULL, &stack, bp);
316 }
317
318 EXPORT_SYMBOL(dump_stack);
319
320 void show_registers(struct pt_regs *regs)
321 {
322 int i;
323
324 print_modules();
325 __show_registers(regs, 0);
326 printk(KERN_EMERG "Process %.*s (pid: %d, ti=%p task=%p task.ti=%p)",
327 TASK_COMM_LEN, current->comm, task_pid_nr(current),
328 current_thread_info(), current, task_thread_info(current));
329 /*
330 * When in-kernel, we also print out the stack and code at the
331 * time of the fault..
332 */
333 if (!user_mode_vm(regs)) {
334 u8 *ip;
335 unsigned int code_prologue = code_bytes * 43 / 64;
336 unsigned int code_len = code_bytes;
337 unsigned char c;
338
339 printk("\n" KERN_EMERG "Stack: ");
340 show_stack_log_lvl(NULL, regs, &regs->sp, 0, KERN_EMERG);
341
342 printk(KERN_EMERG "Code: ");
343
344 ip = (u8 *)regs->ip - code_prologue;
345 if (ip < (u8 *)PAGE_OFFSET ||
346 probe_kernel_address(ip, c)) {
347 /* try starting at EIP */
348 ip = (u8 *)regs->ip;
349 code_len = code_len - code_prologue + 1;
350 }
351 for (i = 0; i < code_len; i++, ip++) {
352 if (ip < (u8 *)PAGE_OFFSET ||
353 probe_kernel_address(ip, c)) {
354 printk(" Bad EIP value.");
355 break;
356 }
357 if (ip == (u8 *)regs->ip)
358 printk("<%02x> ", c);
359 else
360 printk("%02x ", c);
361 }
362 }
363 printk("\n");
364 }
365
366 int is_valid_bugaddr(unsigned long ip)
367 {
368 unsigned short ud2;
369
370 if (ip < PAGE_OFFSET)
371 return 0;
372 if (probe_kernel_address((unsigned short *)ip, ud2))
373 return 0;
374
375 return ud2 == 0x0b0f;
376 }
377
378 static int die_counter;
379
380 int __kprobes __die(const char * str, struct pt_regs * regs, long err)
381 {
382 unsigned long sp;
383 unsigned short ss;
384
385 printk(KERN_EMERG "%s: %04lx [#%d] ", str, err & 0xffff, ++die_counter);
386 #ifdef CONFIG_PREEMPT
387 printk("PREEMPT ");
388 #endif
389 #ifdef CONFIG_SMP
390 printk("SMP ");
391 #endif
392 #ifdef CONFIG_DEBUG_PAGEALLOC
393 printk("DEBUG_PAGEALLOC");
394 #endif
395 printk("\n");
396
397 if (notify_die(DIE_OOPS, str, regs, err,
398 current->thread.trap_no, SIGSEGV) !=
399 NOTIFY_STOP) {
400 show_registers(regs);
401 /* Executive summary in case the oops scrolled away */
402 sp = (unsigned long) (&regs->sp);
403 savesegment(ss, ss);
404 if (user_mode(regs)) {
405 sp = regs->sp;
406 ss = regs->ss & 0xffff;
407 }
408 printk(KERN_EMERG "EIP: [<%08lx>] ", regs->ip);
409 print_symbol("%s", regs->ip);
410 printk(" SS:ESP %04x:%08lx\n", ss, sp);
411 return 0;
412 } else {
413 return 1;
414 }
415 }
416
417 /*
418 * This is gone through when something in the kernel has done something bad and
419 * is about to be terminated.
420 */
421 void die(const char * str, struct pt_regs * regs, long err)
422 {
423 static struct {
424 raw_spinlock_t lock;
425 u32 lock_owner;
426 int lock_owner_depth;
427 } die = {
428 .lock = __RAW_SPIN_LOCK_UNLOCKED,
429 .lock_owner = -1,
430 .lock_owner_depth = 0
431 };
432 unsigned long flags;
433
434 oops_enter();
435
436 if (die.lock_owner != raw_smp_processor_id()) {
437 console_verbose();
438 raw_local_irq_save(flags);
439 __raw_spin_lock(&die.lock);
440 die.lock_owner = smp_processor_id();
441 die.lock_owner_depth = 0;
442 bust_spinlocks(1);
443 } else
444 raw_local_irq_save(flags);
445
446 if (++die.lock_owner_depth < 3) {
447 report_bug(regs->ip, regs);
448
449 if (__die(str, regs, err))
450 regs = NULL;
451 } else {
452 printk(KERN_EMERG "Recursive die() failure, output suppressed\n");
453 }
454
455 bust_spinlocks(0);
456 die.lock_owner = -1;
457 add_taint(TAINT_DIE);
458 __raw_spin_unlock(&die.lock);
459 raw_local_irq_restore(flags);
460
461 if (!regs)
462 return;
463
464 if (kexec_should_crash(current))
465 crash_kexec(regs);
466
467 if (in_interrupt())
468 panic("Fatal exception in interrupt");
469
470 if (panic_on_oops)
471 panic("Fatal exception");
472
473 oops_exit();
474 do_exit(SIGSEGV);
475 }
476
477 static inline void die_if_kernel(const char * str, struct pt_regs * regs, long err)
478 {
479 if (!user_mode_vm(regs))
480 die(str, regs, err);
481 }
482
483 static void __kprobes do_trap(int trapnr, int signr, char *str, int vm86,
484 struct pt_regs * regs, long error_code,
485 siginfo_t *info)
486 {
487 struct task_struct *tsk = current;
488
489 if (regs->flags & VM_MASK) {
490 if (vm86)
491 goto vm86_trap;
492 goto trap_signal;
493 }
494
495 if (!user_mode(regs))
496 goto kernel_trap;
497
498 trap_signal: {
499 /*
500 * We want error_code and trap_no set for userspace faults and
501 * kernelspace faults which result in die(), but not
502 * kernelspace faults which are fixed up. die() gives the
503 * process no chance to handle the signal and notice the
504 * kernel fault information, so that won't result in polluting
505 * the information about previously queued, but not yet
506 * delivered, faults. See also do_general_protection below.
507 */
508 tsk->thread.error_code = error_code;
509 tsk->thread.trap_no = trapnr;
510
511 if (info)
512 force_sig_info(signr, info, tsk);
513 else
514 force_sig(signr, tsk);
515 return;
516 }
517
518 kernel_trap: {
519 if (!fixup_exception(regs)) {
520 tsk->thread.error_code = error_code;
521 tsk->thread.trap_no = trapnr;
522 die(str, regs, error_code);
523 }
524 return;
525 }
526
527 vm86_trap: {
528 int ret = handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, trapnr);
529 if (ret) goto trap_signal;
530 return;
531 }
532 }
533
534 #define DO_ERROR(trapnr, signr, str, name) \
535 void do_##name(struct pt_regs * regs, long error_code) \
536 { \
537 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
538 == NOTIFY_STOP) \
539 return; \
540 do_trap(trapnr, signr, str, 0, regs, error_code, NULL); \
541 }
542
543 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr, irq) \
544 void do_##name(struct pt_regs * regs, long error_code) \
545 { \
546 siginfo_t info; \
547 if (irq) \
548 local_irq_enable(); \
549 info.si_signo = signr; \
550 info.si_errno = 0; \
551 info.si_code = sicode; \
552 info.si_addr = (void __user *)siaddr; \
553 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
554 == NOTIFY_STOP) \
555 return; \
556 do_trap(trapnr, signr, str, 0, regs, error_code, &info); \
557 }
558
559 #define DO_VM86_ERROR(trapnr, signr, str, name) \
560 void do_##name(struct pt_regs * regs, long error_code) \
561 { \
562 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
563 == NOTIFY_STOP) \
564 return; \
565 do_trap(trapnr, signr, str, 1, regs, error_code, NULL); \
566 }
567
568 #define DO_VM86_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
569 void do_##name(struct pt_regs * regs, long error_code) \
570 { \
571 siginfo_t info; \
572 info.si_signo = signr; \
573 info.si_errno = 0; \
574 info.si_code = sicode; \
575 info.si_addr = (void __user *)siaddr; \
576 trace_hardirqs_fixup(); \
577 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
578 == NOTIFY_STOP) \
579 return; \
580 do_trap(trapnr, signr, str, 1, regs, error_code, &info); \
581 }
582
583 DO_VM86_ERROR_INFO( 0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->ip)
584 #ifndef CONFIG_KPROBES
585 DO_VM86_ERROR( 3, SIGTRAP, "int3", int3)
586 #endif
587 DO_VM86_ERROR( 4, SIGSEGV, "overflow", overflow)
588 DO_VM86_ERROR( 5, SIGSEGV, "bounds", bounds)
589 DO_ERROR_INFO( 6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->ip, 0)
590 DO_ERROR( 9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
591 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
592 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
593 DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
594 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0, 0)
595 DO_ERROR_INFO(32, SIGSEGV, "iret exception", iret_error, ILL_BADSTK, 0, 1)
596
597 void __kprobes do_general_protection(struct pt_regs * regs,
598 long error_code)
599 {
600 int cpu = get_cpu();
601 struct tss_struct *tss = &per_cpu(init_tss, cpu);
602 struct thread_struct *thread = &current->thread;
603
604 /*
605 * Perform the lazy TSS's I/O bitmap copy. If the TSS has an
606 * invalid offset set (the LAZY one) and the faulting thread has
607 * a valid I/O bitmap pointer, we copy the I/O bitmap in the TSS
608 * and we set the offset field correctly. Then we let the CPU to
609 * restart the faulting instruction.
610 */
611 if (tss->x86_tss.io_bitmap_base == INVALID_IO_BITMAP_OFFSET_LAZY &&
612 thread->io_bitmap_ptr) {
613 memcpy(tss->io_bitmap, thread->io_bitmap_ptr,
614 thread->io_bitmap_max);
615 /*
616 * If the previously set map was extending to higher ports
617 * than the current one, pad extra space with 0xff (no access).
618 */
619 if (thread->io_bitmap_max < tss->io_bitmap_max)
620 memset((char *) tss->io_bitmap +
621 thread->io_bitmap_max, 0xff,
622 tss->io_bitmap_max - thread->io_bitmap_max);
623 tss->io_bitmap_max = thread->io_bitmap_max;
624 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
625 tss->io_bitmap_owner = thread;
626 put_cpu();
627 return;
628 }
629 put_cpu();
630
631 if (regs->flags & VM_MASK)
632 goto gp_in_vm86;
633
634 if (!user_mode(regs))
635 goto gp_in_kernel;
636
637 current->thread.error_code = error_code;
638 current->thread.trap_no = 13;
639 if (show_unhandled_signals && unhandled_signal(current, SIGSEGV) &&
640 printk_ratelimit()) {
641 printk(KERN_INFO
642 "%s[%d] general protection ip:%lx sp:%lx error:%lx",
643 current->comm, task_pid_nr(current),
644 regs->ip, regs->sp, error_code);
645 print_vma_addr(" in ", regs->ip);
646 printk("\n");
647 }
648
649 force_sig(SIGSEGV, current);
650 return;
651
652 gp_in_vm86:
653 local_irq_enable();
654 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
655 return;
656
657 gp_in_kernel:
658 if (!fixup_exception(regs)) {
659 current->thread.error_code = error_code;
660 current->thread.trap_no = 13;
661 if (notify_die(DIE_GPF, "general protection fault", regs,
662 error_code, 13, SIGSEGV) == NOTIFY_STOP)
663 return;
664 die("general protection fault", regs, error_code);
665 }
666 }
667
668 static __kprobes void
669 mem_parity_error(unsigned char reason, struct pt_regs * regs)
670 {
671 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x on "
672 "CPU %d.\n", reason, smp_processor_id());
673 printk(KERN_EMERG "You have some hardware problem, likely on the PCI bus.\n");
674
675 #if defined(CONFIG_EDAC)
676 if(edac_handler_set()) {
677 edac_atomic_assert_error();
678 return;
679 }
680 #endif
681
682 if (panic_on_unrecovered_nmi)
683 panic("NMI: Not continuing");
684
685 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
686
687 /* Clear and disable the memory parity error line. */
688 clear_mem_error(reason);
689 }
690
691 static __kprobes void
692 io_check_error(unsigned char reason, struct pt_regs * regs)
693 {
694 unsigned long i;
695
696 printk(KERN_EMERG "NMI: IOCK error (debug interrupt?)\n");
697 show_registers(regs);
698
699 /* Re-enable the IOCK line, wait for a few seconds */
700 reason = (reason & 0xf) | 8;
701 outb(reason, 0x61);
702 i = 2000;
703 while (--i) udelay(1000);
704 reason &= ~8;
705 outb(reason, 0x61);
706 }
707
708 static __kprobes void
709 unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
710 {
711 #ifdef CONFIG_MCA
712 /* Might actually be able to figure out what the guilty party
713 * is. */
714 if( MCA_bus ) {
715 mca_handle_nmi();
716 return;
717 }
718 #endif
719 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x on "
720 "CPU %d.\n", reason, smp_processor_id());
721 printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n");
722 if (panic_on_unrecovered_nmi)
723 panic("NMI: Not continuing");
724
725 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
726 }
727
728 static DEFINE_SPINLOCK(nmi_print_lock);
729
730 void __kprobes die_nmi(struct pt_regs *regs, const char *msg)
731 {
732 if (notify_die(DIE_NMIWATCHDOG, msg, regs, 0, 2, SIGINT) ==
733 NOTIFY_STOP)
734 return;
735
736 spin_lock(&nmi_print_lock);
737 /*
738 * We are in trouble anyway, lets at least try
739 * to get a message out.
740 */
741 bust_spinlocks(1);
742 printk(KERN_EMERG "%s", msg);
743 printk(" on CPU%d, ip %08lx, registers:\n",
744 smp_processor_id(), regs->ip);
745 show_registers(regs);
746 console_silent();
747 spin_unlock(&nmi_print_lock);
748 bust_spinlocks(0);
749
750 /* If we are in kernel we are probably nested up pretty bad
751 * and might aswell get out now while we still can.
752 */
753 if (!user_mode_vm(regs)) {
754 current->thread.trap_no = 2;
755 crash_kexec(regs);
756 }
757
758 do_exit(SIGSEGV);
759 }
760
761 static __kprobes void default_do_nmi(struct pt_regs * regs)
762 {
763 unsigned char reason = 0;
764
765 /* Only the BSP gets external NMIs from the system. */
766 if (!smp_processor_id())
767 reason = get_nmi_reason();
768
769 if (!(reason & 0xc0)) {
770 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
771 == NOTIFY_STOP)
772 return;
773 #ifdef CONFIG_X86_LOCAL_APIC
774 /*
775 * Ok, so this is none of the documented NMI sources,
776 * so it must be the NMI watchdog.
777 */
778 if (nmi_watchdog_tick(regs, reason))
779 return;
780 if (!do_nmi_callback(regs, smp_processor_id()))
781 #endif
782 unknown_nmi_error(reason, regs);
783
784 return;
785 }
786 if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
787 return;
788 if (reason & 0x80)
789 mem_parity_error(reason, regs);
790 if (reason & 0x40)
791 io_check_error(reason, regs);
792 /*
793 * Reassert NMI in case it became active meanwhile
794 * as it's edge-triggered.
795 */
796 reassert_nmi();
797 }
798
799 static int ignore_nmis;
800
801 __kprobes void do_nmi(struct pt_regs * regs, long error_code)
802 {
803 int cpu;
804
805 nmi_enter();
806
807 cpu = smp_processor_id();
808
809 ++nmi_count(cpu);
810
811 if (!ignore_nmis)
812 default_do_nmi(regs);
813
814 nmi_exit();
815 }
816
817 void stop_nmi(void)
818 {
819 acpi_nmi_disable();
820 ignore_nmis++;
821 }
822
823 void restart_nmi(void)
824 {
825 ignore_nmis--;
826 acpi_nmi_enable();
827 }
828
829 #ifdef CONFIG_KPROBES
830 void __kprobes do_int3(struct pt_regs *regs, long error_code)
831 {
832 trace_hardirqs_fixup();
833
834 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
835 == NOTIFY_STOP)
836 return;
837 /* This is an interrupt gate, because kprobes wants interrupts
838 disabled. Normal trap handlers don't. */
839 restore_interrupts(regs);
840 do_trap(3, SIGTRAP, "int3", 1, regs, error_code, NULL);
841 }
842 #endif
843
844 /*
845 * Our handling of the processor debug registers is non-trivial.
846 * We do not clear them on entry and exit from the kernel. Therefore
847 * it is possible to get a watchpoint trap here from inside the kernel.
848 * However, the code in ./ptrace.c has ensured that the user can
849 * only set watchpoints on userspace addresses. Therefore the in-kernel
850 * watchpoint trap can only occur in code which is reading/writing
851 * from user space. Such code must not hold kernel locks (since it
852 * can equally take a page fault), therefore it is safe to call
853 * force_sig_info even though that claims and releases locks.
854 *
855 * Code in ./signal.c ensures that the debug control register
856 * is restored before we deliver any signal, and therefore that
857 * user code runs with the correct debug control register even though
858 * we clear it here.
859 *
860 * Being careful here means that we don't have to be as careful in a
861 * lot of more complicated places (task switching can be a bit lazy
862 * about restoring all the debug state, and ptrace doesn't have to
863 * find every occurrence of the TF bit that could be saved away even
864 * by user code)
865 */
866 void __kprobes do_debug(struct pt_regs * regs, long error_code)
867 {
868 unsigned int condition;
869 struct task_struct *tsk = current;
870
871 trace_hardirqs_fixup();
872
873 get_debugreg(condition, 6);
874
875 /*
876 * The processor cleared BTF, so don't mark that we need it set.
877 */
878 clear_tsk_thread_flag(tsk, TIF_DEBUGCTLMSR);
879 tsk->thread.debugctlmsr = 0;
880
881 if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
882 SIGTRAP) == NOTIFY_STOP)
883 return;
884 /* It's safe to allow irq's after DR6 has been saved */
885 if (regs->flags & X86_EFLAGS_IF)
886 local_irq_enable();
887
888 /* Mask out spurious debug traps due to lazy DR7 setting */
889 if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
890 if (!tsk->thread.debugreg7)
891 goto clear_dr7;
892 }
893
894 if (regs->flags & VM_MASK)
895 goto debug_vm86;
896
897 /* Save debug status register where ptrace can see it */
898 tsk->thread.debugreg6 = condition;
899
900 /*
901 * Single-stepping through TF: make sure we ignore any events in
902 * kernel space (but re-enable TF when returning to user mode).
903 */
904 if (condition & DR_STEP) {
905 /*
906 * We already checked v86 mode above, so we can
907 * check for kernel mode by just checking the CPL
908 * of CS.
909 */
910 if (!user_mode(regs))
911 goto clear_TF_reenable;
912 }
913
914 /* Ok, finally something we can handle */
915 send_sigtrap(tsk, regs, error_code);
916
917 /* Disable additional traps. They'll be re-enabled when
918 * the signal is delivered.
919 */
920 clear_dr7:
921 set_debugreg(0, 7);
922 return;
923
924 debug_vm86:
925 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1);
926 return;
927
928 clear_TF_reenable:
929 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
930 regs->flags &= ~TF_MASK;
931 return;
932 }
933
934 /*
935 * Note that we play around with the 'TS' bit in an attempt to get
936 * the correct behaviour even in the presence of the asynchronous
937 * IRQ13 behaviour
938 */
939 void math_error(void __user *ip)
940 {
941 struct task_struct * task;
942 siginfo_t info;
943 unsigned short cwd, swd;
944
945 /*
946 * Save the info for the exception handler and clear the error.
947 */
948 task = current;
949 save_init_fpu(task);
950 task->thread.trap_no = 16;
951 task->thread.error_code = 0;
952 info.si_signo = SIGFPE;
953 info.si_errno = 0;
954 info.si_code = __SI_FAULT;
955 info.si_addr = ip;
956 /*
957 * (~cwd & swd) will mask out exceptions that are not set to unmasked
958 * status. 0x3f is the exception bits in these regs, 0x200 is the
959 * C1 reg you need in case of a stack fault, 0x040 is the stack
960 * fault bit. We should only be taking one exception at a time,
961 * so if this combination doesn't produce any single exception,
962 * then we have a bad program that isn't syncronizing its FPU usage
963 * and it will suffer the consequences since we won't be able to
964 * fully reproduce the context of the exception
965 */
966 cwd = get_fpu_cwd(task);
967 swd = get_fpu_swd(task);
968 switch (swd & ~cwd & 0x3f) {
969 case 0x000: /* No unmasked exception */
970 return;
971 default: /* Multiple exceptions */
972 break;
973 case 0x001: /* Invalid Op */
974 /*
975 * swd & 0x240 == 0x040: Stack Underflow
976 * swd & 0x240 == 0x240: Stack Overflow
977 * User must clear the SF bit (0x40) if set
978 */
979 info.si_code = FPE_FLTINV;
980 break;
981 case 0x002: /* Denormalize */
982 case 0x010: /* Underflow */
983 info.si_code = FPE_FLTUND;
984 break;
985 case 0x004: /* Zero Divide */
986 info.si_code = FPE_FLTDIV;
987 break;
988 case 0x008: /* Overflow */
989 info.si_code = FPE_FLTOVF;
990 break;
991 case 0x020: /* Precision */
992 info.si_code = FPE_FLTRES;
993 break;
994 }
995 force_sig_info(SIGFPE, &info, task);
996 }
997
998 void do_coprocessor_error(struct pt_regs * regs, long error_code)
999 {
1000 ignore_fpu_irq = 1;
1001 math_error((void __user *)regs->ip);
1002 }
1003
1004 static void simd_math_error(void __user *ip)
1005 {
1006 struct task_struct * task;
1007 siginfo_t info;
1008 unsigned short mxcsr;
1009
1010 /*
1011 * Save the info for the exception handler and clear the error.
1012 */
1013 task = current;
1014 save_init_fpu(task);
1015 task->thread.trap_no = 19;
1016 task->thread.error_code = 0;
1017 info.si_signo = SIGFPE;
1018 info.si_errno = 0;
1019 info.si_code = __SI_FAULT;
1020 info.si_addr = ip;
1021 /*
1022 * The SIMD FPU exceptions are handled a little differently, as there
1023 * is only a single status/control register. Thus, to determine which
1024 * unmasked exception was caught we must mask the exception mask bits
1025 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
1026 */
1027 mxcsr = get_fpu_mxcsr(task);
1028 switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
1029 case 0x000:
1030 default:
1031 break;
1032 case 0x001: /* Invalid Op */
1033 info.si_code = FPE_FLTINV;
1034 break;
1035 case 0x002: /* Denormalize */
1036 case 0x010: /* Underflow */
1037 info.si_code = FPE_FLTUND;
1038 break;
1039 case 0x004: /* Zero Divide */
1040 info.si_code = FPE_FLTDIV;
1041 break;
1042 case 0x008: /* Overflow */
1043 info.si_code = FPE_FLTOVF;
1044 break;
1045 case 0x020: /* Precision */
1046 info.si_code = FPE_FLTRES;
1047 break;
1048 }
1049 force_sig_info(SIGFPE, &info, task);
1050 }
1051
1052 void do_simd_coprocessor_error(struct pt_regs * regs,
1053 long error_code)
1054 {
1055 if (cpu_has_xmm) {
1056 /* Handle SIMD FPU exceptions on PIII+ processors. */
1057 ignore_fpu_irq = 1;
1058 simd_math_error((void __user *)regs->ip);
1059 } else {
1060 /*
1061 * Handle strange cache flush from user space exception
1062 * in all other cases. This is undocumented behaviour.
1063 */
1064 if (regs->flags & VM_MASK) {
1065 handle_vm86_fault((struct kernel_vm86_regs *)regs,
1066 error_code);
1067 return;
1068 }
1069 current->thread.trap_no = 19;
1070 current->thread.error_code = error_code;
1071 die_if_kernel("cache flush denied", regs, error_code);
1072 force_sig(SIGSEGV, current);
1073 }
1074 }
1075
1076 void do_spurious_interrupt_bug(struct pt_regs * regs,
1077 long error_code)
1078 {
1079 #if 0
1080 /* No need to warn about this any longer. */
1081 printk("Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
1082 #endif
1083 }
1084
1085 unsigned long patch_espfix_desc(unsigned long uesp,
1086 unsigned long kesp)
1087 {
1088 struct desc_struct *gdt = __get_cpu_var(gdt_page).gdt;
1089 unsigned long base = (kesp - uesp) & -THREAD_SIZE;
1090 unsigned long new_kesp = kesp - base;
1091 unsigned long lim_pages = (new_kesp | (THREAD_SIZE - 1)) >> PAGE_SHIFT;
1092 __u64 desc = *(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS];
1093 /* Set up base for espfix segment */
1094 desc &= 0x00f0ff0000000000ULL;
1095 desc |= ((((__u64)base) << 16) & 0x000000ffffff0000ULL) |
1096 ((((__u64)base) << 32) & 0xff00000000000000ULL) |
1097 ((((__u64)lim_pages) << 32) & 0x000f000000000000ULL) |
1098 (lim_pages & 0xffff);
1099 *(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS] = desc;
1100 return new_kesp;
1101 }
1102
1103 /*
1104 * 'math_state_restore()' saves the current math information in the
1105 * old math state array, and gets the new ones from the current task
1106 *
1107 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
1108 * Don't touch unless you *really* know how it works.
1109 *
1110 * Must be called with kernel preemption disabled (in this case,
1111 * local interrupts are disabled at the call-site in entry.S).
1112 */
1113 asmlinkage void math_state_restore(void)
1114 {
1115 struct thread_info *thread = current_thread_info();
1116 struct task_struct *tsk = thread->task;
1117
1118 clts(); /* Allow maths ops (or we recurse) */
1119 if (!tsk_used_math(tsk))
1120 init_fpu(tsk);
1121 restore_fpu(tsk);
1122 thread->status |= TS_USEDFPU; /* So we fnsave on switch_to() */
1123 tsk->fpu_counter++;
1124 }
1125 EXPORT_SYMBOL_GPL(math_state_restore);
1126
1127 #ifndef CONFIG_MATH_EMULATION
1128
1129 asmlinkage void math_emulate(long arg)
1130 {
1131 printk(KERN_EMERG "math-emulation not enabled and no coprocessor found.\n");
1132 printk(KERN_EMERG "killing %s.\n",current->comm);
1133 force_sig(SIGFPE,current);
1134 schedule();
1135 }
1136
1137 #endif /* CONFIG_MATH_EMULATION */
1138
1139
1140 void __init trap_init(void)
1141 {
1142 int i;
1143
1144 #ifdef CONFIG_EISA
1145 void __iomem *p = early_ioremap(0x0FFFD9, 4);
1146 if (readl(p) == 'E'+('I'<<8)+('S'<<16)+('A'<<24)) {
1147 EISA_bus = 1;
1148 }
1149 early_iounmap(p, 4);
1150 #endif
1151
1152 #ifdef CONFIG_X86_LOCAL_APIC
1153 init_apic_mappings();
1154 #endif
1155
1156 set_trap_gate(0,&divide_error);
1157 set_intr_gate(1,&debug);
1158 set_intr_gate(2,&nmi);
1159 set_system_intr_gate(3, &int3); /* int3/4 can be called from all */
1160 set_system_gate(4,&overflow);
1161 set_trap_gate(5,&bounds);
1162 set_trap_gate(6,&invalid_op);
1163 set_trap_gate(7,&device_not_available);
1164 set_task_gate(8,GDT_ENTRY_DOUBLEFAULT_TSS);
1165 set_trap_gate(9,&coprocessor_segment_overrun);
1166 set_trap_gate(10,&invalid_TSS);
1167 set_trap_gate(11,&segment_not_present);
1168 set_trap_gate(12,&stack_segment);
1169 set_trap_gate(13,&general_protection);
1170 set_intr_gate(14,&page_fault);
1171 set_trap_gate(15,&spurious_interrupt_bug);
1172 set_trap_gate(16,&coprocessor_error);
1173 set_trap_gate(17,&alignment_check);
1174 #ifdef CONFIG_X86_MCE
1175 set_trap_gate(18,&machine_check);
1176 #endif
1177 set_trap_gate(19,&simd_coprocessor_error);
1178
1179 /*
1180 * Verify that the FXSAVE/FXRSTOR data will be 16-byte aligned.
1181 * Generate a build-time error if the alignment is wrong.
1182 */
1183 BUILD_BUG_ON(offsetof(struct task_struct, thread.i387.fxsave) & 15);
1184 if (cpu_has_fxsr) {
1185 printk(KERN_INFO "Enabling fast FPU save and restore... ");
1186 set_in_cr4(X86_CR4_OSFXSR);
1187 printk("done.\n");
1188 }
1189 if (cpu_has_xmm) {
1190 printk(KERN_INFO "Enabling unmasked SIMD FPU exception "
1191 "support... ");
1192 set_in_cr4(X86_CR4_OSXMMEXCPT);
1193 printk("done.\n");
1194 }
1195
1196 set_system_gate(SYSCALL_VECTOR,&system_call);
1197
1198 /* Reserve all the builtin and the syscall vector. */
1199 for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
1200 set_bit(i, used_vectors);
1201 set_bit(SYSCALL_VECTOR, used_vectors);
1202
1203 /*
1204 * Should be a barrier for any external CPU state.
1205 */
1206 cpu_init();
1207
1208 trap_init_hook();
1209 }
1210
1211 static int __init kstack_setup(char *s)
1212 {
1213 kstack_depth_to_print = simple_strtoul(s, NULL, 0);
1214 return 1;
1215 }
1216 __setup("kstack=", kstack_setup);
1217
1218 static int __init code_bytes_setup(char *s)
1219 {
1220 code_bytes = simple_strtoul(s, NULL, 0);
1221 if (code_bytes > 8192)
1222 code_bytes = 8192;
1223
1224 return 1;
1225 }
1226 __setup("code_bytes=", code_bytes_setup);
This page took 0.089078 seconds and 4 git commands to generate.