Merge branch 'devel' of master.kernel.org:/home/rmk/linux-2.6-arm
[deliverable/linux.git] / arch / x86 / kernel / traps_32.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 */
7
8 /*
9 * 'Traps.c' handles hardware traps and faults after we have saved some
10 * state in 'asm.s'.
11 */
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
14 #include <linux/string.h>
15 #include <linux/errno.h>
16 #include <linux/timer.h>
17 #include <linux/mm.h>
18 #include <linux/init.h>
19 #include <linux/delay.h>
20 #include <linux/spinlock.h>
21 #include <linux/interrupt.h>
22 #include <linux/highmem.h>
23 #include <linux/kallsyms.h>
24 #include <linux/ptrace.h>
25 #include <linux/utsname.h>
26 #include <linux/kprobes.h>
27 #include <linux/kexec.h>
28 #include <linux/unwind.h>
29 #include <linux/uaccess.h>
30 #include <linux/nmi.h>
31 #include <linux/bug.h>
32
33 #ifdef CONFIG_EISA
34 #include <linux/ioport.h>
35 #include <linux/eisa.h>
36 #endif
37
38 #ifdef CONFIG_MCA
39 #include <linux/mca.h>
40 #endif
41
42 #if defined(CONFIG_EDAC)
43 #include <linux/edac.h>
44 #endif
45
46 #include <asm/processor.h>
47 #include <asm/system.h>
48 #include <asm/io.h>
49 #include <asm/atomic.h>
50 #include <asm/debugreg.h>
51 #include <asm/desc.h>
52 #include <asm/i387.h>
53 #include <asm/nmi.h>
54 #include <asm/unwind.h>
55 #include <asm/smp.h>
56 #include <asm/arch_hooks.h>
57 #include <linux/kdebug.h>
58 #include <asm/stacktrace.h>
59
60 #include <linux/module.h>
61
62 #include "mach_traps.h"
63
64 int panic_on_unrecovered_nmi;
65
66 asmlinkage int system_call(void);
67
68 /* Do we ignore FPU interrupts ? */
69 char ignore_fpu_irq = 0;
70
71 /*
72 * The IDT has to be page-aligned to simplify the Pentium
73 * F0 0F bug workaround.. We have a special link segment
74 * for this.
75 */
76 struct desc_struct idt_table[256] __attribute__((__section__(".data.idt"))) = { {0, 0}, };
77
78 asmlinkage void divide_error(void);
79 asmlinkage void debug(void);
80 asmlinkage void nmi(void);
81 asmlinkage void int3(void);
82 asmlinkage void overflow(void);
83 asmlinkage void bounds(void);
84 asmlinkage void invalid_op(void);
85 asmlinkage void device_not_available(void);
86 asmlinkage void coprocessor_segment_overrun(void);
87 asmlinkage void invalid_TSS(void);
88 asmlinkage void segment_not_present(void);
89 asmlinkage void stack_segment(void);
90 asmlinkage void general_protection(void);
91 asmlinkage void page_fault(void);
92 asmlinkage void coprocessor_error(void);
93 asmlinkage void simd_coprocessor_error(void);
94 asmlinkage void alignment_check(void);
95 asmlinkage void spurious_interrupt_bug(void);
96 asmlinkage void machine_check(void);
97
98 int kstack_depth_to_print = 24;
99 static unsigned int code_bytes = 64;
100
101 static inline int valid_stack_ptr(struct thread_info *tinfo, void *p, unsigned size)
102 {
103 return p > (void *)tinfo &&
104 p <= (void *)tinfo + THREAD_SIZE - size;
105 }
106
107 /* The form of the top of the frame on the stack */
108 struct stack_frame {
109 struct stack_frame *next_frame;
110 unsigned long return_address;
111 };
112
113 static inline unsigned long print_context_stack(struct thread_info *tinfo,
114 unsigned long *stack, unsigned long ebp,
115 struct stacktrace_ops *ops, void *data)
116 {
117 #ifdef CONFIG_FRAME_POINTER
118 struct stack_frame *frame = (struct stack_frame *)ebp;
119 while (valid_stack_ptr(tinfo, frame, sizeof(*frame))) {
120 struct stack_frame *next;
121 unsigned long addr;
122
123 addr = frame->return_address;
124 ops->address(data, addr);
125 /*
126 * break out of recursive entries (such as
127 * end_of_stack_stop_unwind_function). Also,
128 * we can never allow a frame pointer to
129 * move downwards!
130 */
131 next = frame->next_frame;
132 if (next <= frame)
133 break;
134 frame = next;
135 }
136 #else
137 while (valid_stack_ptr(tinfo, stack, sizeof(*stack))) {
138 unsigned long addr;
139
140 addr = *stack++;
141 if (__kernel_text_address(addr))
142 ops->address(data, addr);
143 }
144 #endif
145 return ebp;
146 }
147
148 #define MSG(msg) ops->warning(data, msg)
149
150 void dump_trace(struct task_struct *task, struct pt_regs *regs,
151 unsigned long *stack,
152 struct stacktrace_ops *ops, void *data)
153 {
154 unsigned long ebp = 0;
155
156 if (!task)
157 task = current;
158
159 if (!stack) {
160 unsigned long dummy;
161 stack = &dummy;
162 if (task != current)
163 stack = (unsigned long *)task->thread.esp;
164 }
165
166 #ifdef CONFIG_FRAME_POINTER
167 if (!ebp) {
168 if (task == current) {
169 /* Grab ebp right from our regs */
170 asm ("movl %%ebp, %0" : "=r" (ebp) : );
171 } else {
172 /* ebp is the last reg pushed by switch_to */
173 ebp = *(unsigned long *) task->thread.esp;
174 }
175 }
176 #endif
177
178 while (1) {
179 struct thread_info *context;
180 context = (struct thread_info *)
181 ((unsigned long)stack & (~(THREAD_SIZE - 1)));
182 ebp = print_context_stack(context, stack, ebp, ops, data);
183 /* Should be after the line below, but somewhere
184 in early boot context comes out corrupted and we
185 can't reference it -AK */
186 if (ops->stack(data, "IRQ") < 0)
187 break;
188 stack = (unsigned long*)context->previous_esp;
189 if (!stack)
190 break;
191 touch_nmi_watchdog();
192 }
193 }
194 EXPORT_SYMBOL(dump_trace);
195
196 static void
197 print_trace_warning_symbol(void *data, char *msg, unsigned long symbol)
198 {
199 printk(data);
200 print_symbol(msg, symbol);
201 printk("\n");
202 }
203
204 static void print_trace_warning(void *data, char *msg)
205 {
206 printk("%s%s\n", (char *)data, msg);
207 }
208
209 static int print_trace_stack(void *data, char *name)
210 {
211 return 0;
212 }
213
214 /*
215 * Print one address/symbol entries per line.
216 */
217 static void print_trace_address(void *data, unsigned long addr)
218 {
219 printk("%s [<%08lx>] ", (char *)data, addr);
220 print_symbol("%s\n", addr);
221 touch_nmi_watchdog();
222 }
223
224 static struct stacktrace_ops print_trace_ops = {
225 .warning = print_trace_warning,
226 .warning_symbol = print_trace_warning_symbol,
227 .stack = print_trace_stack,
228 .address = print_trace_address,
229 };
230
231 static void
232 show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
233 unsigned long * stack, char *log_lvl)
234 {
235 dump_trace(task, regs, stack, &print_trace_ops, log_lvl);
236 printk("%s =======================\n", log_lvl);
237 }
238
239 void show_trace(struct task_struct *task, struct pt_regs *regs,
240 unsigned long * stack)
241 {
242 show_trace_log_lvl(task, regs, stack, "");
243 }
244
245 static void show_stack_log_lvl(struct task_struct *task, struct pt_regs *regs,
246 unsigned long *esp, char *log_lvl)
247 {
248 unsigned long *stack;
249 int i;
250
251 if (esp == NULL) {
252 if (task)
253 esp = (unsigned long*)task->thread.esp;
254 else
255 esp = (unsigned long *)&esp;
256 }
257
258 stack = esp;
259 for(i = 0; i < kstack_depth_to_print; i++) {
260 if (kstack_end(stack))
261 break;
262 if (i && ((i % 8) == 0))
263 printk("\n%s ", log_lvl);
264 printk("%08lx ", *stack++);
265 }
266 printk("\n%sCall Trace:\n", log_lvl);
267 show_trace_log_lvl(task, regs, esp, log_lvl);
268 }
269
270 void show_stack(struct task_struct *task, unsigned long *esp)
271 {
272 printk(" ");
273 show_stack_log_lvl(task, NULL, esp, "");
274 }
275
276 /*
277 * The architecture-independent dump_stack generator
278 */
279 void dump_stack(void)
280 {
281 unsigned long stack;
282
283 show_trace(current, NULL, &stack);
284 }
285
286 EXPORT_SYMBOL(dump_stack);
287
288 void show_registers(struct pt_regs *regs)
289 {
290 int i;
291 int in_kernel = 1;
292 unsigned long esp;
293 unsigned short ss, gs;
294
295 esp = (unsigned long) (&regs->esp);
296 savesegment(ss, ss);
297 savesegment(gs, gs);
298 if (user_mode_vm(regs)) {
299 in_kernel = 0;
300 esp = regs->esp;
301 ss = regs->xss & 0xffff;
302 }
303 print_modules();
304 printk(KERN_EMERG "CPU: %d\n"
305 KERN_EMERG "EIP: %04x:[<%08lx>] %s VLI\n"
306 KERN_EMERG "EFLAGS: %08lx (%s %.*s)\n",
307 smp_processor_id(), 0xffff & regs->xcs, regs->eip,
308 print_tainted(), regs->eflags, init_utsname()->release,
309 (int)strcspn(init_utsname()->version, " "),
310 init_utsname()->version);
311 print_symbol(KERN_EMERG "EIP is at %s\n", regs->eip);
312 printk(KERN_EMERG "eax: %08lx ebx: %08lx ecx: %08lx edx: %08lx\n",
313 regs->eax, regs->ebx, regs->ecx, regs->edx);
314 printk(KERN_EMERG "esi: %08lx edi: %08lx ebp: %08lx esp: %08lx\n",
315 regs->esi, regs->edi, regs->ebp, esp);
316 printk(KERN_EMERG "ds: %04x es: %04x fs: %04x gs: %04x ss: %04x\n",
317 regs->xds & 0xffff, regs->xes & 0xffff, regs->xfs & 0xffff, gs, ss);
318 printk(KERN_EMERG "Process %.*s (pid: %d, ti=%p task=%p task.ti=%p)",
319 TASK_COMM_LEN, current->comm, current->pid,
320 current_thread_info(), current, task_thread_info(current));
321 /*
322 * When in-kernel, we also print out the stack and code at the
323 * time of the fault..
324 */
325 if (in_kernel) {
326 u8 *eip;
327 unsigned int code_prologue = code_bytes * 43 / 64;
328 unsigned int code_len = code_bytes;
329 unsigned char c;
330
331 printk("\n" KERN_EMERG "Stack: ");
332 show_stack_log_lvl(NULL, regs, (unsigned long *)esp, KERN_EMERG);
333
334 printk(KERN_EMERG "Code: ");
335
336 eip = (u8 *)regs->eip - code_prologue;
337 if (eip < (u8 *)PAGE_OFFSET ||
338 probe_kernel_address(eip, c)) {
339 /* try starting at EIP */
340 eip = (u8 *)regs->eip;
341 code_len = code_len - code_prologue + 1;
342 }
343 for (i = 0; i < code_len; i++, eip++) {
344 if (eip < (u8 *)PAGE_OFFSET ||
345 probe_kernel_address(eip, c)) {
346 printk(" Bad EIP value.");
347 break;
348 }
349 if (eip == (u8 *)regs->eip)
350 printk("<%02x> ", c);
351 else
352 printk("%02x ", c);
353 }
354 }
355 printk("\n");
356 }
357
358 int is_valid_bugaddr(unsigned long eip)
359 {
360 unsigned short ud2;
361
362 if (eip < PAGE_OFFSET)
363 return 0;
364 if (probe_kernel_address((unsigned short *)eip, ud2))
365 return 0;
366
367 return ud2 == 0x0b0f;
368 }
369
370 /*
371 * This is gone through when something in the kernel has done something bad and
372 * is about to be terminated.
373 */
374 void die(const char * str, struct pt_regs * regs, long err)
375 {
376 static struct {
377 spinlock_t lock;
378 u32 lock_owner;
379 int lock_owner_depth;
380 } die = {
381 .lock = __SPIN_LOCK_UNLOCKED(die.lock),
382 .lock_owner = -1,
383 .lock_owner_depth = 0
384 };
385 static int die_counter;
386 unsigned long flags;
387
388 oops_enter();
389
390 if (die.lock_owner != raw_smp_processor_id()) {
391 console_verbose();
392 spin_lock_irqsave(&die.lock, flags);
393 die.lock_owner = smp_processor_id();
394 die.lock_owner_depth = 0;
395 bust_spinlocks(1);
396 }
397 else
398 local_save_flags(flags);
399
400 if (++die.lock_owner_depth < 3) {
401 int nl = 0;
402 unsigned long esp;
403 unsigned short ss;
404
405 report_bug(regs->eip, regs);
406
407 printk(KERN_EMERG "%s: %04lx [#%d]\n", str, err & 0xffff, ++die_counter);
408 #ifdef CONFIG_PREEMPT
409 printk(KERN_EMERG "PREEMPT ");
410 nl = 1;
411 #endif
412 #ifdef CONFIG_SMP
413 if (!nl)
414 printk(KERN_EMERG);
415 printk("SMP ");
416 nl = 1;
417 #endif
418 #ifdef CONFIG_DEBUG_PAGEALLOC
419 if (!nl)
420 printk(KERN_EMERG);
421 printk("DEBUG_PAGEALLOC");
422 nl = 1;
423 #endif
424 if (nl)
425 printk("\n");
426 if (notify_die(DIE_OOPS, str, regs, err,
427 current->thread.trap_no, SIGSEGV) !=
428 NOTIFY_STOP) {
429 show_registers(regs);
430 /* Executive summary in case the oops scrolled away */
431 esp = (unsigned long) (&regs->esp);
432 savesegment(ss, ss);
433 if (user_mode(regs)) {
434 esp = regs->esp;
435 ss = regs->xss & 0xffff;
436 }
437 printk(KERN_EMERG "EIP: [<%08lx>] ", regs->eip);
438 print_symbol("%s", regs->eip);
439 printk(" SS:ESP %04x:%08lx\n", ss, esp);
440 }
441 else
442 regs = NULL;
443 } else
444 printk(KERN_EMERG "Recursive die() failure, output suppressed\n");
445
446 bust_spinlocks(0);
447 die.lock_owner = -1;
448 add_taint(TAINT_DIE);
449 spin_unlock_irqrestore(&die.lock, flags);
450
451 if (!regs)
452 return;
453
454 if (kexec_should_crash(current))
455 crash_kexec(regs);
456
457 if (in_interrupt())
458 panic("Fatal exception in interrupt");
459
460 if (panic_on_oops)
461 panic("Fatal exception");
462
463 oops_exit();
464 do_exit(SIGSEGV);
465 }
466
467 static inline void die_if_kernel(const char * str, struct pt_regs * regs, long err)
468 {
469 if (!user_mode_vm(regs))
470 die(str, regs, err);
471 }
472
473 static void __kprobes do_trap(int trapnr, int signr, char *str, int vm86,
474 struct pt_regs * regs, long error_code,
475 siginfo_t *info)
476 {
477 struct task_struct *tsk = current;
478
479 if (regs->eflags & VM_MASK) {
480 if (vm86)
481 goto vm86_trap;
482 goto trap_signal;
483 }
484
485 if (!user_mode(regs))
486 goto kernel_trap;
487
488 trap_signal: {
489 /*
490 * We want error_code and trap_no set for userspace faults and
491 * kernelspace faults which result in die(), but not
492 * kernelspace faults which are fixed up. die() gives the
493 * process no chance to handle the signal and notice the
494 * kernel fault information, so that won't result in polluting
495 * the information about previously queued, but not yet
496 * delivered, faults. See also do_general_protection below.
497 */
498 tsk->thread.error_code = error_code;
499 tsk->thread.trap_no = trapnr;
500
501 if (info)
502 force_sig_info(signr, info, tsk);
503 else
504 force_sig(signr, tsk);
505 return;
506 }
507
508 kernel_trap: {
509 if (!fixup_exception(regs)) {
510 tsk->thread.error_code = error_code;
511 tsk->thread.trap_no = trapnr;
512 die(str, regs, error_code);
513 }
514 return;
515 }
516
517 vm86_trap: {
518 int ret = handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, trapnr);
519 if (ret) goto trap_signal;
520 return;
521 }
522 }
523
524 #define DO_ERROR(trapnr, signr, str, name) \
525 fastcall void do_##name(struct pt_regs * regs, long error_code) \
526 { \
527 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
528 == NOTIFY_STOP) \
529 return; \
530 do_trap(trapnr, signr, str, 0, regs, error_code, NULL); \
531 }
532
533 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr, irq) \
534 fastcall void do_##name(struct pt_regs * regs, long error_code) \
535 { \
536 siginfo_t info; \
537 if (irq) \
538 local_irq_enable(); \
539 info.si_signo = signr; \
540 info.si_errno = 0; \
541 info.si_code = sicode; \
542 info.si_addr = (void __user *)siaddr; \
543 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
544 == NOTIFY_STOP) \
545 return; \
546 do_trap(trapnr, signr, str, 0, regs, error_code, &info); \
547 }
548
549 #define DO_VM86_ERROR(trapnr, signr, str, name) \
550 fastcall void do_##name(struct pt_regs * regs, long error_code) \
551 { \
552 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
553 == NOTIFY_STOP) \
554 return; \
555 do_trap(trapnr, signr, str, 1, regs, error_code, NULL); \
556 }
557
558 #define DO_VM86_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
559 fastcall void do_##name(struct pt_regs * regs, long error_code) \
560 { \
561 siginfo_t info; \
562 info.si_signo = signr; \
563 info.si_errno = 0; \
564 info.si_code = sicode; \
565 info.si_addr = (void __user *)siaddr; \
566 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
567 == NOTIFY_STOP) \
568 return; \
569 do_trap(trapnr, signr, str, 1, regs, error_code, &info); \
570 }
571
572 DO_VM86_ERROR_INFO( 0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->eip)
573 #ifndef CONFIG_KPROBES
574 DO_VM86_ERROR( 3, SIGTRAP, "int3", int3)
575 #endif
576 DO_VM86_ERROR( 4, SIGSEGV, "overflow", overflow)
577 DO_VM86_ERROR( 5, SIGSEGV, "bounds", bounds)
578 DO_ERROR_INFO( 6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->eip, 0)
579 DO_ERROR( 9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
580 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
581 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
582 DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
583 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0, 0)
584 DO_ERROR_INFO(32, SIGSEGV, "iret exception", iret_error, ILL_BADSTK, 0, 1)
585
586 fastcall void __kprobes do_general_protection(struct pt_regs * regs,
587 long error_code)
588 {
589 int cpu = get_cpu();
590 struct tss_struct *tss = &per_cpu(init_tss, cpu);
591 struct thread_struct *thread = &current->thread;
592
593 /*
594 * Perform the lazy TSS's I/O bitmap copy. If the TSS has an
595 * invalid offset set (the LAZY one) and the faulting thread has
596 * a valid I/O bitmap pointer, we copy the I/O bitmap in the TSS
597 * and we set the offset field correctly. Then we let the CPU to
598 * restart the faulting instruction.
599 */
600 if (tss->x86_tss.io_bitmap_base == INVALID_IO_BITMAP_OFFSET_LAZY &&
601 thread->io_bitmap_ptr) {
602 memcpy(tss->io_bitmap, thread->io_bitmap_ptr,
603 thread->io_bitmap_max);
604 /*
605 * If the previously set map was extending to higher ports
606 * than the current one, pad extra space with 0xff (no access).
607 */
608 if (thread->io_bitmap_max < tss->io_bitmap_max)
609 memset((char *) tss->io_bitmap +
610 thread->io_bitmap_max, 0xff,
611 tss->io_bitmap_max - thread->io_bitmap_max);
612 tss->io_bitmap_max = thread->io_bitmap_max;
613 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
614 tss->io_bitmap_owner = thread;
615 put_cpu();
616 return;
617 }
618 put_cpu();
619
620 if (regs->eflags & VM_MASK)
621 goto gp_in_vm86;
622
623 if (!user_mode(regs))
624 goto gp_in_kernel;
625
626 current->thread.error_code = error_code;
627 current->thread.trap_no = 13;
628 if (show_unhandled_signals && unhandled_signal(current, SIGSEGV) &&
629 printk_ratelimit())
630 printk(KERN_INFO
631 "%s[%d] general protection eip:%lx esp:%lx error:%lx\n",
632 current->comm, current->pid,
633 regs->eip, regs->esp, error_code);
634
635 force_sig(SIGSEGV, current);
636 return;
637
638 gp_in_vm86:
639 local_irq_enable();
640 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
641 return;
642
643 gp_in_kernel:
644 if (!fixup_exception(regs)) {
645 current->thread.error_code = error_code;
646 current->thread.trap_no = 13;
647 if (notify_die(DIE_GPF, "general protection fault", regs,
648 error_code, 13, SIGSEGV) == NOTIFY_STOP)
649 return;
650 die("general protection fault", regs, error_code);
651 }
652 }
653
654 static __kprobes void
655 mem_parity_error(unsigned char reason, struct pt_regs * regs)
656 {
657 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x on "
658 "CPU %d.\n", reason, smp_processor_id());
659 printk(KERN_EMERG "You have some hardware problem, likely on the PCI bus.\n");
660
661 #if defined(CONFIG_EDAC)
662 if(edac_handler_set()) {
663 edac_atomic_assert_error();
664 return;
665 }
666 #endif
667
668 if (panic_on_unrecovered_nmi)
669 panic("NMI: Not continuing");
670
671 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
672
673 /* Clear and disable the memory parity error line. */
674 clear_mem_error(reason);
675 }
676
677 static __kprobes void
678 io_check_error(unsigned char reason, struct pt_regs * regs)
679 {
680 unsigned long i;
681
682 printk(KERN_EMERG "NMI: IOCK error (debug interrupt?)\n");
683 show_registers(regs);
684
685 /* Re-enable the IOCK line, wait for a few seconds */
686 reason = (reason & 0xf) | 8;
687 outb(reason, 0x61);
688 i = 2000;
689 while (--i) udelay(1000);
690 reason &= ~8;
691 outb(reason, 0x61);
692 }
693
694 static __kprobes void
695 unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
696 {
697 #ifdef CONFIG_MCA
698 /* Might actually be able to figure out what the guilty party
699 * is. */
700 if( MCA_bus ) {
701 mca_handle_nmi();
702 return;
703 }
704 #endif
705 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x on "
706 "CPU %d.\n", reason, smp_processor_id());
707 printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n");
708 if (panic_on_unrecovered_nmi)
709 panic("NMI: Not continuing");
710
711 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
712 }
713
714 static DEFINE_SPINLOCK(nmi_print_lock);
715
716 void __kprobes die_nmi(struct pt_regs *regs, const char *msg)
717 {
718 if (notify_die(DIE_NMIWATCHDOG, msg, regs, 0, 2, SIGINT) ==
719 NOTIFY_STOP)
720 return;
721
722 spin_lock(&nmi_print_lock);
723 /*
724 * We are in trouble anyway, lets at least try
725 * to get a message out.
726 */
727 bust_spinlocks(1);
728 printk(KERN_EMERG "%s", msg);
729 printk(" on CPU%d, eip %08lx, registers:\n",
730 smp_processor_id(), regs->eip);
731 show_registers(regs);
732 console_silent();
733 spin_unlock(&nmi_print_lock);
734 bust_spinlocks(0);
735
736 /* If we are in kernel we are probably nested up pretty bad
737 * and might aswell get out now while we still can.
738 */
739 if (!user_mode_vm(regs)) {
740 current->thread.trap_no = 2;
741 crash_kexec(regs);
742 }
743
744 do_exit(SIGSEGV);
745 }
746
747 static __kprobes void default_do_nmi(struct pt_regs * regs)
748 {
749 unsigned char reason = 0;
750
751 /* Only the BSP gets external NMIs from the system. */
752 if (!smp_processor_id())
753 reason = get_nmi_reason();
754
755 if (!(reason & 0xc0)) {
756 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
757 == NOTIFY_STOP)
758 return;
759 #ifdef CONFIG_X86_LOCAL_APIC
760 /*
761 * Ok, so this is none of the documented NMI sources,
762 * so it must be the NMI watchdog.
763 */
764 if (nmi_watchdog_tick(regs, reason))
765 return;
766 if (!do_nmi_callback(regs, smp_processor_id()))
767 #endif
768 unknown_nmi_error(reason, regs);
769
770 return;
771 }
772 if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
773 return;
774 if (reason & 0x80)
775 mem_parity_error(reason, regs);
776 if (reason & 0x40)
777 io_check_error(reason, regs);
778 /*
779 * Reassert NMI in case it became active meanwhile
780 * as it's edge-triggered.
781 */
782 reassert_nmi();
783 }
784
785 static int ignore_nmis;
786
787 fastcall __kprobes void do_nmi(struct pt_regs * regs, long error_code)
788 {
789 int cpu;
790
791 nmi_enter();
792
793 cpu = smp_processor_id();
794
795 ++nmi_count(cpu);
796
797 if (!ignore_nmis)
798 default_do_nmi(regs);
799
800 nmi_exit();
801 }
802
803 void stop_nmi(void)
804 {
805 acpi_nmi_disable();
806 ignore_nmis++;
807 }
808
809 void restart_nmi(void)
810 {
811 ignore_nmis--;
812 acpi_nmi_enable();
813 }
814
815 #ifdef CONFIG_KPROBES
816 fastcall void __kprobes do_int3(struct pt_regs *regs, long error_code)
817 {
818 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
819 == NOTIFY_STOP)
820 return;
821 /* This is an interrupt gate, because kprobes wants interrupts
822 disabled. Normal trap handlers don't. */
823 restore_interrupts(regs);
824 do_trap(3, SIGTRAP, "int3", 1, regs, error_code, NULL);
825 }
826 #endif
827
828 /*
829 * Our handling of the processor debug registers is non-trivial.
830 * We do not clear them on entry and exit from the kernel. Therefore
831 * it is possible to get a watchpoint trap here from inside the kernel.
832 * However, the code in ./ptrace.c has ensured that the user can
833 * only set watchpoints on userspace addresses. Therefore the in-kernel
834 * watchpoint trap can only occur in code which is reading/writing
835 * from user space. Such code must not hold kernel locks (since it
836 * can equally take a page fault), therefore it is safe to call
837 * force_sig_info even though that claims and releases locks.
838 *
839 * Code in ./signal.c ensures that the debug control register
840 * is restored before we deliver any signal, and therefore that
841 * user code runs with the correct debug control register even though
842 * we clear it here.
843 *
844 * Being careful here means that we don't have to be as careful in a
845 * lot of more complicated places (task switching can be a bit lazy
846 * about restoring all the debug state, and ptrace doesn't have to
847 * find every occurrence of the TF bit that could be saved away even
848 * by user code)
849 */
850 fastcall void __kprobes do_debug(struct pt_regs * regs, long error_code)
851 {
852 unsigned int condition;
853 struct task_struct *tsk = current;
854
855 get_debugreg(condition, 6);
856
857 if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
858 SIGTRAP) == NOTIFY_STOP)
859 return;
860 /* It's safe to allow irq's after DR6 has been saved */
861 if (regs->eflags & X86_EFLAGS_IF)
862 local_irq_enable();
863
864 /* Mask out spurious debug traps due to lazy DR7 setting */
865 if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
866 if (!tsk->thread.debugreg[7])
867 goto clear_dr7;
868 }
869
870 if (regs->eflags & VM_MASK)
871 goto debug_vm86;
872
873 /* Save debug status register where ptrace can see it */
874 tsk->thread.debugreg[6] = condition;
875
876 /*
877 * Single-stepping through TF: make sure we ignore any events in
878 * kernel space (but re-enable TF when returning to user mode).
879 */
880 if (condition & DR_STEP) {
881 /*
882 * We already checked v86 mode above, so we can
883 * check for kernel mode by just checking the CPL
884 * of CS.
885 */
886 if (!user_mode(regs))
887 goto clear_TF_reenable;
888 }
889
890 /* Ok, finally something we can handle */
891 send_sigtrap(tsk, regs, error_code);
892
893 /* Disable additional traps. They'll be re-enabled when
894 * the signal is delivered.
895 */
896 clear_dr7:
897 set_debugreg(0, 7);
898 return;
899
900 debug_vm86:
901 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1);
902 return;
903
904 clear_TF_reenable:
905 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
906 regs->eflags &= ~TF_MASK;
907 return;
908 }
909
910 /*
911 * Note that we play around with the 'TS' bit in an attempt to get
912 * the correct behaviour even in the presence of the asynchronous
913 * IRQ13 behaviour
914 */
915 void math_error(void __user *eip)
916 {
917 struct task_struct * task;
918 siginfo_t info;
919 unsigned short cwd, swd;
920
921 /*
922 * Save the info for the exception handler and clear the error.
923 */
924 task = current;
925 save_init_fpu(task);
926 task->thread.trap_no = 16;
927 task->thread.error_code = 0;
928 info.si_signo = SIGFPE;
929 info.si_errno = 0;
930 info.si_code = __SI_FAULT;
931 info.si_addr = eip;
932 /*
933 * (~cwd & swd) will mask out exceptions that are not set to unmasked
934 * status. 0x3f is the exception bits in these regs, 0x200 is the
935 * C1 reg you need in case of a stack fault, 0x040 is the stack
936 * fault bit. We should only be taking one exception at a time,
937 * so if this combination doesn't produce any single exception,
938 * then we have a bad program that isn't syncronizing its FPU usage
939 * and it will suffer the consequences since we won't be able to
940 * fully reproduce the context of the exception
941 */
942 cwd = get_fpu_cwd(task);
943 swd = get_fpu_swd(task);
944 switch (swd & ~cwd & 0x3f) {
945 case 0x000: /* No unmasked exception */
946 return;
947 default: /* Multiple exceptions */
948 break;
949 case 0x001: /* Invalid Op */
950 /*
951 * swd & 0x240 == 0x040: Stack Underflow
952 * swd & 0x240 == 0x240: Stack Overflow
953 * User must clear the SF bit (0x40) if set
954 */
955 info.si_code = FPE_FLTINV;
956 break;
957 case 0x002: /* Denormalize */
958 case 0x010: /* Underflow */
959 info.si_code = FPE_FLTUND;
960 break;
961 case 0x004: /* Zero Divide */
962 info.si_code = FPE_FLTDIV;
963 break;
964 case 0x008: /* Overflow */
965 info.si_code = FPE_FLTOVF;
966 break;
967 case 0x020: /* Precision */
968 info.si_code = FPE_FLTRES;
969 break;
970 }
971 force_sig_info(SIGFPE, &info, task);
972 }
973
974 fastcall void do_coprocessor_error(struct pt_regs * regs, long error_code)
975 {
976 ignore_fpu_irq = 1;
977 math_error((void __user *)regs->eip);
978 }
979
980 static void simd_math_error(void __user *eip)
981 {
982 struct task_struct * task;
983 siginfo_t info;
984 unsigned short mxcsr;
985
986 /*
987 * Save the info for the exception handler and clear the error.
988 */
989 task = current;
990 save_init_fpu(task);
991 task->thread.trap_no = 19;
992 task->thread.error_code = 0;
993 info.si_signo = SIGFPE;
994 info.si_errno = 0;
995 info.si_code = __SI_FAULT;
996 info.si_addr = eip;
997 /*
998 * The SIMD FPU exceptions are handled a little differently, as there
999 * is only a single status/control register. Thus, to determine which
1000 * unmasked exception was caught we must mask the exception mask bits
1001 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
1002 */
1003 mxcsr = get_fpu_mxcsr(task);
1004 switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
1005 case 0x000:
1006 default:
1007 break;
1008 case 0x001: /* Invalid Op */
1009 info.si_code = FPE_FLTINV;
1010 break;
1011 case 0x002: /* Denormalize */
1012 case 0x010: /* Underflow */
1013 info.si_code = FPE_FLTUND;
1014 break;
1015 case 0x004: /* Zero Divide */
1016 info.si_code = FPE_FLTDIV;
1017 break;
1018 case 0x008: /* Overflow */
1019 info.si_code = FPE_FLTOVF;
1020 break;
1021 case 0x020: /* Precision */
1022 info.si_code = FPE_FLTRES;
1023 break;
1024 }
1025 force_sig_info(SIGFPE, &info, task);
1026 }
1027
1028 fastcall void do_simd_coprocessor_error(struct pt_regs * regs,
1029 long error_code)
1030 {
1031 if (cpu_has_xmm) {
1032 /* Handle SIMD FPU exceptions on PIII+ processors. */
1033 ignore_fpu_irq = 1;
1034 simd_math_error((void __user *)regs->eip);
1035 } else {
1036 /*
1037 * Handle strange cache flush from user space exception
1038 * in all other cases. This is undocumented behaviour.
1039 */
1040 if (regs->eflags & VM_MASK) {
1041 handle_vm86_fault((struct kernel_vm86_regs *)regs,
1042 error_code);
1043 return;
1044 }
1045 current->thread.trap_no = 19;
1046 current->thread.error_code = error_code;
1047 die_if_kernel("cache flush denied", regs, error_code);
1048 force_sig(SIGSEGV, current);
1049 }
1050 }
1051
1052 fastcall void do_spurious_interrupt_bug(struct pt_regs * regs,
1053 long error_code)
1054 {
1055 #if 0
1056 /* No need to warn about this any longer. */
1057 printk("Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
1058 #endif
1059 }
1060
1061 fastcall unsigned long patch_espfix_desc(unsigned long uesp,
1062 unsigned long kesp)
1063 {
1064 struct desc_struct *gdt = __get_cpu_var(gdt_page).gdt;
1065 unsigned long base = (kesp - uesp) & -THREAD_SIZE;
1066 unsigned long new_kesp = kesp - base;
1067 unsigned long lim_pages = (new_kesp | (THREAD_SIZE - 1)) >> PAGE_SHIFT;
1068 __u64 desc = *(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS];
1069 /* Set up base for espfix segment */
1070 desc &= 0x00f0ff0000000000ULL;
1071 desc |= ((((__u64)base) << 16) & 0x000000ffffff0000ULL) |
1072 ((((__u64)base) << 32) & 0xff00000000000000ULL) |
1073 ((((__u64)lim_pages) << 32) & 0x000f000000000000ULL) |
1074 (lim_pages & 0xffff);
1075 *(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS] = desc;
1076 return new_kesp;
1077 }
1078
1079 /*
1080 * 'math_state_restore()' saves the current math information in the
1081 * old math state array, and gets the new ones from the current task
1082 *
1083 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
1084 * Don't touch unless you *really* know how it works.
1085 *
1086 * Must be called with kernel preemption disabled (in this case,
1087 * local interrupts are disabled at the call-site in entry.S).
1088 */
1089 asmlinkage void math_state_restore(void)
1090 {
1091 struct thread_info *thread = current_thread_info();
1092 struct task_struct *tsk = thread->task;
1093
1094 clts(); /* Allow maths ops (or we recurse) */
1095 if (!tsk_used_math(tsk))
1096 init_fpu(tsk);
1097 restore_fpu(tsk);
1098 thread->status |= TS_USEDFPU; /* So we fnsave on switch_to() */
1099 tsk->fpu_counter++;
1100 }
1101 EXPORT_SYMBOL_GPL(math_state_restore);
1102
1103 #ifndef CONFIG_MATH_EMULATION
1104
1105 asmlinkage void math_emulate(long arg)
1106 {
1107 printk(KERN_EMERG "math-emulation not enabled and no coprocessor found.\n");
1108 printk(KERN_EMERG "killing %s.\n",current->comm);
1109 force_sig(SIGFPE,current);
1110 schedule();
1111 }
1112
1113 #endif /* CONFIG_MATH_EMULATION */
1114
1115 #ifdef CONFIG_X86_F00F_BUG
1116 void __init trap_init_f00f_bug(void)
1117 {
1118 __set_fixmap(FIX_F00F_IDT, __pa(&idt_table), PAGE_KERNEL_RO);
1119
1120 /*
1121 * Update the IDT descriptor and reload the IDT so that
1122 * it uses the read-only mapped virtual address.
1123 */
1124 idt_descr.address = fix_to_virt(FIX_F00F_IDT);
1125 load_idt(&idt_descr);
1126 }
1127 #endif
1128
1129 /*
1130 * This needs to use 'idt_table' rather than 'idt', and
1131 * thus use the _nonmapped_ version of the IDT, as the
1132 * Pentium F0 0F bugfix can have resulted in the mapped
1133 * IDT being write-protected.
1134 */
1135 void set_intr_gate(unsigned int n, void *addr)
1136 {
1137 _set_gate(n, DESCTYPE_INT, addr, __KERNEL_CS);
1138 }
1139
1140 /*
1141 * This routine sets up an interrupt gate at directory privilege level 3.
1142 */
1143 static inline void set_system_intr_gate(unsigned int n, void *addr)
1144 {
1145 _set_gate(n, DESCTYPE_INT | DESCTYPE_DPL3, addr, __KERNEL_CS);
1146 }
1147
1148 static void __init set_trap_gate(unsigned int n, void *addr)
1149 {
1150 _set_gate(n, DESCTYPE_TRAP, addr, __KERNEL_CS);
1151 }
1152
1153 static void __init set_system_gate(unsigned int n, void *addr)
1154 {
1155 _set_gate(n, DESCTYPE_TRAP | DESCTYPE_DPL3, addr, __KERNEL_CS);
1156 }
1157
1158 static void __init set_task_gate(unsigned int n, unsigned int gdt_entry)
1159 {
1160 _set_gate(n, DESCTYPE_TASK, (void *)0, (gdt_entry<<3));
1161 }
1162
1163
1164 void __init trap_init(void)
1165 {
1166 #ifdef CONFIG_EISA
1167 void __iomem *p = ioremap(0x0FFFD9, 4);
1168 if (readl(p) == 'E'+('I'<<8)+('S'<<16)+('A'<<24)) {
1169 EISA_bus = 1;
1170 }
1171 iounmap(p);
1172 #endif
1173
1174 #ifdef CONFIG_X86_LOCAL_APIC
1175 init_apic_mappings();
1176 #endif
1177
1178 set_trap_gate(0,&divide_error);
1179 set_intr_gate(1,&debug);
1180 set_intr_gate(2,&nmi);
1181 set_system_intr_gate(3, &int3); /* int3/4 can be called from all */
1182 set_system_gate(4,&overflow);
1183 set_trap_gate(5,&bounds);
1184 set_trap_gate(6,&invalid_op);
1185 set_trap_gate(7,&device_not_available);
1186 set_task_gate(8,GDT_ENTRY_DOUBLEFAULT_TSS);
1187 set_trap_gate(9,&coprocessor_segment_overrun);
1188 set_trap_gate(10,&invalid_TSS);
1189 set_trap_gate(11,&segment_not_present);
1190 set_trap_gate(12,&stack_segment);
1191 set_trap_gate(13,&general_protection);
1192 set_intr_gate(14,&page_fault);
1193 set_trap_gate(15,&spurious_interrupt_bug);
1194 set_trap_gate(16,&coprocessor_error);
1195 set_trap_gate(17,&alignment_check);
1196 #ifdef CONFIG_X86_MCE
1197 set_trap_gate(18,&machine_check);
1198 #endif
1199 set_trap_gate(19,&simd_coprocessor_error);
1200
1201 if (cpu_has_fxsr) {
1202 /*
1203 * Verify that the FXSAVE/FXRSTOR data will be 16-byte aligned.
1204 * Generates a compile-time "error: zero width for bit-field" if
1205 * the alignment is wrong.
1206 */
1207 struct fxsrAlignAssert {
1208 int _:!(offsetof(struct task_struct,
1209 thread.i387.fxsave) & 15);
1210 };
1211
1212 printk(KERN_INFO "Enabling fast FPU save and restore... ");
1213 set_in_cr4(X86_CR4_OSFXSR);
1214 printk("done.\n");
1215 }
1216 if (cpu_has_xmm) {
1217 printk(KERN_INFO "Enabling unmasked SIMD FPU exception "
1218 "support... ");
1219 set_in_cr4(X86_CR4_OSXMMEXCPT);
1220 printk("done.\n");
1221 }
1222
1223 set_system_gate(SYSCALL_VECTOR,&system_call);
1224
1225 /*
1226 * Should be a barrier for any external CPU state.
1227 */
1228 cpu_init();
1229
1230 trap_init_hook();
1231 }
1232
1233 static int __init kstack_setup(char *s)
1234 {
1235 kstack_depth_to_print = simple_strtoul(s, NULL, 0);
1236 return 1;
1237 }
1238 __setup("kstack=", kstack_setup);
1239
1240 static int __init code_bytes_setup(char *s)
1241 {
1242 code_bytes = simple_strtoul(s, NULL, 0);
1243 if (code_bytes > 8192)
1244 code_bytes = 8192;
1245
1246 return 1;
1247 }
1248 __setup("code_bytes=", code_bytes_setup);
This page took 0.07505 seconds and 6 git commands to generate.