Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/net-2.6
[deliverable/linux.git] / arch / x86 / kernel / traps_32.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 */
7
8 /*
9 * 'Traps.c' handles hardware traps and faults after we have saved some
10 * state in 'asm.s'.
11 */
12 #include <linux/sched.h>
13 #include <linux/kernel.h>
14 #include <linux/string.h>
15 #include <linux/errno.h>
16 #include <linux/timer.h>
17 #include <linux/mm.h>
18 #include <linux/init.h>
19 #include <linux/delay.h>
20 #include <linux/spinlock.h>
21 #include <linux/interrupt.h>
22 #include <linux/highmem.h>
23 #include <linux/kallsyms.h>
24 #include <linux/ptrace.h>
25 #include <linux/utsname.h>
26 #include <linux/kprobes.h>
27 #include <linux/kexec.h>
28 #include <linux/unwind.h>
29 #include <linux/uaccess.h>
30 #include <linux/nmi.h>
31 #include <linux/bug.h>
32
33 #ifdef CONFIG_EISA
34 #include <linux/ioport.h>
35 #include <linux/eisa.h>
36 #endif
37
38 #ifdef CONFIG_MCA
39 #include <linux/mca.h>
40 #endif
41
42 #if defined(CONFIG_EDAC)
43 #include <linux/edac.h>
44 #endif
45
46 #include <asm/processor.h>
47 #include <asm/system.h>
48 #include <asm/io.h>
49 #include <asm/atomic.h>
50 #include <asm/debugreg.h>
51 #include <asm/desc.h>
52 #include <asm/i387.h>
53 #include <asm/nmi.h>
54 #include <asm/unwind.h>
55 #include <asm/smp.h>
56 #include <asm/arch_hooks.h>
57 #include <linux/kdebug.h>
58 #include <asm/stacktrace.h>
59
60 #include <linux/module.h>
61
62 #include "mach_traps.h"
63
64 int panic_on_unrecovered_nmi;
65
66 DECLARE_BITMAP(used_vectors, NR_VECTORS);
67 EXPORT_SYMBOL_GPL(used_vectors);
68
69 asmlinkage int system_call(void);
70
71 /* Do we ignore FPU interrupts ? */
72 char ignore_fpu_irq = 0;
73
74 /*
75 * The IDT has to be page-aligned to simplify the Pentium
76 * F0 0F bug workaround.. We have a special link segment
77 * for this.
78 */
79 struct desc_struct idt_table[256] __attribute__((__section__(".data.idt"))) = { {0, 0}, };
80
81 asmlinkage void divide_error(void);
82 asmlinkage void debug(void);
83 asmlinkage void nmi(void);
84 asmlinkage void int3(void);
85 asmlinkage void overflow(void);
86 asmlinkage void bounds(void);
87 asmlinkage void invalid_op(void);
88 asmlinkage void device_not_available(void);
89 asmlinkage void coprocessor_segment_overrun(void);
90 asmlinkage void invalid_TSS(void);
91 asmlinkage void segment_not_present(void);
92 asmlinkage void stack_segment(void);
93 asmlinkage void general_protection(void);
94 asmlinkage void page_fault(void);
95 asmlinkage void coprocessor_error(void);
96 asmlinkage void simd_coprocessor_error(void);
97 asmlinkage void alignment_check(void);
98 asmlinkage void spurious_interrupt_bug(void);
99 asmlinkage void machine_check(void);
100
101 int kstack_depth_to_print = 24;
102 static unsigned int code_bytes = 64;
103
104 static inline int valid_stack_ptr(struct thread_info *tinfo, void *p, unsigned size)
105 {
106 return p > (void *)tinfo &&
107 p <= (void *)tinfo + THREAD_SIZE - size;
108 }
109
110 /* The form of the top of the frame on the stack */
111 struct stack_frame {
112 struct stack_frame *next_frame;
113 unsigned long return_address;
114 };
115
116 static inline unsigned long print_context_stack(struct thread_info *tinfo,
117 unsigned long *stack, unsigned long ebp,
118 const struct stacktrace_ops *ops, void *data)
119 {
120 #ifdef CONFIG_FRAME_POINTER
121 struct stack_frame *frame = (struct stack_frame *)ebp;
122 while (valid_stack_ptr(tinfo, frame, sizeof(*frame))) {
123 struct stack_frame *next;
124 unsigned long addr;
125
126 addr = frame->return_address;
127 ops->address(data, addr);
128 /*
129 * break out of recursive entries (such as
130 * end_of_stack_stop_unwind_function). Also,
131 * we can never allow a frame pointer to
132 * move downwards!
133 */
134 next = frame->next_frame;
135 if (next <= frame)
136 break;
137 frame = next;
138 }
139 #else
140 while (valid_stack_ptr(tinfo, stack, sizeof(*stack))) {
141 unsigned long addr;
142
143 addr = *stack++;
144 if (__kernel_text_address(addr))
145 ops->address(data, addr);
146 }
147 #endif
148 return ebp;
149 }
150
151 #define MSG(msg) ops->warning(data, msg)
152
153 void dump_trace(struct task_struct *task, struct pt_regs *regs,
154 unsigned long *stack,
155 const struct stacktrace_ops *ops, void *data)
156 {
157 unsigned long ebp = 0;
158
159 if (!task)
160 task = current;
161
162 if (!stack) {
163 unsigned long dummy;
164 stack = &dummy;
165 if (task != current)
166 stack = (unsigned long *)task->thread.esp;
167 }
168
169 #ifdef CONFIG_FRAME_POINTER
170 if (!ebp) {
171 if (task == current) {
172 /* Grab ebp right from our regs */
173 asm ("movl %%ebp, %0" : "=r" (ebp) : );
174 } else {
175 /* ebp is the last reg pushed by switch_to */
176 ebp = *(unsigned long *) task->thread.esp;
177 }
178 }
179 #endif
180
181 while (1) {
182 struct thread_info *context;
183 context = (struct thread_info *)
184 ((unsigned long)stack & (~(THREAD_SIZE - 1)));
185 ebp = print_context_stack(context, stack, ebp, ops, data);
186 /* Should be after the line below, but somewhere
187 in early boot context comes out corrupted and we
188 can't reference it -AK */
189 if (ops->stack(data, "IRQ") < 0)
190 break;
191 stack = (unsigned long*)context->previous_esp;
192 if (!stack)
193 break;
194 touch_nmi_watchdog();
195 }
196 }
197 EXPORT_SYMBOL(dump_trace);
198
199 static void
200 print_trace_warning_symbol(void *data, char *msg, unsigned long symbol)
201 {
202 printk(data);
203 print_symbol(msg, symbol);
204 printk("\n");
205 }
206
207 static void print_trace_warning(void *data, char *msg)
208 {
209 printk("%s%s\n", (char *)data, msg);
210 }
211
212 static int print_trace_stack(void *data, char *name)
213 {
214 return 0;
215 }
216
217 /*
218 * Print one address/symbol entries per line.
219 */
220 static void print_trace_address(void *data, unsigned long addr)
221 {
222 printk("%s [<%08lx>] ", (char *)data, addr);
223 print_symbol("%s\n", addr);
224 touch_nmi_watchdog();
225 }
226
227 static const struct stacktrace_ops print_trace_ops = {
228 .warning = print_trace_warning,
229 .warning_symbol = print_trace_warning_symbol,
230 .stack = print_trace_stack,
231 .address = print_trace_address,
232 };
233
234 static void
235 show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
236 unsigned long * stack, char *log_lvl)
237 {
238 dump_trace(task, regs, stack, &print_trace_ops, log_lvl);
239 printk("%s =======================\n", log_lvl);
240 }
241
242 void show_trace(struct task_struct *task, struct pt_regs *regs,
243 unsigned long * stack)
244 {
245 show_trace_log_lvl(task, regs, stack, "");
246 }
247
248 static void show_stack_log_lvl(struct task_struct *task, struct pt_regs *regs,
249 unsigned long *esp, char *log_lvl)
250 {
251 unsigned long *stack;
252 int i;
253
254 if (esp == NULL) {
255 if (task)
256 esp = (unsigned long*)task->thread.esp;
257 else
258 esp = (unsigned long *)&esp;
259 }
260
261 stack = esp;
262 for(i = 0; i < kstack_depth_to_print; i++) {
263 if (kstack_end(stack))
264 break;
265 if (i && ((i % 8) == 0))
266 printk("\n%s ", log_lvl);
267 printk("%08lx ", *stack++);
268 }
269 printk("\n%sCall Trace:\n", log_lvl);
270 show_trace_log_lvl(task, regs, esp, log_lvl);
271 }
272
273 void show_stack(struct task_struct *task, unsigned long *esp)
274 {
275 printk(" ");
276 show_stack_log_lvl(task, NULL, esp, "");
277 }
278
279 /*
280 * The architecture-independent dump_stack generator
281 */
282 void dump_stack(void)
283 {
284 unsigned long stack;
285
286 printk("Pid: %d, comm: %.20s %s %s %.*s\n",
287 current->pid, current->comm, print_tainted(),
288 init_utsname()->release,
289 (int)strcspn(init_utsname()->version, " "),
290 init_utsname()->version);
291 show_trace(current, NULL, &stack);
292 }
293
294 EXPORT_SYMBOL(dump_stack);
295
296 void show_registers(struct pt_regs *regs)
297 {
298 int i;
299
300 print_modules();
301 __show_registers(regs, 0);
302 printk(KERN_EMERG "Process %.*s (pid: %d, ti=%p task=%p task.ti=%p)",
303 TASK_COMM_LEN, current->comm, task_pid_nr(current),
304 current_thread_info(), current, task_thread_info(current));
305 /*
306 * When in-kernel, we also print out the stack and code at the
307 * time of the fault..
308 */
309 if (!user_mode_vm(regs)) {
310 u8 *eip;
311 unsigned int code_prologue = code_bytes * 43 / 64;
312 unsigned int code_len = code_bytes;
313 unsigned char c;
314
315 printk("\n" KERN_EMERG "Stack: ");
316 show_stack_log_lvl(NULL, regs, &regs->esp, KERN_EMERG);
317
318 printk(KERN_EMERG "Code: ");
319
320 eip = (u8 *)regs->eip - code_prologue;
321 if (eip < (u8 *)PAGE_OFFSET ||
322 probe_kernel_address(eip, c)) {
323 /* try starting at EIP */
324 eip = (u8 *)regs->eip;
325 code_len = code_len - code_prologue + 1;
326 }
327 for (i = 0; i < code_len; i++, eip++) {
328 if (eip < (u8 *)PAGE_OFFSET ||
329 probe_kernel_address(eip, c)) {
330 printk(" Bad EIP value.");
331 break;
332 }
333 if (eip == (u8 *)regs->eip)
334 printk("<%02x> ", c);
335 else
336 printk("%02x ", c);
337 }
338 }
339 printk("\n");
340 }
341
342 int is_valid_bugaddr(unsigned long eip)
343 {
344 unsigned short ud2;
345
346 if (eip < PAGE_OFFSET)
347 return 0;
348 if (probe_kernel_address((unsigned short *)eip, ud2))
349 return 0;
350
351 return ud2 == 0x0b0f;
352 }
353
354 /*
355 * This is gone through when something in the kernel has done something bad and
356 * is about to be terminated.
357 */
358 void die(const char * str, struct pt_regs * regs, long err)
359 {
360 static struct {
361 raw_spinlock_t lock;
362 u32 lock_owner;
363 int lock_owner_depth;
364 } die = {
365 .lock = __RAW_SPIN_LOCK_UNLOCKED,
366 .lock_owner = -1,
367 .lock_owner_depth = 0
368 };
369 static int die_counter;
370 unsigned long flags;
371
372 oops_enter();
373
374 if (die.lock_owner != raw_smp_processor_id()) {
375 console_verbose();
376 __raw_spin_lock(&die.lock);
377 raw_local_save_flags(flags);
378 die.lock_owner = smp_processor_id();
379 die.lock_owner_depth = 0;
380 bust_spinlocks(1);
381 }
382 else
383 raw_local_save_flags(flags);
384
385 if (++die.lock_owner_depth < 3) {
386 unsigned long esp;
387 unsigned short ss;
388
389 report_bug(regs->eip, regs);
390
391 printk(KERN_EMERG "%s: %04lx [#%d] ", str, err & 0xffff,
392 ++die_counter);
393 #ifdef CONFIG_PREEMPT
394 printk("PREEMPT ");
395 #endif
396 #ifdef CONFIG_SMP
397 printk("SMP ");
398 #endif
399 #ifdef CONFIG_DEBUG_PAGEALLOC
400 printk("DEBUG_PAGEALLOC");
401 #endif
402 printk("\n");
403
404 if (notify_die(DIE_OOPS, str, regs, err,
405 current->thread.trap_no, SIGSEGV) !=
406 NOTIFY_STOP) {
407 show_registers(regs);
408 /* Executive summary in case the oops scrolled away */
409 esp = (unsigned long) (&regs->esp);
410 savesegment(ss, ss);
411 if (user_mode(regs)) {
412 esp = regs->esp;
413 ss = regs->xss & 0xffff;
414 }
415 printk(KERN_EMERG "EIP: [<%08lx>] ", regs->eip);
416 print_symbol("%s", regs->eip);
417 printk(" SS:ESP %04x:%08lx\n", ss, esp);
418 }
419 else
420 regs = NULL;
421 } else
422 printk(KERN_EMERG "Recursive die() failure, output suppressed\n");
423
424 bust_spinlocks(0);
425 die.lock_owner = -1;
426 add_taint(TAINT_DIE);
427 __raw_spin_unlock(&die.lock);
428 raw_local_irq_restore(flags);
429
430 if (!regs)
431 return;
432
433 if (kexec_should_crash(current))
434 crash_kexec(regs);
435
436 if (in_interrupt())
437 panic("Fatal exception in interrupt");
438
439 if (panic_on_oops)
440 panic("Fatal exception");
441
442 oops_exit();
443 do_exit(SIGSEGV);
444 }
445
446 static inline void die_if_kernel(const char * str, struct pt_regs * regs, long err)
447 {
448 if (!user_mode_vm(regs))
449 die(str, regs, err);
450 }
451
452 static void __kprobes do_trap(int trapnr, int signr, char *str, int vm86,
453 struct pt_regs * regs, long error_code,
454 siginfo_t *info)
455 {
456 struct task_struct *tsk = current;
457
458 if (regs->eflags & VM_MASK) {
459 if (vm86)
460 goto vm86_trap;
461 goto trap_signal;
462 }
463
464 if (!user_mode(regs))
465 goto kernel_trap;
466
467 trap_signal: {
468 /*
469 * We want error_code and trap_no set for userspace faults and
470 * kernelspace faults which result in die(), but not
471 * kernelspace faults which are fixed up. die() gives the
472 * process no chance to handle the signal and notice the
473 * kernel fault information, so that won't result in polluting
474 * the information about previously queued, but not yet
475 * delivered, faults. See also do_general_protection below.
476 */
477 tsk->thread.error_code = error_code;
478 tsk->thread.trap_no = trapnr;
479
480 if (info)
481 force_sig_info(signr, info, tsk);
482 else
483 force_sig(signr, tsk);
484 return;
485 }
486
487 kernel_trap: {
488 if (!fixup_exception(regs)) {
489 tsk->thread.error_code = error_code;
490 tsk->thread.trap_no = trapnr;
491 die(str, regs, error_code);
492 }
493 return;
494 }
495
496 vm86_trap: {
497 int ret = handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, trapnr);
498 if (ret) goto trap_signal;
499 return;
500 }
501 }
502
503 #define DO_ERROR(trapnr, signr, str, name) \
504 fastcall void do_##name(struct pt_regs * regs, long error_code) \
505 { \
506 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
507 == NOTIFY_STOP) \
508 return; \
509 do_trap(trapnr, signr, str, 0, regs, error_code, NULL); \
510 }
511
512 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr, irq) \
513 fastcall void do_##name(struct pt_regs * regs, long error_code) \
514 { \
515 siginfo_t info; \
516 if (irq) \
517 local_irq_enable(); \
518 info.si_signo = signr; \
519 info.si_errno = 0; \
520 info.si_code = sicode; \
521 info.si_addr = (void __user *)siaddr; \
522 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
523 == NOTIFY_STOP) \
524 return; \
525 do_trap(trapnr, signr, str, 0, regs, error_code, &info); \
526 }
527
528 #define DO_VM86_ERROR(trapnr, signr, str, name) \
529 fastcall void do_##name(struct pt_regs * regs, long error_code) \
530 { \
531 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
532 == NOTIFY_STOP) \
533 return; \
534 do_trap(trapnr, signr, str, 1, regs, error_code, NULL); \
535 }
536
537 #define DO_VM86_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
538 fastcall void do_##name(struct pt_regs * regs, long error_code) \
539 { \
540 siginfo_t info; \
541 info.si_signo = signr; \
542 info.si_errno = 0; \
543 info.si_code = sicode; \
544 info.si_addr = (void __user *)siaddr; \
545 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
546 == NOTIFY_STOP) \
547 return; \
548 do_trap(trapnr, signr, str, 1, regs, error_code, &info); \
549 }
550
551 DO_VM86_ERROR_INFO( 0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->eip)
552 #ifndef CONFIG_KPROBES
553 DO_VM86_ERROR( 3, SIGTRAP, "int3", int3)
554 #endif
555 DO_VM86_ERROR( 4, SIGSEGV, "overflow", overflow)
556 DO_VM86_ERROR( 5, SIGSEGV, "bounds", bounds)
557 DO_ERROR_INFO( 6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->eip, 0)
558 DO_ERROR( 9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
559 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
560 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
561 DO_ERROR(12, SIGBUS, "stack segment", stack_segment)
562 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0, 0)
563 DO_ERROR_INFO(32, SIGSEGV, "iret exception", iret_error, ILL_BADSTK, 0, 1)
564
565 fastcall void __kprobes do_general_protection(struct pt_regs * regs,
566 long error_code)
567 {
568 int cpu = get_cpu();
569 struct tss_struct *tss = &per_cpu(init_tss, cpu);
570 struct thread_struct *thread = &current->thread;
571
572 /*
573 * Perform the lazy TSS's I/O bitmap copy. If the TSS has an
574 * invalid offset set (the LAZY one) and the faulting thread has
575 * a valid I/O bitmap pointer, we copy the I/O bitmap in the TSS
576 * and we set the offset field correctly. Then we let the CPU to
577 * restart the faulting instruction.
578 */
579 if (tss->x86_tss.io_bitmap_base == INVALID_IO_BITMAP_OFFSET_LAZY &&
580 thread->io_bitmap_ptr) {
581 memcpy(tss->io_bitmap, thread->io_bitmap_ptr,
582 thread->io_bitmap_max);
583 /*
584 * If the previously set map was extending to higher ports
585 * than the current one, pad extra space with 0xff (no access).
586 */
587 if (thread->io_bitmap_max < tss->io_bitmap_max)
588 memset((char *) tss->io_bitmap +
589 thread->io_bitmap_max, 0xff,
590 tss->io_bitmap_max - thread->io_bitmap_max);
591 tss->io_bitmap_max = thread->io_bitmap_max;
592 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
593 tss->io_bitmap_owner = thread;
594 put_cpu();
595 return;
596 }
597 put_cpu();
598
599 if (regs->eflags & VM_MASK)
600 goto gp_in_vm86;
601
602 if (!user_mode(regs))
603 goto gp_in_kernel;
604
605 current->thread.error_code = error_code;
606 current->thread.trap_no = 13;
607 if (show_unhandled_signals && unhandled_signal(current, SIGSEGV) &&
608 printk_ratelimit())
609 printk(KERN_INFO
610 "%s[%d] general protection eip:%lx esp:%lx error:%lx\n",
611 current->comm, task_pid_nr(current),
612 regs->eip, regs->esp, error_code);
613
614 force_sig(SIGSEGV, current);
615 return;
616
617 gp_in_vm86:
618 local_irq_enable();
619 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
620 return;
621
622 gp_in_kernel:
623 if (!fixup_exception(regs)) {
624 current->thread.error_code = error_code;
625 current->thread.trap_no = 13;
626 if (notify_die(DIE_GPF, "general protection fault", regs,
627 error_code, 13, SIGSEGV) == NOTIFY_STOP)
628 return;
629 die("general protection fault", regs, error_code);
630 }
631 }
632
633 static __kprobes void
634 mem_parity_error(unsigned char reason, struct pt_regs * regs)
635 {
636 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x on "
637 "CPU %d.\n", reason, smp_processor_id());
638 printk(KERN_EMERG "You have some hardware problem, likely on the PCI bus.\n");
639
640 #if defined(CONFIG_EDAC)
641 if(edac_handler_set()) {
642 edac_atomic_assert_error();
643 return;
644 }
645 #endif
646
647 if (panic_on_unrecovered_nmi)
648 panic("NMI: Not continuing");
649
650 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
651
652 /* Clear and disable the memory parity error line. */
653 clear_mem_error(reason);
654 }
655
656 static __kprobes void
657 io_check_error(unsigned char reason, struct pt_regs * regs)
658 {
659 unsigned long i;
660
661 printk(KERN_EMERG "NMI: IOCK error (debug interrupt?)\n");
662 show_registers(regs);
663
664 /* Re-enable the IOCK line, wait for a few seconds */
665 reason = (reason & 0xf) | 8;
666 outb(reason, 0x61);
667 i = 2000;
668 while (--i) udelay(1000);
669 reason &= ~8;
670 outb(reason, 0x61);
671 }
672
673 static __kprobes void
674 unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
675 {
676 #ifdef CONFIG_MCA
677 /* Might actually be able to figure out what the guilty party
678 * is. */
679 if( MCA_bus ) {
680 mca_handle_nmi();
681 return;
682 }
683 #endif
684 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x on "
685 "CPU %d.\n", reason, smp_processor_id());
686 printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n");
687 if (panic_on_unrecovered_nmi)
688 panic("NMI: Not continuing");
689
690 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
691 }
692
693 static DEFINE_SPINLOCK(nmi_print_lock);
694
695 void __kprobes die_nmi(struct pt_regs *regs, const char *msg)
696 {
697 if (notify_die(DIE_NMIWATCHDOG, msg, regs, 0, 2, SIGINT) ==
698 NOTIFY_STOP)
699 return;
700
701 spin_lock(&nmi_print_lock);
702 /*
703 * We are in trouble anyway, lets at least try
704 * to get a message out.
705 */
706 bust_spinlocks(1);
707 printk(KERN_EMERG "%s", msg);
708 printk(" on CPU%d, eip %08lx, registers:\n",
709 smp_processor_id(), regs->eip);
710 show_registers(regs);
711 console_silent();
712 spin_unlock(&nmi_print_lock);
713 bust_spinlocks(0);
714
715 /* If we are in kernel we are probably nested up pretty bad
716 * and might aswell get out now while we still can.
717 */
718 if (!user_mode_vm(regs)) {
719 current->thread.trap_no = 2;
720 crash_kexec(regs);
721 }
722
723 do_exit(SIGSEGV);
724 }
725
726 static __kprobes void default_do_nmi(struct pt_regs * regs)
727 {
728 unsigned char reason = 0;
729
730 /* Only the BSP gets external NMIs from the system. */
731 if (!smp_processor_id())
732 reason = get_nmi_reason();
733
734 if (!(reason & 0xc0)) {
735 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
736 == NOTIFY_STOP)
737 return;
738 #ifdef CONFIG_X86_LOCAL_APIC
739 /*
740 * Ok, so this is none of the documented NMI sources,
741 * so it must be the NMI watchdog.
742 */
743 if (nmi_watchdog_tick(regs, reason))
744 return;
745 if (!do_nmi_callback(regs, smp_processor_id()))
746 #endif
747 unknown_nmi_error(reason, regs);
748
749 return;
750 }
751 if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
752 return;
753 if (reason & 0x80)
754 mem_parity_error(reason, regs);
755 if (reason & 0x40)
756 io_check_error(reason, regs);
757 /*
758 * Reassert NMI in case it became active meanwhile
759 * as it's edge-triggered.
760 */
761 reassert_nmi();
762 }
763
764 static int ignore_nmis;
765
766 fastcall __kprobes void do_nmi(struct pt_regs * regs, long error_code)
767 {
768 int cpu;
769
770 nmi_enter();
771
772 cpu = smp_processor_id();
773
774 ++nmi_count(cpu);
775
776 if (!ignore_nmis)
777 default_do_nmi(regs);
778
779 nmi_exit();
780 }
781
782 void stop_nmi(void)
783 {
784 acpi_nmi_disable();
785 ignore_nmis++;
786 }
787
788 void restart_nmi(void)
789 {
790 ignore_nmis--;
791 acpi_nmi_enable();
792 }
793
794 #ifdef CONFIG_KPROBES
795 fastcall void __kprobes do_int3(struct pt_regs *regs, long error_code)
796 {
797 trace_hardirqs_fixup();
798
799 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP)
800 == NOTIFY_STOP)
801 return;
802 /* This is an interrupt gate, because kprobes wants interrupts
803 disabled. Normal trap handlers don't. */
804 restore_interrupts(regs);
805 do_trap(3, SIGTRAP, "int3", 1, regs, error_code, NULL);
806 }
807 #endif
808
809 /*
810 * Our handling of the processor debug registers is non-trivial.
811 * We do not clear them on entry and exit from the kernel. Therefore
812 * it is possible to get a watchpoint trap here from inside the kernel.
813 * However, the code in ./ptrace.c has ensured that the user can
814 * only set watchpoints on userspace addresses. Therefore the in-kernel
815 * watchpoint trap can only occur in code which is reading/writing
816 * from user space. Such code must not hold kernel locks (since it
817 * can equally take a page fault), therefore it is safe to call
818 * force_sig_info even though that claims and releases locks.
819 *
820 * Code in ./signal.c ensures that the debug control register
821 * is restored before we deliver any signal, and therefore that
822 * user code runs with the correct debug control register even though
823 * we clear it here.
824 *
825 * Being careful here means that we don't have to be as careful in a
826 * lot of more complicated places (task switching can be a bit lazy
827 * about restoring all the debug state, and ptrace doesn't have to
828 * find every occurrence of the TF bit that could be saved away even
829 * by user code)
830 */
831 fastcall void __kprobes do_debug(struct pt_regs * regs, long error_code)
832 {
833 unsigned int condition;
834 struct task_struct *tsk = current;
835
836 trace_hardirqs_fixup();
837
838 get_debugreg(condition, 6);
839
840 if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
841 SIGTRAP) == NOTIFY_STOP)
842 return;
843 /* It's safe to allow irq's after DR6 has been saved */
844 if (regs->eflags & X86_EFLAGS_IF)
845 local_irq_enable();
846
847 /* Mask out spurious debug traps due to lazy DR7 setting */
848 if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
849 if (!tsk->thread.debugreg[7])
850 goto clear_dr7;
851 }
852
853 if (regs->eflags & VM_MASK)
854 goto debug_vm86;
855
856 /* Save debug status register where ptrace can see it */
857 tsk->thread.debugreg[6] = condition;
858
859 /*
860 * Single-stepping through TF: make sure we ignore any events in
861 * kernel space (but re-enable TF when returning to user mode).
862 */
863 if (condition & DR_STEP) {
864 /*
865 * We already checked v86 mode above, so we can
866 * check for kernel mode by just checking the CPL
867 * of CS.
868 */
869 if (!user_mode(regs))
870 goto clear_TF_reenable;
871 }
872
873 /* Ok, finally something we can handle */
874 send_sigtrap(tsk, regs, error_code);
875
876 /* Disable additional traps. They'll be re-enabled when
877 * the signal is delivered.
878 */
879 clear_dr7:
880 set_debugreg(0, 7);
881 return;
882
883 debug_vm86:
884 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1);
885 return;
886
887 clear_TF_reenable:
888 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
889 regs->eflags &= ~TF_MASK;
890 return;
891 }
892
893 /*
894 * Note that we play around with the 'TS' bit in an attempt to get
895 * the correct behaviour even in the presence of the asynchronous
896 * IRQ13 behaviour
897 */
898 void math_error(void __user *eip)
899 {
900 struct task_struct * task;
901 siginfo_t info;
902 unsigned short cwd, swd;
903
904 /*
905 * Save the info for the exception handler and clear the error.
906 */
907 task = current;
908 save_init_fpu(task);
909 task->thread.trap_no = 16;
910 task->thread.error_code = 0;
911 info.si_signo = SIGFPE;
912 info.si_errno = 0;
913 info.si_code = __SI_FAULT;
914 info.si_addr = eip;
915 /*
916 * (~cwd & swd) will mask out exceptions that are not set to unmasked
917 * status. 0x3f is the exception bits in these regs, 0x200 is the
918 * C1 reg you need in case of a stack fault, 0x040 is the stack
919 * fault bit. We should only be taking one exception at a time,
920 * so if this combination doesn't produce any single exception,
921 * then we have a bad program that isn't syncronizing its FPU usage
922 * and it will suffer the consequences since we won't be able to
923 * fully reproduce the context of the exception
924 */
925 cwd = get_fpu_cwd(task);
926 swd = get_fpu_swd(task);
927 switch (swd & ~cwd & 0x3f) {
928 case 0x000: /* No unmasked exception */
929 return;
930 default: /* Multiple exceptions */
931 break;
932 case 0x001: /* Invalid Op */
933 /*
934 * swd & 0x240 == 0x040: Stack Underflow
935 * swd & 0x240 == 0x240: Stack Overflow
936 * User must clear the SF bit (0x40) if set
937 */
938 info.si_code = FPE_FLTINV;
939 break;
940 case 0x002: /* Denormalize */
941 case 0x010: /* Underflow */
942 info.si_code = FPE_FLTUND;
943 break;
944 case 0x004: /* Zero Divide */
945 info.si_code = FPE_FLTDIV;
946 break;
947 case 0x008: /* Overflow */
948 info.si_code = FPE_FLTOVF;
949 break;
950 case 0x020: /* Precision */
951 info.si_code = FPE_FLTRES;
952 break;
953 }
954 force_sig_info(SIGFPE, &info, task);
955 }
956
957 fastcall void do_coprocessor_error(struct pt_regs * regs, long error_code)
958 {
959 ignore_fpu_irq = 1;
960 math_error((void __user *)regs->eip);
961 }
962
963 static void simd_math_error(void __user *eip)
964 {
965 struct task_struct * task;
966 siginfo_t info;
967 unsigned short mxcsr;
968
969 /*
970 * Save the info for the exception handler and clear the error.
971 */
972 task = current;
973 save_init_fpu(task);
974 task->thread.trap_no = 19;
975 task->thread.error_code = 0;
976 info.si_signo = SIGFPE;
977 info.si_errno = 0;
978 info.si_code = __SI_FAULT;
979 info.si_addr = eip;
980 /*
981 * The SIMD FPU exceptions are handled a little differently, as there
982 * is only a single status/control register. Thus, to determine which
983 * unmasked exception was caught we must mask the exception mask bits
984 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
985 */
986 mxcsr = get_fpu_mxcsr(task);
987 switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
988 case 0x000:
989 default:
990 break;
991 case 0x001: /* Invalid Op */
992 info.si_code = FPE_FLTINV;
993 break;
994 case 0x002: /* Denormalize */
995 case 0x010: /* Underflow */
996 info.si_code = FPE_FLTUND;
997 break;
998 case 0x004: /* Zero Divide */
999 info.si_code = FPE_FLTDIV;
1000 break;
1001 case 0x008: /* Overflow */
1002 info.si_code = FPE_FLTOVF;
1003 break;
1004 case 0x020: /* Precision */
1005 info.si_code = FPE_FLTRES;
1006 break;
1007 }
1008 force_sig_info(SIGFPE, &info, task);
1009 }
1010
1011 fastcall void do_simd_coprocessor_error(struct pt_regs * regs,
1012 long error_code)
1013 {
1014 if (cpu_has_xmm) {
1015 /* Handle SIMD FPU exceptions on PIII+ processors. */
1016 ignore_fpu_irq = 1;
1017 simd_math_error((void __user *)regs->eip);
1018 } else {
1019 /*
1020 * Handle strange cache flush from user space exception
1021 * in all other cases. This is undocumented behaviour.
1022 */
1023 if (regs->eflags & VM_MASK) {
1024 handle_vm86_fault((struct kernel_vm86_regs *)regs,
1025 error_code);
1026 return;
1027 }
1028 current->thread.trap_no = 19;
1029 current->thread.error_code = error_code;
1030 die_if_kernel("cache flush denied", regs, error_code);
1031 force_sig(SIGSEGV, current);
1032 }
1033 }
1034
1035 fastcall void do_spurious_interrupt_bug(struct pt_regs * regs,
1036 long error_code)
1037 {
1038 #if 0
1039 /* No need to warn about this any longer. */
1040 printk("Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
1041 #endif
1042 }
1043
1044 fastcall unsigned long patch_espfix_desc(unsigned long uesp,
1045 unsigned long kesp)
1046 {
1047 struct desc_struct *gdt = __get_cpu_var(gdt_page).gdt;
1048 unsigned long base = (kesp - uesp) & -THREAD_SIZE;
1049 unsigned long new_kesp = kesp - base;
1050 unsigned long lim_pages = (new_kesp | (THREAD_SIZE - 1)) >> PAGE_SHIFT;
1051 __u64 desc = *(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS];
1052 /* Set up base for espfix segment */
1053 desc &= 0x00f0ff0000000000ULL;
1054 desc |= ((((__u64)base) << 16) & 0x000000ffffff0000ULL) |
1055 ((((__u64)base) << 32) & 0xff00000000000000ULL) |
1056 ((((__u64)lim_pages) << 32) & 0x000f000000000000ULL) |
1057 (lim_pages & 0xffff);
1058 *(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS] = desc;
1059 return new_kesp;
1060 }
1061
1062 /*
1063 * 'math_state_restore()' saves the current math information in the
1064 * old math state array, and gets the new ones from the current task
1065 *
1066 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
1067 * Don't touch unless you *really* know how it works.
1068 *
1069 * Must be called with kernel preemption disabled (in this case,
1070 * local interrupts are disabled at the call-site in entry.S).
1071 */
1072 asmlinkage void math_state_restore(void)
1073 {
1074 struct thread_info *thread = current_thread_info();
1075 struct task_struct *tsk = thread->task;
1076
1077 clts(); /* Allow maths ops (or we recurse) */
1078 if (!tsk_used_math(tsk))
1079 init_fpu(tsk);
1080 restore_fpu(tsk);
1081 thread->status |= TS_USEDFPU; /* So we fnsave on switch_to() */
1082 tsk->fpu_counter++;
1083 }
1084 EXPORT_SYMBOL_GPL(math_state_restore);
1085
1086 #ifndef CONFIG_MATH_EMULATION
1087
1088 asmlinkage void math_emulate(long arg)
1089 {
1090 printk(KERN_EMERG "math-emulation not enabled and no coprocessor found.\n");
1091 printk(KERN_EMERG "killing %s.\n",current->comm);
1092 force_sig(SIGFPE,current);
1093 schedule();
1094 }
1095
1096 #endif /* CONFIG_MATH_EMULATION */
1097
1098 /*
1099 * This needs to use 'idt_table' rather than 'idt', and
1100 * thus use the _nonmapped_ version of the IDT, as the
1101 * Pentium F0 0F bugfix can have resulted in the mapped
1102 * IDT being write-protected.
1103 */
1104 void set_intr_gate(unsigned int n, void *addr)
1105 {
1106 _set_gate(n, DESCTYPE_INT, addr, __KERNEL_CS);
1107 }
1108
1109 /*
1110 * This routine sets up an interrupt gate at directory privilege level 3.
1111 */
1112 static inline void set_system_intr_gate(unsigned int n, void *addr)
1113 {
1114 _set_gate(n, DESCTYPE_INT | DESCTYPE_DPL3, addr, __KERNEL_CS);
1115 }
1116
1117 static void __init set_trap_gate(unsigned int n, void *addr)
1118 {
1119 _set_gate(n, DESCTYPE_TRAP, addr, __KERNEL_CS);
1120 }
1121
1122 static void __init set_system_gate(unsigned int n, void *addr)
1123 {
1124 _set_gate(n, DESCTYPE_TRAP | DESCTYPE_DPL3, addr, __KERNEL_CS);
1125 }
1126
1127 static void __init set_task_gate(unsigned int n, unsigned int gdt_entry)
1128 {
1129 _set_gate(n, DESCTYPE_TASK, (void *)0, (gdt_entry<<3));
1130 }
1131
1132
1133 void __init trap_init(void)
1134 {
1135 int i;
1136
1137 #ifdef CONFIG_EISA
1138 void __iomem *p = ioremap(0x0FFFD9, 4);
1139 if (readl(p) == 'E'+('I'<<8)+('S'<<16)+('A'<<24)) {
1140 EISA_bus = 1;
1141 }
1142 iounmap(p);
1143 #endif
1144
1145 #ifdef CONFIG_X86_LOCAL_APIC
1146 init_apic_mappings();
1147 #endif
1148
1149 set_trap_gate(0,&divide_error);
1150 set_intr_gate(1,&debug);
1151 set_intr_gate(2,&nmi);
1152 set_system_intr_gate(3, &int3); /* int3/4 can be called from all */
1153 set_system_gate(4,&overflow);
1154 set_trap_gate(5,&bounds);
1155 set_trap_gate(6,&invalid_op);
1156 set_trap_gate(7,&device_not_available);
1157 set_task_gate(8,GDT_ENTRY_DOUBLEFAULT_TSS);
1158 set_trap_gate(9,&coprocessor_segment_overrun);
1159 set_trap_gate(10,&invalid_TSS);
1160 set_trap_gate(11,&segment_not_present);
1161 set_trap_gate(12,&stack_segment);
1162 set_trap_gate(13,&general_protection);
1163 set_intr_gate(14,&page_fault);
1164 set_trap_gate(15,&spurious_interrupt_bug);
1165 set_trap_gate(16,&coprocessor_error);
1166 set_trap_gate(17,&alignment_check);
1167 #ifdef CONFIG_X86_MCE
1168 set_trap_gate(18,&machine_check);
1169 #endif
1170 set_trap_gate(19,&simd_coprocessor_error);
1171
1172 if (cpu_has_fxsr) {
1173 /*
1174 * Verify that the FXSAVE/FXRSTOR data will be 16-byte aligned.
1175 * Generates a compile-time "error: zero width for bit-field" if
1176 * the alignment is wrong.
1177 */
1178 struct fxsrAlignAssert {
1179 int _:!(offsetof(struct task_struct,
1180 thread.i387.fxsave) & 15);
1181 };
1182
1183 printk(KERN_INFO "Enabling fast FPU save and restore... ");
1184 set_in_cr4(X86_CR4_OSFXSR);
1185 printk("done.\n");
1186 }
1187 if (cpu_has_xmm) {
1188 printk(KERN_INFO "Enabling unmasked SIMD FPU exception "
1189 "support... ");
1190 set_in_cr4(X86_CR4_OSXMMEXCPT);
1191 printk("done.\n");
1192 }
1193
1194 set_system_gate(SYSCALL_VECTOR,&system_call);
1195
1196 /* Reserve all the builtin and the syscall vector. */
1197 for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
1198 set_bit(i, used_vectors);
1199 set_bit(SYSCALL_VECTOR, used_vectors);
1200
1201 /*
1202 * Should be a barrier for any external CPU state.
1203 */
1204 cpu_init();
1205
1206 trap_init_hook();
1207 }
1208
1209 static int __init kstack_setup(char *s)
1210 {
1211 kstack_depth_to_print = simple_strtoul(s, NULL, 0);
1212 return 1;
1213 }
1214 __setup("kstack=", kstack_setup);
1215
1216 static int __init code_bytes_setup(char *s)
1217 {
1218 code_bytes = simple_strtoul(s, NULL, 0);
1219 if (code_bytes > 8192)
1220 code_bytes = 8192;
1221
1222 return 1;
1223 }
1224 __setup("code_bytes=", code_bytes_setup);
This page took 0.057322 seconds and 6 git commands to generate.