x86: debugctlmsr arch_has_block_step
[deliverable/linux.git] / arch / x86 / kernel / traps_64.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8
9 /*
10 * 'Traps.c' handles hardware traps and faults after we have saved some
11 * state in 'entry.S'.
12 */
13 #include <linux/sched.h>
14 #include <linux/kernel.h>
15 #include <linux/string.h>
16 #include <linux/errno.h>
17 #include <linux/ptrace.h>
18 #include <linux/timer.h>
19 #include <linux/mm.h>
20 #include <linux/init.h>
21 #include <linux/delay.h>
22 #include <linux/spinlock.h>
23 #include <linux/interrupt.h>
24 #include <linux/kallsyms.h>
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/nmi.h>
28 #include <linux/kprobes.h>
29 #include <linux/kexec.h>
30 #include <linux/unwind.h>
31 #include <linux/uaccess.h>
32 #include <linux/bug.h>
33 #include <linux/kdebug.h>
34 #include <linux/utsname.h>
35
36 #if defined(CONFIG_EDAC)
37 #include <linux/edac.h>
38 #endif
39
40 #include <asm/system.h>
41 #include <asm/io.h>
42 #include <asm/atomic.h>
43 #include <asm/debugreg.h>
44 #include <asm/desc.h>
45 #include <asm/i387.h>
46 #include <asm/processor.h>
47 #include <asm/unwind.h>
48 #include <asm/smp.h>
49 #include <asm/pgalloc.h>
50 #include <asm/pda.h>
51 #include <asm/proto.h>
52 #include <asm/nmi.h>
53 #include <asm/stacktrace.h>
54
55 asmlinkage void divide_error(void);
56 asmlinkage void debug(void);
57 asmlinkage void nmi(void);
58 asmlinkage void int3(void);
59 asmlinkage void overflow(void);
60 asmlinkage void bounds(void);
61 asmlinkage void invalid_op(void);
62 asmlinkage void device_not_available(void);
63 asmlinkage void double_fault(void);
64 asmlinkage void coprocessor_segment_overrun(void);
65 asmlinkage void invalid_TSS(void);
66 asmlinkage void segment_not_present(void);
67 asmlinkage void stack_segment(void);
68 asmlinkage void general_protection(void);
69 asmlinkage void page_fault(void);
70 asmlinkage void coprocessor_error(void);
71 asmlinkage void simd_coprocessor_error(void);
72 asmlinkage void reserved(void);
73 asmlinkage void alignment_check(void);
74 asmlinkage void machine_check(void);
75 asmlinkage void spurious_interrupt_bug(void);
76
77 static inline void conditional_sti(struct pt_regs *regs)
78 {
79 if (regs->eflags & X86_EFLAGS_IF)
80 local_irq_enable();
81 }
82
83 static inline void preempt_conditional_sti(struct pt_regs *regs)
84 {
85 preempt_disable();
86 if (regs->eflags & X86_EFLAGS_IF)
87 local_irq_enable();
88 }
89
90 static inline void preempt_conditional_cli(struct pt_regs *regs)
91 {
92 if (regs->eflags & X86_EFLAGS_IF)
93 local_irq_disable();
94 /* Make sure to not schedule here because we could be running
95 on an exception stack. */
96 preempt_enable_no_resched();
97 }
98
99 int kstack_depth_to_print = 12;
100
101 #ifdef CONFIG_KALLSYMS
102 void printk_address(unsigned long address)
103 {
104 unsigned long offset = 0, symsize;
105 const char *symname;
106 char *modname;
107 char *delim = ":";
108 char namebuf[128];
109
110 symname = kallsyms_lookup(address, &symsize, &offset,
111 &modname, namebuf);
112 if (!symname) {
113 printk(" [<%016lx>]\n", address);
114 return;
115 }
116 if (!modname)
117 modname = delim = "";
118 printk(" [<%016lx>] %s%s%s%s+0x%lx/0x%lx\n",
119 address, delim, modname, delim, symname, offset, symsize);
120 }
121 #else
122 void printk_address(unsigned long address)
123 {
124 printk(" [<%016lx>]\n", address);
125 }
126 #endif
127
128 static unsigned long *in_exception_stack(unsigned cpu, unsigned long stack,
129 unsigned *usedp, char **idp)
130 {
131 static char ids[][8] = {
132 [DEBUG_STACK - 1] = "#DB",
133 [NMI_STACK - 1] = "NMI",
134 [DOUBLEFAULT_STACK - 1] = "#DF",
135 [STACKFAULT_STACK - 1] = "#SS",
136 [MCE_STACK - 1] = "#MC",
137 #if DEBUG_STKSZ > EXCEPTION_STKSZ
138 [N_EXCEPTION_STACKS ... N_EXCEPTION_STACKS + DEBUG_STKSZ / EXCEPTION_STKSZ - 2] = "#DB[?]"
139 #endif
140 };
141 unsigned k;
142
143 /*
144 * Iterate over all exception stacks, and figure out whether
145 * 'stack' is in one of them:
146 */
147 for (k = 0; k < N_EXCEPTION_STACKS; k++) {
148 unsigned long end = per_cpu(orig_ist, cpu).ist[k];
149 /*
150 * Is 'stack' above this exception frame's end?
151 * If yes then skip to the next frame.
152 */
153 if (stack >= end)
154 continue;
155 /*
156 * Is 'stack' above this exception frame's start address?
157 * If yes then we found the right frame.
158 */
159 if (stack >= end - EXCEPTION_STKSZ) {
160 /*
161 * Make sure we only iterate through an exception
162 * stack once. If it comes up for the second time
163 * then there's something wrong going on - just
164 * break out and return NULL:
165 */
166 if (*usedp & (1U << k))
167 break;
168 *usedp |= 1U << k;
169 *idp = ids[k];
170 return (unsigned long *)end;
171 }
172 /*
173 * If this is a debug stack, and if it has a larger size than
174 * the usual exception stacks, then 'stack' might still
175 * be within the lower portion of the debug stack:
176 */
177 #if DEBUG_STKSZ > EXCEPTION_STKSZ
178 if (k == DEBUG_STACK - 1 && stack >= end - DEBUG_STKSZ) {
179 unsigned j = N_EXCEPTION_STACKS - 1;
180
181 /*
182 * Black magic. A large debug stack is composed of
183 * multiple exception stack entries, which we
184 * iterate through now. Dont look:
185 */
186 do {
187 ++j;
188 end -= EXCEPTION_STKSZ;
189 ids[j][4] = '1' + (j - N_EXCEPTION_STACKS);
190 } while (stack < end - EXCEPTION_STKSZ);
191 if (*usedp & (1U << j))
192 break;
193 *usedp |= 1U << j;
194 *idp = ids[j];
195 return (unsigned long *)end;
196 }
197 #endif
198 }
199 return NULL;
200 }
201
202 #define MSG(txt) ops->warning(data, txt)
203
204 /*
205 * x86-64 can have up to three kernel stacks:
206 * process stack
207 * interrupt stack
208 * severe exception (double fault, nmi, stack fault, debug, mce) hardware stack
209 */
210
211 static inline int valid_stack_ptr(struct thread_info *tinfo, void *p)
212 {
213 void *t = (void *)tinfo;
214 return p > t && p < t + THREAD_SIZE - 3;
215 }
216
217 void dump_trace(struct task_struct *tsk, struct pt_regs *regs,
218 unsigned long *stack,
219 const struct stacktrace_ops *ops, void *data)
220 {
221 const unsigned cpu = get_cpu();
222 unsigned long *irqstack_end = (unsigned long*)cpu_pda(cpu)->irqstackptr;
223 unsigned used = 0;
224 struct thread_info *tinfo;
225
226 if (!tsk)
227 tsk = current;
228
229 if (!stack) {
230 unsigned long dummy;
231 stack = &dummy;
232 if (tsk && tsk != current)
233 stack = (unsigned long *)tsk->thread.rsp;
234 }
235
236 /*
237 * Print function call entries within a stack. 'cond' is the
238 * "end of stackframe" condition, that the 'stack++'
239 * iteration will eventually trigger.
240 */
241 #define HANDLE_STACK(cond) \
242 do while (cond) { \
243 unsigned long addr = *stack++; \
244 /* Use unlocked access here because except for NMIs \
245 we should be already protected against module unloads */ \
246 if (__kernel_text_address(addr)) { \
247 /* \
248 * If the address is either in the text segment of the \
249 * kernel, or in the region which contains vmalloc'ed \
250 * memory, it *may* be the address of a calling \
251 * routine; if so, print it so that someone tracing \
252 * down the cause of the crash will be able to figure \
253 * out the call path that was taken. \
254 */ \
255 ops->address(data, addr); \
256 } \
257 } while (0)
258
259 /*
260 * Print function call entries in all stacks, starting at the
261 * current stack address. If the stacks consist of nested
262 * exceptions
263 */
264 for (;;) {
265 char *id;
266 unsigned long *estack_end;
267 estack_end = in_exception_stack(cpu, (unsigned long)stack,
268 &used, &id);
269
270 if (estack_end) {
271 if (ops->stack(data, id) < 0)
272 break;
273 HANDLE_STACK (stack < estack_end);
274 ops->stack(data, "<EOE>");
275 /*
276 * We link to the next stack via the
277 * second-to-last pointer (index -2 to end) in the
278 * exception stack:
279 */
280 stack = (unsigned long *) estack_end[-2];
281 continue;
282 }
283 if (irqstack_end) {
284 unsigned long *irqstack;
285 irqstack = irqstack_end -
286 (IRQSTACKSIZE - 64) / sizeof(*irqstack);
287
288 if (stack >= irqstack && stack < irqstack_end) {
289 if (ops->stack(data, "IRQ") < 0)
290 break;
291 HANDLE_STACK (stack < irqstack_end);
292 /*
293 * We link to the next stack (which would be
294 * the process stack normally) the last
295 * pointer (index -1 to end) in the IRQ stack:
296 */
297 stack = (unsigned long *) (irqstack_end[-1]);
298 irqstack_end = NULL;
299 ops->stack(data, "EOI");
300 continue;
301 }
302 }
303 break;
304 }
305
306 /*
307 * This handles the process stack:
308 */
309 tinfo = task_thread_info(tsk);
310 HANDLE_STACK (valid_stack_ptr(tinfo, stack));
311 #undef HANDLE_STACK
312 put_cpu();
313 }
314 EXPORT_SYMBOL(dump_trace);
315
316 static void
317 print_trace_warning_symbol(void *data, char *msg, unsigned long symbol)
318 {
319 print_symbol(msg, symbol);
320 printk("\n");
321 }
322
323 static void print_trace_warning(void *data, char *msg)
324 {
325 printk("%s\n", msg);
326 }
327
328 static int print_trace_stack(void *data, char *name)
329 {
330 printk(" <%s> ", name);
331 return 0;
332 }
333
334 static void print_trace_address(void *data, unsigned long addr)
335 {
336 touch_nmi_watchdog();
337 printk_address(addr);
338 }
339
340 static const struct stacktrace_ops print_trace_ops = {
341 .warning = print_trace_warning,
342 .warning_symbol = print_trace_warning_symbol,
343 .stack = print_trace_stack,
344 .address = print_trace_address,
345 };
346
347 void
348 show_trace(struct task_struct *tsk, struct pt_regs *regs, unsigned long *stack)
349 {
350 printk("\nCall Trace:\n");
351 dump_trace(tsk, regs, stack, &print_trace_ops, NULL);
352 printk("\n");
353 }
354
355 static void
356 _show_stack(struct task_struct *tsk, struct pt_regs *regs, unsigned long *rsp)
357 {
358 unsigned long *stack;
359 int i;
360 const int cpu = smp_processor_id();
361 unsigned long *irqstack_end = (unsigned long *) (cpu_pda(cpu)->irqstackptr);
362 unsigned long *irqstack = (unsigned long *) (cpu_pda(cpu)->irqstackptr - IRQSTACKSIZE);
363
364 // debugging aid: "show_stack(NULL, NULL);" prints the
365 // back trace for this cpu.
366
367 if (rsp == NULL) {
368 if (tsk)
369 rsp = (unsigned long *)tsk->thread.rsp;
370 else
371 rsp = (unsigned long *)&rsp;
372 }
373
374 stack = rsp;
375 for(i=0; i < kstack_depth_to_print; i++) {
376 if (stack >= irqstack && stack <= irqstack_end) {
377 if (stack == irqstack_end) {
378 stack = (unsigned long *) (irqstack_end[-1]);
379 printk(" <EOI> ");
380 }
381 } else {
382 if (((long) stack & (THREAD_SIZE-1)) == 0)
383 break;
384 }
385 if (i && ((i % 4) == 0))
386 printk("\n");
387 printk(" %016lx", *stack++);
388 touch_nmi_watchdog();
389 }
390 show_trace(tsk, regs, rsp);
391 }
392
393 void show_stack(struct task_struct *tsk, unsigned long * rsp)
394 {
395 _show_stack(tsk, NULL, rsp);
396 }
397
398 /*
399 * The architecture-independent dump_stack generator
400 */
401 void dump_stack(void)
402 {
403 unsigned long dummy;
404
405 printk("Pid: %d, comm: %.20s %s %s %.*s\n",
406 current->pid, current->comm, print_tainted(),
407 init_utsname()->release,
408 (int)strcspn(init_utsname()->version, " "),
409 init_utsname()->version);
410 show_trace(NULL, NULL, &dummy);
411 }
412
413 EXPORT_SYMBOL(dump_stack);
414
415 void show_registers(struct pt_regs *regs)
416 {
417 int i;
418 int in_kernel = !user_mode(regs);
419 unsigned long rsp;
420 const int cpu = smp_processor_id();
421 struct task_struct *cur = cpu_pda(cpu)->pcurrent;
422
423 rsp = regs->rsp;
424 printk("CPU %d ", cpu);
425 __show_regs(regs);
426 printk("Process %s (pid: %d, threadinfo %p, task %p)\n",
427 cur->comm, cur->pid, task_thread_info(cur), cur);
428
429 /*
430 * When in-kernel, we also print out the stack and code at the
431 * time of the fault..
432 */
433 if (in_kernel) {
434 printk("Stack: ");
435 _show_stack(NULL, regs, (unsigned long*)rsp);
436
437 printk("\nCode: ");
438 if (regs->rip < PAGE_OFFSET)
439 goto bad;
440
441 for (i=0; i<20; i++) {
442 unsigned char c;
443 if (__get_user(c, &((unsigned char*)regs->rip)[i])) {
444 bad:
445 printk(" Bad RIP value.");
446 break;
447 }
448 printk("%02x ", c);
449 }
450 }
451 printk("\n");
452 }
453
454 int is_valid_bugaddr(unsigned long rip)
455 {
456 unsigned short ud2;
457
458 if (__copy_from_user(&ud2, (const void __user *) rip, sizeof(ud2)))
459 return 0;
460
461 return ud2 == 0x0b0f;
462 }
463
464 static raw_spinlock_t die_lock = __RAW_SPIN_LOCK_UNLOCKED;
465 static int die_owner = -1;
466 static unsigned int die_nest_count;
467
468 unsigned __kprobes long oops_begin(void)
469 {
470 int cpu;
471 unsigned long flags;
472
473 oops_enter();
474
475 /* racy, but better than risking deadlock. */
476 raw_local_irq_save(flags);
477 cpu = smp_processor_id();
478 if (!__raw_spin_trylock(&die_lock)) {
479 if (cpu == die_owner)
480 /* nested oops. should stop eventually */;
481 else
482 __raw_spin_lock(&die_lock);
483 }
484 die_nest_count++;
485 die_owner = cpu;
486 console_verbose();
487 bust_spinlocks(1);
488 return flags;
489 }
490
491 void __kprobes oops_end(unsigned long flags)
492 {
493 die_owner = -1;
494 bust_spinlocks(0);
495 die_nest_count--;
496 if (!die_nest_count)
497 /* Nest count reaches zero, release the lock. */
498 __raw_spin_unlock(&die_lock);
499 raw_local_irq_restore(flags);
500 if (panic_on_oops)
501 panic("Fatal exception");
502 oops_exit();
503 }
504
505 void __kprobes __die(const char * str, struct pt_regs * regs, long err)
506 {
507 static int die_counter;
508 printk(KERN_EMERG "%s: %04lx [%u] ", str, err & 0xffff,++die_counter);
509 #ifdef CONFIG_PREEMPT
510 printk("PREEMPT ");
511 #endif
512 #ifdef CONFIG_SMP
513 printk("SMP ");
514 #endif
515 #ifdef CONFIG_DEBUG_PAGEALLOC
516 printk("DEBUG_PAGEALLOC");
517 #endif
518 printk("\n");
519 notify_die(DIE_OOPS, str, regs, err, current->thread.trap_no, SIGSEGV);
520 show_registers(regs);
521 add_taint(TAINT_DIE);
522 /* Executive summary in case the oops scrolled away */
523 printk(KERN_ALERT "RIP ");
524 printk_address(regs->rip);
525 printk(" RSP <%016lx>\n", regs->rsp);
526 if (kexec_should_crash(current))
527 crash_kexec(regs);
528 }
529
530 void die(const char * str, struct pt_regs * regs, long err)
531 {
532 unsigned long flags = oops_begin();
533
534 if (!user_mode(regs))
535 report_bug(regs->rip, regs);
536
537 __die(str, regs, err);
538 oops_end(flags);
539 do_exit(SIGSEGV);
540 }
541
542 void __kprobes die_nmi(char *str, struct pt_regs *regs, int do_panic)
543 {
544 unsigned long flags = oops_begin();
545
546 /*
547 * We are in trouble anyway, lets at least try
548 * to get a message out.
549 */
550 printk(str, smp_processor_id());
551 show_registers(regs);
552 if (kexec_should_crash(current))
553 crash_kexec(regs);
554 if (do_panic || panic_on_oops)
555 panic("Non maskable interrupt");
556 oops_end(flags);
557 nmi_exit();
558 local_irq_enable();
559 do_exit(SIGSEGV);
560 }
561
562 static void __kprobes do_trap(int trapnr, int signr, char *str,
563 struct pt_regs * regs, long error_code,
564 siginfo_t *info)
565 {
566 struct task_struct *tsk = current;
567
568 if (user_mode(regs)) {
569 /*
570 * We want error_code and trap_no set for userspace
571 * faults and kernelspace faults which result in
572 * die(), but not kernelspace faults which are fixed
573 * up. die() gives the process no chance to handle
574 * the signal and notice the kernel fault information,
575 * so that won't result in polluting the information
576 * about previously queued, but not yet delivered,
577 * faults. See also do_general_protection below.
578 */
579 tsk->thread.error_code = error_code;
580 tsk->thread.trap_no = trapnr;
581
582 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
583 printk_ratelimit())
584 printk(KERN_INFO
585 "%s[%d] trap %s rip:%lx rsp:%lx error:%lx\n",
586 tsk->comm, tsk->pid, str,
587 regs->rip, regs->rsp, error_code);
588
589 if (info)
590 force_sig_info(signr, info, tsk);
591 else
592 force_sig(signr, tsk);
593 return;
594 }
595
596
597 /* kernel trap */
598 {
599 const struct exception_table_entry *fixup;
600 fixup = search_exception_tables(regs->rip);
601 if (fixup)
602 regs->rip = fixup->fixup;
603 else {
604 tsk->thread.error_code = error_code;
605 tsk->thread.trap_no = trapnr;
606 die(str, regs, error_code);
607 }
608 return;
609 }
610 }
611
612 #define DO_ERROR(trapnr, signr, str, name) \
613 asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
614 { \
615 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
616 == NOTIFY_STOP) \
617 return; \
618 conditional_sti(regs); \
619 do_trap(trapnr, signr, str, regs, error_code, NULL); \
620 }
621
622 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
623 asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
624 { \
625 siginfo_t info; \
626 info.si_signo = signr; \
627 info.si_errno = 0; \
628 info.si_code = sicode; \
629 info.si_addr = (void __user *)siaddr; \
630 trace_hardirqs_fixup(); \
631 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
632 == NOTIFY_STOP) \
633 return; \
634 conditional_sti(regs); \
635 do_trap(trapnr, signr, str, regs, error_code, &info); \
636 }
637
638 DO_ERROR_INFO( 0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->rip)
639 DO_ERROR( 4, SIGSEGV, "overflow", overflow)
640 DO_ERROR( 5, SIGSEGV, "bounds", bounds)
641 DO_ERROR_INFO( 6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->rip)
642 DO_ERROR( 7, SIGSEGV, "device not available", device_not_available)
643 DO_ERROR( 9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
644 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
645 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
646 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
647 DO_ERROR(18, SIGSEGV, "reserved", reserved)
648
649 /* Runs on IST stack */
650 asmlinkage void do_stack_segment(struct pt_regs *regs, long error_code)
651 {
652 if (notify_die(DIE_TRAP, "stack segment", regs, error_code,
653 12, SIGBUS) == NOTIFY_STOP)
654 return;
655 preempt_conditional_sti(regs);
656 do_trap(12, SIGBUS, "stack segment", regs, error_code, NULL);
657 preempt_conditional_cli(regs);
658 }
659
660 asmlinkage void do_double_fault(struct pt_regs * regs, long error_code)
661 {
662 static const char str[] = "double fault";
663 struct task_struct *tsk = current;
664
665 /* Return not checked because double check cannot be ignored */
666 notify_die(DIE_TRAP, str, regs, error_code, 8, SIGSEGV);
667
668 tsk->thread.error_code = error_code;
669 tsk->thread.trap_no = 8;
670
671 /* This is always a kernel trap and never fixable (and thus must
672 never return). */
673 for (;;)
674 die(str, regs, error_code);
675 }
676
677 asmlinkage void __kprobes do_general_protection(struct pt_regs * regs,
678 long error_code)
679 {
680 struct task_struct *tsk = current;
681
682 conditional_sti(regs);
683
684 if (user_mode(regs)) {
685 tsk->thread.error_code = error_code;
686 tsk->thread.trap_no = 13;
687
688 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
689 printk_ratelimit())
690 printk(KERN_INFO
691 "%s[%d] general protection rip:%lx rsp:%lx error:%lx\n",
692 tsk->comm, tsk->pid,
693 regs->rip, regs->rsp, error_code);
694
695 force_sig(SIGSEGV, tsk);
696 return;
697 }
698
699 /* kernel gp */
700 {
701 const struct exception_table_entry *fixup;
702 fixup = search_exception_tables(regs->rip);
703 if (fixup) {
704 regs->rip = fixup->fixup;
705 return;
706 }
707
708 tsk->thread.error_code = error_code;
709 tsk->thread.trap_no = 13;
710 if (notify_die(DIE_GPF, "general protection fault", regs,
711 error_code, 13, SIGSEGV) == NOTIFY_STOP)
712 return;
713 die("general protection fault", regs, error_code);
714 }
715 }
716
717 static __kprobes void
718 mem_parity_error(unsigned char reason, struct pt_regs * regs)
719 {
720 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x.\n",
721 reason);
722 printk(KERN_EMERG "You have some hardware problem, likely on the PCI bus.\n");
723
724 #if defined(CONFIG_EDAC)
725 if(edac_handler_set()) {
726 edac_atomic_assert_error();
727 return;
728 }
729 #endif
730
731 if (panic_on_unrecovered_nmi)
732 panic("NMI: Not continuing");
733
734 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
735
736 /* Clear and disable the memory parity error line. */
737 reason = (reason & 0xf) | 4;
738 outb(reason, 0x61);
739 }
740
741 static __kprobes void
742 io_check_error(unsigned char reason, struct pt_regs * regs)
743 {
744 printk("NMI: IOCK error (debug interrupt?)\n");
745 show_registers(regs);
746
747 /* Re-enable the IOCK line, wait for a few seconds */
748 reason = (reason & 0xf) | 8;
749 outb(reason, 0x61);
750 mdelay(2000);
751 reason &= ~8;
752 outb(reason, 0x61);
753 }
754
755 static __kprobes void
756 unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
757 {
758 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x.\n",
759 reason);
760 printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n");
761
762 if (panic_on_unrecovered_nmi)
763 panic("NMI: Not continuing");
764
765 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
766 }
767
768 /* Runs on IST stack. This code must keep interrupts off all the time.
769 Nested NMIs are prevented by the CPU. */
770 asmlinkage __kprobes void default_do_nmi(struct pt_regs *regs)
771 {
772 unsigned char reason = 0;
773 int cpu;
774
775 cpu = smp_processor_id();
776
777 /* Only the BSP gets external NMIs from the system. */
778 if (!cpu)
779 reason = get_nmi_reason();
780
781 if (!(reason & 0xc0)) {
782 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
783 == NOTIFY_STOP)
784 return;
785 /*
786 * Ok, so this is none of the documented NMI sources,
787 * so it must be the NMI watchdog.
788 */
789 if (nmi_watchdog_tick(regs,reason))
790 return;
791 if (!do_nmi_callback(regs,cpu))
792 unknown_nmi_error(reason, regs);
793
794 return;
795 }
796 if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
797 return;
798
799 /* AK: following checks seem to be broken on modern chipsets. FIXME */
800
801 if (reason & 0x80)
802 mem_parity_error(reason, regs);
803 if (reason & 0x40)
804 io_check_error(reason, regs);
805 }
806
807 /* runs on IST stack. */
808 asmlinkage void __kprobes do_int3(struct pt_regs * regs, long error_code)
809 {
810 trace_hardirqs_fixup();
811
812 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP) == NOTIFY_STOP) {
813 return;
814 }
815 preempt_conditional_sti(regs);
816 do_trap(3, SIGTRAP, "int3", regs, error_code, NULL);
817 preempt_conditional_cli(regs);
818 }
819
820 /* Help handler running on IST stack to switch back to user stack
821 for scheduling or signal handling. The actual stack switch is done in
822 entry.S */
823 asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs)
824 {
825 struct pt_regs *regs = eregs;
826 /* Did already sync */
827 if (eregs == (struct pt_regs *)eregs->rsp)
828 ;
829 /* Exception from user space */
830 else if (user_mode(eregs))
831 regs = task_pt_regs(current);
832 /* Exception from kernel and interrupts are enabled. Move to
833 kernel process stack. */
834 else if (eregs->eflags & X86_EFLAGS_IF)
835 regs = (struct pt_regs *)(eregs->rsp -= sizeof(struct pt_regs));
836 if (eregs != regs)
837 *regs = *eregs;
838 return regs;
839 }
840
841 /* runs on IST stack. */
842 asmlinkage void __kprobes do_debug(struct pt_regs * regs,
843 unsigned long error_code)
844 {
845 unsigned long condition;
846 struct task_struct *tsk = current;
847 siginfo_t info;
848
849 trace_hardirqs_fixup();
850
851 get_debugreg(condition, 6);
852
853 /*
854 * The processor cleared BTF, so don't mark that we need it set.
855 */
856 clear_tsk_thread_flag(tsk, TIF_DEBUGCTLMSR);
857 tsk->thread.debugctlmsr = 0;
858
859 if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
860 SIGTRAP) == NOTIFY_STOP)
861 return;
862
863 preempt_conditional_sti(regs);
864
865 /* Mask out spurious debug traps due to lazy DR7 setting */
866 if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
867 if (!tsk->thread.debugreg7) {
868 goto clear_dr7;
869 }
870 }
871
872 tsk->thread.debugreg6 = condition;
873
874
875 /*
876 * Single-stepping through TF: make sure we ignore any events in
877 * kernel space (but re-enable TF when returning to user mode).
878 */
879 if (condition & DR_STEP) {
880 if (!user_mode(regs))
881 goto clear_TF_reenable;
882 }
883
884 /* Ok, finally something we can handle */
885 tsk->thread.trap_no = 1;
886 tsk->thread.error_code = error_code;
887 info.si_signo = SIGTRAP;
888 info.si_errno = 0;
889 info.si_code = TRAP_BRKPT;
890 info.si_addr = user_mode(regs) ? (void __user *)regs->rip : NULL;
891 force_sig_info(SIGTRAP, &info, tsk);
892
893 clear_dr7:
894 set_debugreg(0UL, 7);
895 preempt_conditional_cli(regs);
896 return;
897
898 clear_TF_reenable:
899 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
900 regs->eflags &= ~TF_MASK;
901 preempt_conditional_cli(regs);
902 }
903
904 static int kernel_math_error(struct pt_regs *regs, const char *str, int trapnr)
905 {
906 const struct exception_table_entry *fixup;
907 fixup = search_exception_tables(regs->rip);
908 if (fixup) {
909 regs->rip = fixup->fixup;
910 return 1;
911 }
912 notify_die(DIE_GPF, str, regs, 0, trapnr, SIGFPE);
913 /* Illegal floating point operation in the kernel */
914 current->thread.trap_no = trapnr;
915 die(str, regs, 0);
916 return 0;
917 }
918
919 /*
920 * Note that we play around with the 'TS' bit in an attempt to get
921 * the correct behaviour even in the presence of the asynchronous
922 * IRQ13 behaviour
923 */
924 asmlinkage void do_coprocessor_error(struct pt_regs *regs)
925 {
926 void __user *rip = (void __user *)(regs->rip);
927 struct task_struct * task;
928 siginfo_t info;
929 unsigned short cwd, swd;
930
931 conditional_sti(regs);
932 if (!user_mode(regs) &&
933 kernel_math_error(regs, "kernel x87 math error", 16))
934 return;
935
936 /*
937 * Save the info for the exception handler and clear the error.
938 */
939 task = current;
940 save_init_fpu(task);
941 task->thread.trap_no = 16;
942 task->thread.error_code = 0;
943 info.si_signo = SIGFPE;
944 info.si_errno = 0;
945 info.si_code = __SI_FAULT;
946 info.si_addr = rip;
947 /*
948 * (~cwd & swd) will mask out exceptions that are not set to unmasked
949 * status. 0x3f is the exception bits in these regs, 0x200 is the
950 * C1 reg you need in case of a stack fault, 0x040 is the stack
951 * fault bit. We should only be taking one exception at a time,
952 * so if this combination doesn't produce any single exception,
953 * then we have a bad program that isn't synchronizing its FPU usage
954 * and it will suffer the consequences since we won't be able to
955 * fully reproduce the context of the exception
956 */
957 cwd = get_fpu_cwd(task);
958 swd = get_fpu_swd(task);
959 switch (swd & ~cwd & 0x3f) {
960 case 0x000:
961 default:
962 break;
963 case 0x001: /* Invalid Op */
964 /*
965 * swd & 0x240 == 0x040: Stack Underflow
966 * swd & 0x240 == 0x240: Stack Overflow
967 * User must clear the SF bit (0x40) if set
968 */
969 info.si_code = FPE_FLTINV;
970 break;
971 case 0x002: /* Denormalize */
972 case 0x010: /* Underflow */
973 info.si_code = FPE_FLTUND;
974 break;
975 case 0x004: /* Zero Divide */
976 info.si_code = FPE_FLTDIV;
977 break;
978 case 0x008: /* Overflow */
979 info.si_code = FPE_FLTOVF;
980 break;
981 case 0x020: /* Precision */
982 info.si_code = FPE_FLTRES;
983 break;
984 }
985 force_sig_info(SIGFPE, &info, task);
986 }
987
988 asmlinkage void bad_intr(void)
989 {
990 printk("bad interrupt");
991 }
992
993 asmlinkage void do_simd_coprocessor_error(struct pt_regs *regs)
994 {
995 void __user *rip = (void __user *)(regs->rip);
996 struct task_struct * task;
997 siginfo_t info;
998 unsigned short mxcsr;
999
1000 conditional_sti(regs);
1001 if (!user_mode(regs) &&
1002 kernel_math_error(regs, "kernel simd math error", 19))
1003 return;
1004
1005 /*
1006 * Save the info for the exception handler and clear the error.
1007 */
1008 task = current;
1009 save_init_fpu(task);
1010 task->thread.trap_no = 19;
1011 task->thread.error_code = 0;
1012 info.si_signo = SIGFPE;
1013 info.si_errno = 0;
1014 info.si_code = __SI_FAULT;
1015 info.si_addr = rip;
1016 /*
1017 * The SIMD FPU exceptions are handled a little differently, as there
1018 * is only a single status/control register. Thus, to determine which
1019 * unmasked exception was caught we must mask the exception mask bits
1020 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
1021 */
1022 mxcsr = get_fpu_mxcsr(task);
1023 switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
1024 case 0x000:
1025 default:
1026 break;
1027 case 0x001: /* Invalid Op */
1028 info.si_code = FPE_FLTINV;
1029 break;
1030 case 0x002: /* Denormalize */
1031 case 0x010: /* Underflow */
1032 info.si_code = FPE_FLTUND;
1033 break;
1034 case 0x004: /* Zero Divide */
1035 info.si_code = FPE_FLTDIV;
1036 break;
1037 case 0x008: /* Overflow */
1038 info.si_code = FPE_FLTOVF;
1039 break;
1040 case 0x020: /* Precision */
1041 info.si_code = FPE_FLTRES;
1042 break;
1043 }
1044 force_sig_info(SIGFPE, &info, task);
1045 }
1046
1047 asmlinkage void do_spurious_interrupt_bug(struct pt_regs * regs)
1048 {
1049 }
1050
1051 asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void)
1052 {
1053 }
1054
1055 asmlinkage void __attribute__((weak)) mce_threshold_interrupt(void)
1056 {
1057 }
1058
1059 /*
1060 * 'math_state_restore()' saves the current math information in the
1061 * old math state array, and gets the new ones from the current task
1062 *
1063 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
1064 * Don't touch unless you *really* know how it works.
1065 */
1066 asmlinkage void math_state_restore(void)
1067 {
1068 struct task_struct *me = current;
1069 clts(); /* Allow maths ops (or we recurse) */
1070
1071 if (!used_math())
1072 init_fpu(me);
1073 restore_fpu_checking(&me->thread.i387.fxsave);
1074 task_thread_info(me)->status |= TS_USEDFPU;
1075 me->fpu_counter++;
1076 }
1077
1078 void __init trap_init(void)
1079 {
1080 set_intr_gate(0,&divide_error);
1081 set_intr_gate_ist(1,&debug,DEBUG_STACK);
1082 set_intr_gate_ist(2,&nmi,NMI_STACK);
1083 set_system_gate_ist(3,&int3,DEBUG_STACK); /* int3 can be called from all */
1084 set_system_gate(4,&overflow); /* int4 can be called from all */
1085 set_intr_gate(5,&bounds);
1086 set_intr_gate(6,&invalid_op);
1087 set_intr_gate(7,&device_not_available);
1088 set_intr_gate_ist(8,&double_fault, DOUBLEFAULT_STACK);
1089 set_intr_gate(9,&coprocessor_segment_overrun);
1090 set_intr_gate(10,&invalid_TSS);
1091 set_intr_gate(11,&segment_not_present);
1092 set_intr_gate_ist(12,&stack_segment,STACKFAULT_STACK);
1093 set_intr_gate(13,&general_protection);
1094 set_intr_gate(14,&page_fault);
1095 set_intr_gate(15,&spurious_interrupt_bug);
1096 set_intr_gate(16,&coprocessor_error);
1097 set_intr_gate(17,&alignment_check);
1098 #ifdef CONFIG_X86_MCE
1099 set_intr_gate_ist(18,&machine_check, MCE_STACK);
1100 #endif
1101 set_intr_gate(19,&simd_coprocessor_error);
1102
1103 #ifdef CONFIG_IA32_EMULATION
1104 set_system_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
1105 #endif
1106
1107 /*
1108 * Should be a barrier for any external CPU state.
1109 */
1110 cpu_init();
1111 }
1112
1113
1114 static int __init oops_setup(char *s)
1115 {
1116 if (!s)
1117 return -EINVAL;
1118 if (!strcmp(s, "panic"))
1119 panic_on_oops = 1;
1120 return 0;
1121 }
1122 early_param("oops", oops_setup);
1123
1124 static int __init kstack_setup(char *s)
1125 {
1126 if (!s)
1127 return -EINVAL;
1128 kstack_depth_to_print = simple_strtoul(s,NULL,0);
1129 return 0;
1130 }
1131 early_param("kstack", kstack_setup);
This page took 0.06936 seconds and 5 git commands to generate.