x86, 32-bit: trim memory not covered by wb mtrrs
[deliverable/linux.git] / arch / x86 / kernel / traps_64.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8
9 /*
10 * 'Traps.c' handles hardware traps and faults after we have saved some
11 * state in 'entry.S'.
12 */
13 #include <linux/sched.h>
14 #include <linux/kernel.h>
15 #include <linux/string.h>
16 #include <linux/errno.h>
17 #include <linux/ptrace.h>
18 #include <linux/timer.h>
19 #include <linux/mm.h>
20 #include <linux/init.h>
21 #include <linux/delay.h>
22 #include <linux/spinlock.h>
23 #include <linux/interrupt.h>
24 #include <linux/kallsyms.h>
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/nmi.h>
28 #include <linux/kprobes.h>
29 #include <linux/kexec.h>
30 #include <linux/unwind.h>
31 #include <linux/uaccess.h>
32 #include <linux/bug.h>
33 #include <linux/kdebug.h>
34 #include <linux/utsname.h>
35
36 #if defined(CONFIG_EDAC)
37 #include <linux/edac.h>
38 #endif
39
40 #include <asm/system.h>
41 #include <asm/io.h>
42 #include <asm/atomic.h>
43 #include <asm/debugreg.h>
44 #include <asm/desc.h>
45 #include <asm/i387.h>
46 #include <asm/processor.h>
47 #include <asm/unwind.h>
48 #include <asm/smp.h>
49 #include <asm/pgalloc.h>
50 #include <asm/pda.h>
51 #include <asm/proto.h>
52 #include <asm/nmi.h>
53 #include <asm/stacktrace.h>
54
55 asmlinkage void divide_error(void);
56 asmlinkage void debug(void);
57 asmlinkage void nmi(void);
58 asmlinkage void int3(void);
59 asmlinkage void overflow(void);
60 asmlinkage void bounds(void);
61 asmlinkage void invalid_op(void);
62 asmlinkage void device_not_available(void);
63 asmlinkage void double_fault(void);
64 asmlinkage void coprocessor_segment_overrun(void);
65 asmlinkage void invalid_TSS(void);
66 asmlinkage void segment_not_present(void);
67 asmlinkage void stack_segment(void);
68 asmlinkage void general_protection(void);
69 asmlinkage void page_fault(void);
70 asmlinkage void coprocessor_error(void);
71 asmlinkage void simd_coprocessor_error(void);
72 asmlinkage void reserved(void);
73 asmlinkage void alignment_check(void);
74 asmlinkage void machine_check(void);
75 asmlinkage void spurious_interrupt_bug(void);
76
77 static unsigned int code_bytes = 64;
78
79 static inline void conditional_sti(struct pt_regs *regs)
80 {
81 if (regs->flags & X86_EFLAGS_IF)
82 local_irq_enable();
83 }
84
85 static inline void preempt_conditional_sti(struct pt_regs *regs)
86 {
87 preempt_disable();
88 if (regs->flags & X86_EFLAGS_IF)
89 local_irq_enable();
90 }
91
92 static inline void preempt_conditional_cli(struct pt_regs *regs)
93 {
94 if (regs->flags & X86_EFLAGS_IF)
95 local_irq_disable();
96 /* Make sure to not schedule here because we could be running
97 on an exception stack. */
98 preempt_enable_no_resched();
99 }
100
101 int kstack_depth_to_print = 12;
102
103 #ifdef CONFIG_KALLSYMS
104 void printk_address(unsigned long address, int reliable)
105 {
106 unsigned long offset = 0, symsize;
107 const char *symname;
108 char *modname;
109 char *delim = ":";
110 char namebuf[128];
111 char reliab[4] = "";;
112
113 symname = kallsyms_lookup(address, &symsize, &offset,
114 &modname, namebuf);
115 if (!symname) {
116 printk(" [<%016lx>]\n", address);
117 return;
118 }
119 if (!reliable)
120 strcpy(reliab, "? ");
121
122 if (!modname)
123 modname = delim = "";
124 printk(" [<%016lx>] %s%s%s%s%s+0x%lx/0x%lx\n",
125 address, reliab, delim, modname, delim, symname, offset, symsize);
126 }
127 #else
128 void printk_address(unsigned long address, int reliable)
129 {
130 printk(" [<%016lx>]\n", address);
131 }
132 #endif
133
134 static unsigned long *in_exception_stack(unsigned cpu, unsigned long stack,
135 unsigned *usedp, char **idp)
136 {
137 static char ids[][8] = {
138 [DEBUG_STACK - 1] = "#DB",
139 [NMI_STACK - 1] = "NMI",
140 [DOUBLEFAULT_STACK - 1] = "#DF",
141 [STACKFAULT_STACK - 1] = "#SS",
142 [MCE_STACK - 1] = "#MC",
143 #if DEBUG_STKSZ > EXCEPTION_STKSZ
144 [N_EXCEPTION_STACKS ... N_EXCEPTION_STACKS + DEBUG_STKSZ / EXCEPTION_STKSZ - 2] = "#DB[?]"
145 #endif
146 };
147 unsigned k;
148
149 /*
150 * Iterate over all exception stacks, and figure out whether
151 * 'stack' is in one of them:
152 */
153 for (k = 0; k < N_EXCEPTION_STACKS; k++) {
154 unsigned long end = per_cpu(orig_ist, cpu).ist[k];
155 /*
156 * Is 'stack' above this exception frame's end?
157 * If yes then skip to the next frame.
158 */
159 if (stack >= end)
160 continue;
161 /*
162 * Is 'stack' above this exception frame's start address?
163 * If yes then we found the right frame.
164 */
165 if (stack >= end - EXCEPTION_STKSZ) {
166 /*
167 * Make sure we only iterate through an exception
168 * stack once. If it comes up for the second time
169 * then there's something wrong going on - just
170 * break out and return NULL:
171 */
172 if (*usedp & (1U << k))
173 break;
174 *usedp |= 1U << k;
175 *idp = ids[k];
176 return (unsigned long *)end;
177 }
178 /*
179 * If this is a debug stack, and if it has a larger size than
180 * the usual exception stacks, then 'stack' might still
181 * be within the lower portion of the debug stack:
182 */
183 #if DEBUG_STKSZ > EXCEPTION_STKSZ
184 if (k == DEBUG_STACK - 1 && stack >= end - DEBUG_STKSZ) {
185 unsigned j = N_EXCEPTION_STACKS - 1;
186
187 /*
188 * Black magic. A large debug stack is composed of
189 * multiple exception stack entries, which we
190 * iterate through now. Dont look:
191 */
192 do {
193 ++j;
194 end -= EXCEPTION_STKSZ;
195 ids[j][4] = '1' + (j - N_EXCEPTION_STACKS);
196 } while (stack < end - EXCEPTION_STKSZ);
197 if (*usedp & (1U << j))
198 break;
199 *usedp |= 1U << j;
200 *idp = ids[j];
201 return (unsigned long *)end;
202 }
203 #endif
204 }
205 return NULL;
206 }
207
208 #define MSG(txt) ops->warning(data, txt)
209
210 /*
211 * x86-64 can have up to three kernel stacks:
212 * process stack
213 * interrupt stack
214 * severe exception (double fault, nmi, stack fault, debug, mce) hardware stack
215 */
216
217 static inline int valid_stack_ptr(struct thread_info *tinfo,
218 void *p, unsigned int size, void *end)
219 {
220 void *t = (void *)tinfo;
221 if (end) {
222 if (p < end && p >= (end-THREAD_SIZE))
223 return 1;
224 else
225 return 0;
226 }
227 return p > t && p < t + THREAD_SIZE - size;
228 }
229
230 /* The form of the top of the frame on the stack */
231 struct stack_frame {
232 struct stack_frame *next_frame;
233 unsigned long return_address;
234 };
235
236
237 static inline unsigned long print_context_stack(struct thread_info *tinfo,
238 unsigned long *stack, unsigned long bp,
239 const struct stacktrace_ops *ops, void *data,
240 unsigned long *end)
241 {
242 struct stack_frame *frame = (struct stack_frame *)bp;
243
244 while (valid_stack_ptr(tinfo, stack, sizeof(*stack), end)) {
245 unsigned long addr;
246
247 addr = *stack;
248 if (__kernel_text_address(addr)) {
249 if ((unsigned long) stack == bp + 8) {
250 ops->address(data, addr, 1);
251 frame = frame->next_frame;
252 bp = (unsigned long) frame;
253 } else {
254 ops->address(data, addr, bp == 0);
255 }
256 }
257 stack++;
258 }
259 return bp;
260 }
261
262 void dump_trace(struct task_struct *tsk, struct pt_regs *regs,
263 unsigned long *stack, unsigned long bp,
264 const struct stacktrace_ops *ops, void *data)
265 {
266 const unsigned cpu = get_cpu();
267 unsigned long *irqstack_end = (unsigned long*)cpu_pda(cpu)->irqstackptr;
268 unsigned used = 0;
269 struct thread_info *tinfo;
270
271 if (!tsk)
272 tsk = current;
273 tinfo = task_thread_info(tsk);
274
275 if (!stack) {
276 unsigned long dummy;
277 stack = &dummy;
278 if (tsk && tsk != current)
279 stack = (unsigned long *)tsk->thread.sp;
280 }
281
282 #ifdef CONFIG_FRAME_POINTER
283 if (!bp) {
284 if (tsk == current) {
285 /* Grab bp right from our regs */
286 asm("movq %%rbp, %0" : "=r" (bp):);
287 } else {
288 /* bp is the last reg pushed by switch_to */
289 bp = *(unsigned long *) tsk->thread.sp;
290 }
291 }
292 #endif
293
294
295
296 /*
297 * Print function call entries in all stacks, starting at the
298 * current stack address. If the stacks consist of nested
299 * exceptions
300 */
301 for (;;) {
302 char *id;
303 unsigned long *estack_end;
304 estack_end = in_exception_stack(cpu, (unsigned long)stack,
305 &used, &id);
306
307 if (estack_end) {
308 if (ops->stack(data, id) < 0)
309 break;
310
311 bp = print_context_stack(tinfo, stack, bp, ops,
312 data, estack_end);
313 ops->stack(data, "<EOE>");
314 /*
315 * We link to the next stack via the
316 * second-to-last pointer (index -2 to end) in the
317 * exception stack:
318 */
319 stack = (unsigned long *) estack_end[-2];
320 continue;
321 }
322 if (irqstack_end) {
323 unsigned long *irqstack;
324 irqstack = irqstack_end -
325 (IRQSTACKSIZE - 64) / sizeof(*irqstack);
326
327 if (stack >= irqstack && stack < irqstack_end) {
328 if (ops->stack(data, "IRQ") < 0)
329 break;
330 bp = print_context_stack(tinfo, stack, bp,
331 ops, data, irqstack_end);
332 /*
333 * We link to the next stack (which would be
334 * the process stack normally) the last
335 * pointer (index -1 to end) in the IRQ stack:
336 */
337 stack = (unsigned long *) (irqstack_end[-1]);
338 irqstack_end = NULL;
339 ops->stack(data, "EOI");
340 continue;
341 }
342 }
343 break;
344 }
345
346 /*
347 * This handles the process stack:
348 */
349 bp = print_context_stack(tinfo, stack, bp, ops, data, NULL);
350 put_cpu();
351 }
352 EXPORT_SYMBOL(dump_trace);
353
354 static void
355 print_trace_warning_symbol(void *data, char *msg, unsigned long symbol)
356 {
357 print_symbol(msg, symbol);
358 printk("\n");
359 }
360
361 static void print_trace_warning(void *data, char *msg)
362 {
363 printk("%s\n", msg);
364 }
365
366 static int print_trace_stack(void *data, char *name)
367 {
368 printk(" <%s> ", name);
369 return 0;
370 }
371
372 static void print_trace_address(void *data, unsigned long addr, int reliable)
373 {
374 touch_nmi_watchdog();
375 printk_address(addr, reliable);
376 }
377
378 static const struct stacktrace_ops print_trace_ops = {
379 .warning = print_trace_warning,
380 .warning_symbol = print_trace_warning_symbol,
381 .stack = print_trace_stack,
382 .address = print_trace_address,
383 };
384
385 void
386 show_trace(struct task_struct *tsk, struct pt_regs *regs, unsigned long *stack,
387 unsigned long bp)
388 {
389 printk("\nCall Trace:\n");
390 dump_trace(tsk, regs, stack, bp, &print_trace_ops, NULL);
391 printk("\n");
392 }
393
394 static void
395 _show_stack(struct task_struct *tsk, struct pt_regs *regs, unsigned long *sp,
396 unsigned long bp)
397 {
398 unsigned long *stack;
399 int i;
400 const int cpu = smp_processor_id();
401 unsigned long *irqstack_end = (unsigned long *) (cpu_pda(cpu)->irqstackptr);
402 unsigned long *irqstack = (unsigned long *) (cpu_pda(cpu)->irqstackptr - IRQSTACKSIZE);
403
404 // debugging aid: "show_stack(NULL, NULL);" prints the
405 // back trace for this cpu.
406
407 if (sp == NULL) {
408 if (tsk)
409 sp = (unsigned long *)tsk->thread.sp;
410 else
411 sp = (unsigned long *)&sp;
412 }
413
414 stack = sp;
415 for(i=0; i < kstack_depth_to_print; i++) {
416 if (stack >= irqstack && stack <= irqstack_end) {
417 if (stack == irqstack_end) {
418 stack = (unsigned long *) (irqstack_end[-1]);
419 printk(" <EOI> ");
420 }
421 } else {
422 if (((long) stack & (THREAD_SIZE-1)) == 0)
423 break;
424 }
425 if (i && ((i % 4) == 0))
426 printk("\n");
427 printk(" %016lx", *stack++);
428 touch_nmi_watchdog();
429 }
430 show_trace(tsk, regs, sp, bp);
431 }
432
433 void show_stack(struct task_struct *tsk, unsigned long * sp)
434 {
435 _show_stack(tsk, NULL, sp, 0);
436 }
437
438 /*
439 * The architecture-independent dump_stack generator
440 */
441 void dump_stack(void)
442 {
443 unsigned long dummy;
444 unsigned long bp = 0;
445
446 #ifdef CONFIG_FRAME_POINTER
447 if (!bp)
448 asm("movq %%rbp, %0" : "=r" (bp):);
449 #endif
450
451 printk("Pid: %d, comm: %.20s %s %s %.*s\n",
452 current->pid, current->comm, print_tainted(),
453 init_utsname()->release,
454 (int)strcspn(init_utsname()->version, " "),
455 init_utsname()->version);
456 show_trace(NULL, NULL, &dummy, bp);
457 }
458
459 EXPORT_SYMBOL(dump_stack);
460
461 void show_registers(struct pt_regs *regs)
462 {
463 int i;
464 unsigned long sp;
465 const int cpu = smp_processor_id();
466 struct task_struct *cur = cpu_pda(cpu)->pcurrent;
467 u8 *ip;
468 unsigned int code_prologue = code_bytes * 43 / 64;
469 unsigned int code_len = code_bytes;
470
471 sp = regs->sp;
472 ip = (u8 *) regs->ip - code_prologue;
473 printk("CPU %d ", cpu);
474 __show_regs(regs);
475 printk("Process %s (pid: %d, threadinfo %p, task %p)\n",
476 cur->comm, cur->pid, task_thread_info(cur), cur);
477
478 /*
479 * When in-kernel, we also print out the stack and code at the
480 * time of the fault..
481 */
482 if (!user_mode(regs)) {
483 unsigned char c;
484 printk("Stack: ");
485 _show_stack(NULL, regs, (unsigned long *)sp, regs->bp);
486 printk("\n");
487
488 printk(KERN_EMERG "Code: ");
489 if (ip < (u8 *)PAGE_OFFSET || probe_kernel_address(ip, c)) {
490 /* try starting at RIP */
491 ip = (u8 *) regs->ip;
492 code_len = code_len - code_prologue + 1;
493 }
494 for (i = 0; i < code_len; i++, ip++) {
495 if (ip < (u8 *)PAGE_OFFSET ||
496 probe_kernel_address(ip, c)) {
497 printk(" Bad RIP value.");
498 break;
499 }
500 if (ip == (u8 *)regs->ip)
501 printk("<%02x> ", c);
502 else
503 printk("%02x ", c);
504 }
505 }
506 printk("\n");
507 }
508
509 int is_valid_bugaddr(unsigned long ip)
510 {
511 unsigned short ud2;
512
513 if (__copy_from_user(&ud2, (const void __user *) ip, sizeof(ud2)))
514 return 0;
515
516 return ud2 == 0x0b0f;
517 }
518
519 static raw_spinlock_t die_lock = __RAW_SPIN_LOCK_UNLOCKED;
520 static int die_owner = -1;
521 static unsigned int die_nest_count;
522
523 unsigned __kprobes long oops_begin(void)
524 {
525 int cpu;
526 unsigned long flags;
527
528 oops_enter();
529
530 /* racy, but better than risking deadlock. */
531 raw_local_irq_save(flags);
532 cpu = smp_processor_id();
533 if (!__raw_spin_trylock(&die_lock)) {
534 if (cpu == die_owner)
535 /* nested oops. should stop eventually */;
536 else
537 __raw_spin_lock(&die_lock);
538 }
539 die_nest_count++;
540 die_owner = cpu;
541 console_verbose();
542 bust_spinlocks(1);
543 return flags;
544 }
545
546 void __kprobes oops_end(unsigned long flags, struct pt_regs *regs, int signr)
547 {
548 die_owner = -1;
549 bust_spinlocks(0);
550 die_nest_count--;
551 if (!die_nest_count)
552 /* Nest count reaches zero, release the lock. */
553 __raw_spin_unlock(&die_lock);
554 raw_local_irq_restore(flags);
555 if (!regs) {
556 oops_exit();
557 return;
558 }
559 if (panic_on_oops)
560 panic("Fatal exception");
561 oops_exit();
562 do_exit(signr);
563 }
564
565 int __kprobes __die(const char * str, struct pt_regs * regs, long err)
566 {
567 static int die_counter;
568 printk(KERN_EMERG "%s: %04lx [%u] ", str, err & 0xffff,++die_counter);
569 #ifdef CONFIG_PREEMPT
570 printk("PREEMPT ");
571 #endif
572 #ifdef CONFIG_SMP
573 printk("SMP ");
574 #endif
575 #ifdef CONFIG_DEBUG_PAGEALLOC
576 printk("DEBUG_PAGEALLOC");
577 #endif
578 printk("\n");
579 if (notify_die(DIE_OOPS, str, regs, err, current->thread.trap_no, SIGSEGV) == NOTIFY_STOP)
580 return 1;
581 show_registers(regs);
582 add_taint(TAINT_DIE);
583 /* Executive summary in case the oops scrolled away */
584 printk(KERN_ALERT "RIP ");
585 printk_address(regs->ip, 1);
586 printk(" RSP <%016lx>\n", regs->sp);
587 if (kexec_should_crash(current))
588 crash_kexec(regs);
589 return 0;
590 }
591
592 void die(const char * str, struct pt_regs * regs, long err)
593 {
594 unsigned long flags = oops_begin();
595
596 if (!user_mode(regs))
597 report_bug(regs->ip, regs);
598
599 if (__die(str, regs, err))
600 regs = NULL;
601 oops_end(flags, regs, SIGSEGV);
602 }
603
604 void __kprobes die_nmi(char *str, struct pt_regs *regs, int do_panic)
605 {
606 unsigned long flags = oops_begin();
607
608 /*
609 * We are in trouble anyway, lets at least try
610 * to get a message out.
611 */
612 printk(str, smp_processor_id());
613 show_registers(regs);
614 if (kexec_should_crash(current))
615 crash_kexec(regs);
616 if (do_panic || panic_on_oops)
617 panic("Non maskable interrupt");
618 oops_end(flags, NULL, SIGBUS);
619 nmi_exit();
620 local_irq_enable();
621 do_exit(SIGBUS);
622 }
623
624 static void __kprobes do_trap(int trapnr, int signr, char *str,
625 struct pt_regs * regs, long error_code,
626 siginfo_t *info)
627 {
628 struct task_struct *tsk = current;
629
630 if (user_mode(regs)) {
631 /*
632 * We want error_code and trap_no set for userspace
633 * faults and kernelspace faults which result in
634 * die(), but not kernelspace faults which are fixed
635 * up. die() gives the process no chance to handle
636 * the signal and notice the kernel fault information,
637 * so that won't result in polluting the information
638 * about previously queued, but not yet delivered,
639 * faults. See also do_general_protection below.
640 */
641 tsk->thread.error_code = error_code;
642 tsk->thread.trap_no = trapnr;
643
644 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
645 printk_ratelimit()) {
646 printk(KERN_INFO
647 "%s[%d] trap %s ip:%lx sp:%lx error:%lx",
648 tsk->comm, tsk->pid, str,
649 regs->ip, regs->sp, error_code);
650 print_vma_addr(" in ", regs->ip);
651 printk("\n");
652 }
653
654 if (info)
655 force_sig_info(signr, info, tsk);
656 else
657 force_sig(signr, tsk);
658 return;
659 }
660
661
662 if (!fixup_exception(regs)) {
663 tsk->thread.error_code = error_code;
664 tsk->thread.trap_no = trapnr;
665 die(str, regs, error_code);
666 }
667 return;
668 }
669
670 #define DO_ERROR(trapnr, signr, str, name) \
671 asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
672 { \
673 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
674 == NOTIFY_STOP) \
675 return; \
676 conditional_sti(regs); \
677 do_trap(trapnr, signr, str, regs, error_code, NULL); \
678 }
679
680 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
681 asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
682 { \
683 siginfo_t info; \
684 info.si_signo = signr; \
685 info.si_errno = 0; \
686 info.si_code = sicode; \
687 info.si_addr = (void __user *)siaddr; \
688 trace_hardirqs_fixup(); \
689 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
690 == NOTIFY_STOP) \
691 return; \
692 conditional_sti(regs); \
693 do_trap(trapnr, signr, str, regs, error_code, &info); \
694 }
695
696 DO_ERROR_INFO( 0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->ip)
697 DO_ERROR( 4, SIGSEGV, "overflow", overflow)
698 DO_ERROR( 5, SIGSEGV, "bounds", bounds)
699 DO_ERROR_INFO( 6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->ip)
700 DO_ERROR( 7, SIGSEGV, "device not available", device_not_available)
701 DO_ERROR( 9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
702 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
703 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
704 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
705 DO_ERROR(18, SIGSEGV, "reserved", reserved)
706
707 /* Runs on IST stack */
708 asmlinkage void do_stack_segment(struct pt_regs *regs, long error_code)
709 {
710 if (notify_die(DIE_TRAP, "stack segment", regs, error_code,
711 12, SIGBUS) == NOTIFY_STOP)
712 return;
713 preempt_conditional_sti(regs);
714 do_trap(12, SIGBUS, "stack segment", regs, error_code, NULL);
715 preempt_conditional_cli(regs);
716 }
717
718 asmlinkage void do_double_fault(struct pt_regs * regs, long error_code)
719 {
720 static const char str[] = "double fault";
721 struct task_struct *tsk = current;
722
723 /* Return not checked because double check cannot be ignored */
724 notify_die(DIE_TRAP, str, regs, error_code, 8, SIGSEGV);
725
726 tsk->thread.error_code = error_code;
727 tsk->thread.trap_no = 8;
728
729 /* This is always a kernel trap and never fixable (and thus must
730 never return). */
731 for (;;)
732 die(str, regs, error_code);
733 }
734
735 asmlinkage void __kprobes do_general_protection(struct pt_regs * regs,
736 long error_code)
737 {
738 struct task_struct *tsk = current;
739
740 conditional_sti(regs);
741
742 if (user_mode(regs)) {
743 tsk->thread.error_code = error_code;
744 tsk->thread.trap_no = 13;
745
746 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
747 printk_ratelimit()) {
748 printk(KERN_INFO
749 "%s[%d] general protection ip:%lx sp:%lx error:%lx",
750 tsk->comm, tsk->pid,
751 regs->ip, regs->sp, error_code);
752 print_vma_addr(" in ", regs->ip);
753 printk("\n");
754 }
755
756 force_sig(SIGSEGV, tsk);
757 return;
758 }
759
760 if (fixup_exception(regs))
761 return;
762
763 tsk->thread.error_code = error_code;
764 tsk->thread.trap_no = 13;
765 if (notify_die(DIE_GPF, "general protection fault", regs,
766 error_code, 13, SIGSEGV) == NOTIFY_STOP)
767 return;
768 die("general protection fault", regs, error_code);
769 }
770
771 static __kprobes void
772 mem_parity_error(unsigned char reason, struct pt_regs * regs)
773 {
774 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x.\n",
775 reason);
776 printk(KERN_EMERG "You have some hardware problem, likely on the PCI bus.\n");
777
778 #if defined(CONFIG_EDAC)
779 if(edac_handler_set()) {
780 edac_atomic_assert_error();
781 return;
782 }
783 #endif
784
785 if (panic_on_unrecovered_nmi)
786 panic("NMI: Not continuing");
787
788 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
789
790 /* Clear and disable the memory parity error line. */
791 reason = (reason & 0xf) | 4;
792 outb(reason, 0x61);
793 }
794
795 static __kprobes void
796 io_check_error(unsigned char reason, struct pt_regs * regs)
797 {
798 printk("NMI: IOCK error (debug interrupt?)\n");
799 show_registers(regs);
800
801 /* Re-enable the IOCK line, wait for a few seconds */
802 reason = (reason & 0xf) | 8;
803 outb(reason, 0x61);
804 mdelay(2000);
805 reason &= ~8;
806 outb(reason, 0x61);
807 }
808
809 static __kprobes void
810 unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
811 {
812 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x.\n",
813 reason);
814 printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n");
815
816 if (panic_on_unrecovered_nmi)
817 panic("NMI: Not continuing");
818
819 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
820 }
821
822 /* Runs on IST stack. This code must keep interrupts off all the time.
823 Nested NMIs are prevented by the CPU. */
824 asmlinkage __kprobes void default_do_nmi(struct pt_regs *regs)
825 {
826 unsigned char reason = 0;
827 int cpu;
828
829 cpu = smp_processor_id();
830
831 /* Only the BSP gets external NMIs from the system. */
832 if (!cpu)
833 reason = get_nmi_reason();
834
835 if (!(reason & 0xc0)) {
836 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
837 == NOTIFY_STOP)
838 return;
839 /*
840 * Ok, so this is none of the documented NMI sources,
841 * so it must be the NMI watchdog.
842 */
843 if (nmi_watchdog_tick(regs,reason))
844 return;
845 if (!do_nmi_callback(regs,cpu))
846 unknown_nmi_error(reason, regs);
847
848 return;
849 }
850 if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
851 return;
852
853 /* AK: following checks seem to be broken on modern chipsets. FIXME */
854
855 if (reason & 0x80)
856 mem_parity_error(reason, regs);
857 if (reason & 0x40)
858 io_check_error(reason, regs);
859 }
860
861 /* runs on IST stack. */
862 asmlinkage void __kprobes do_int3(struct pt_regs * regs, long error_code)
863 {
864 trace_hardirqs_fixup();
865
866 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP) == NOTIFY_STOP) {
867 return;
868 }
869 preempt_conditional_sti(regs);
870 do_trap(3, SIGTRAP, "int3", regs, error_code, NULL);
871 preempt_conditional_cli(regs);
872 }
873
874 /* Help handler running on IST stack to switch back to user stack
875 for scheduling or signal handling. The actual stack switch is done in
876 entry.S */
877 asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs)
878 {
879 struct pt_regs *regs = eregs;
880 /* Did already sync */
881 if (eregs == (struct pt_regs *)eregs->sp)
882 ;
883 /* Exception from user space */
884 else if (user_mode(eregs))
885 regs = task_pt_regs(current);
886 /* Exception from kernel and interrupts are enabled. Move to
887 kernel process stack. */
888 else if (eregs->flags & X86_EFLAGS_IF)
889 regs = (struct pt_regs *)(eregs->sp -= sizeof(struct pt_regs));
890 if (eregs != regs)
891 *regs = *eregs;
892 return regs;
893 }
894
895 /* runs on IST stack. */
896 asmlinkage void __kprobes do_debug(struct pt_regs * regs,
897 unsigned long error_code)
898 {
899 unsigned long condition;
900 struct task_struct *tsk = current;
901 siginfo_t info;
902
903 trace_hardirqs_fixup();
904
905 get_debugreg(condition, 6);
906
907 /*
908 * The processor cleared BTF, so don't mark that we need it set.
909 */
910 clear_tsk_thread_flag(tsk, TIF_DEBUGCTLMSR);
911 tsk->thread.debugctlmsr = 0;
912
913 if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
914 SIGTRAP) == NOTIFY_STOP)
915 return;
916
917 preempt_conditional_sti(regs);
918
919 /* Mask out spurious debug traps due to lazy DR7 setting */
920 if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
921 if (!tsk->thread.debugreg7) {
922 goto clear_dr7;
923 }
924 }
925
926 tsk->thread.debugreg6 = condition;
927
928
929 /*
930 * Single-stepping through TF: make sure we ignore any events in
931 * kernel space (but re-enable TF when returning to user mode).
932 */
933 if (condition & DR_STEP) {
934 if (!user_mode(regs))
935 goto clear_TF_reenable;
936 }
937
938 /* Ok, finally something we can handle */
939 tsk->thread.trap_no = 1;
940 tsk->thread.error_code = error_code;
941 info.si_signo = SIGTRAP;
942 info.si_errno = 0;
943 info.si_code = TRAP_BRKPT;
944 info.si_addr = user_mode(regs) ? (void __user *)regs->ip : NULL;
945 force_sig_info(SIGTRAP, &info, tsk);
946
947 clear_dr7:
948 set_debugreg(0UL, 7);
949 preempt_conditional_cli(regs);
950 return;
951
952 clear_TF_reenable:
953 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
954 regs->flags &= ~X86_EFLAGS_TF;
955 preempt_conditional_cli(regs);
956 }
957
958 static int kernel_math_error(struct pt_regs *regs, const char *str, int trapnr)
959 {
960 if (fixup_exception(regs))
961 return 1;
962
963 notify_die(DIE_GPF, str, regs, 0, trapnr, SIGFPE);
964 /* Illegal floating point operation in the kernel */
965 current->thread.trap_no = trapnr;
966 die(str, regs, 0);
967 return 0;
968 }
969
970 /*
971 * Note that we play around with the 'TS' bit in an attempt to get
972 * the correct behaviour even in the presence of the asynchronous
973 * IRQ13 behaviour
974 */
975 asmlinkage void do_coprocessor_error(struct pt_regs *regs)
976 {
977 void __user *ip = (void __user *)(regs->ip);
978 struct task_struct * task;
979 siginfo_t info;
980 unsigned short cwd, swd;
981
982 conditional_sti(regs);
983 if (!user_mode(regs) &&
984 kernel_math_error(regs, "kernel x87 math error", 16))
985 return;
986
987 /*
988 * Save the info for the exception handler and clear the error.
989 */
990 task = current;
991 save_init_fpu(task);
992 task->thread.trap_no = 16;
993 task->thread.error_code = 0;
994 info.si_signo = SIGFPE;
995 info.si_errno = 0;
996 info.si_code = __SI_FAULT;
997 info.si_addr = ip;
998 /*
999 * (~cwd & swd) will mask out exceptions that are not set to unmasked
1000 * status. 0x3f is the exception bits in these regs, 0x200 is the
1001 * C1 reg you need in case of a stack fault, 0x040 is the stack
1002 * fault bit. We should only be taking one exception at a time,
1003 * so if this combination doesn't produce any single exception,
1004 * then we have a bad program that isn't synchronizing its FPU usage
1005 * and it will suffer the consequences since we won't be able to
1006 * fully reproduce the context of the exception
1007 */
1008 cwd = get_fpu_cwd(task);
1009 swd = get_fpu_swd(task);
1010 switch (swd & ~cwd & 0x3f) {
1011 case 0x000:
1012 default:
1013 break;
1014 case 0x001: /* Invalid Op */
1015 /*
1016 * swd & 0x240 == 0x040: Stack Underflow
1017 * swd & 0x240 == 0x240: Stack Overflow
1018 * User must clear the SF bit (0x40) if set
1019 */
1020 info.si_code = FPE_FLTINV;
1021 break;
1022 case 0x002: /* Denormalize */
1023 case 0x010: /* Underflow */
1024 info.si_code = FPE_FLTUND;
1025 break;
1026 case 0x004: /* Zero Divide */
1027 info.si_code = FPE_FLTDIV;
1028 break;
1029 case 0x008: /* Overflow */
1030 info.si_code = FPE_FLTOVF;
1031 break;
1032 case 0x020: /* Precision */
1033 info.si_code = FPE_FLTRES;
1034 break;
1035 }
1036 force_sig_info(SIGFPE, &info, task);
1037 }
1038
1039 asmlinkage void bad_intr(void)
1040 {
1041 printk("bad interrupt");
1042 }
1043
1044 asmlinkage void do_simd_coprocessor_error(struct pt_regs *regs)
1045 {
1046 void __user *ip = (void __user *)(regs->ip);
1047 struct task_struct * task;
1048 siginfo_t info;
1049 unsigned short mxcsr;
1050
1051 conditional_sti(regs);
1052 if (!user_mode(regs) &&
1053 kernel_math_error(regs, "kernel simd math error", 19))
1054 return;
1055
1056 /*
1057 * Save the info for the exception handler and clear the error.
1058 */
1059 task = current;
1060 save_init_fpu(task);
1061 task->thread.trap_no = 19;
1062 task->thread.error_code = 0;
1063 info.si_signo = SIGFPE;
1064 info.si_errno = 0;
1065 info.si_code = __SI_FAULT;
1066 info.si_addr = ip;
1067 /*
1068 * The SIMD FPU exceptions are handled a little differently, as there
1069 * is only a single status/control register. Thus, to determine which
1070 * unmasked exception was caught we must mask the exception mask bits
1071 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
1072 */
1073 mxcsr = get_fpu_mxcsr(task);
1074 switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
1075 case 0x000:
1076 default:
1077 break;
1078 case 0x001: /* Invalid Op */
1079 info.si_code = FPE_FLTINV;
1080 break;
1081 case 0x002: /* Denormalize */
1082 case 0x010: /* Underflow */
1083 info.si_code = FPE_FLTUND;
1084 break;
1085 case 0x004: /* Zero Divide */
1086 info.si_code = FPE_FLTDIV;
1087 break;
1088 case 0x008: /* Overflow */
1089 info.si_code = FPE_FLTOVF;
1090 break;
1091 case 0x020: /* Precision */
1092 info.si_code = FPE_FLTRES;
1093 break;
1094 }
1095 force_sig_info(SIGFPE, &info, task);
1096 }
1097
1098 asmlinkage void do_spurious_interrupt_bug(struct pt_regs * regs)
1099 {
1100 }
1101
1102 asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void)
1103 {
1104 }
1105
1106 asmlinkage void __attribute__((weak)) mce_threshold_interrupt(void)
1107 {
1108 }
1109
1110 /*
1111 * 'math_state_restore()' saves the current math information in the
1112 * old math state array, and gets the new ones from the current task
1113 *
1114 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
1115 * Don't touch unless you *really* know how it works.
1116 */
1117 asmlinkage void math_state_restore(void)
1118 {
1119 struct task_struct *me = current;
1120 clts(); /* Allow maths ops (or we recurse) */
1121
1122 if (!used_math())
1123 init_fpu(me);
1124 restore_fpu_checking(&me->thread.i387.fxsave);
1125 task_thread_info(me)->status |= TS_USEDFPU;
1126 me->fpu_counter++;
1127 }
1128 EXPORT_SYMBOL_GPL(math_state_restore);
1129
1130 void __init trap_init(void)
1131 {
1132 set_intr_gate(0,&divide_error);
1133 set_intr_gate_ist(1,&debug,DEBUG_STACK);
1134 set_intr_gate_ist(2,&nmi,NMI_STACK);
1135 set_system_gate_ist(3,&int3,DEBUG_STACK); /* int3 can be called from all */
1136 set_system_gate(4,&overflow); /* int4 can be called from all */
1137 set_intr_gate(5,&bounds);
1138 set_intr_gate(6,&invalid_op);
1139 set_intr_gate(7,&device_not_available);
1140 set_intr_gate_ist(8,&double_fault, DOUBLEFAULT_STACK);
1141 set_intr_gate(9,&coprocessor_segment_overrun);
1142 set_intr_gate(10,&invalid_TSS);
1143 set_intr_gate(11,&segment_not_present);
1144 set_intr_gate_ist(12,&stack_segment,STACKFAULT_STACK);
1145 set_intr_gate(13,&general_protection);
1146 set_intr_gate(14,&page_fault);
1147 set_intr_gate(15,&spurious_interrupt_bug);
1148 set_intr_gate(16,&coprocessor_error);
1149 set_intr_gate(17,&alignment_check);
1150 #ifdef CONFIG_X86_MCE
1151 set_intr_gate_ist(18,&machine_check, MCE_STACK);
1152 #endif
1153 set_intr_gate(19,&simd_coprocessor_error);
1154
1155 #ifdef CONFIG_IA32_EMULATION
1156 set_system_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
1157 #endif
1158
1159 /*
1160 * Should be a barrier for any external CPU state.
1161 */
1162 cpu_init();
1163 }
1164
1165
1166 static int __init oops_setup(char *s)
1167 {
1168 if (!s)
1169 return -EINVAL;
1170 if (!strcmp(s, "panic"))
1171 panic_on_oops = 1;
1172 return 0;
1173 }
1174 early_param("oops", oops_setup);
1175
1176 static int __init kstack_setup(char *s)
1177 {
1178 if (!s)
1179 return -EINVAL;
1180 kstack_depth_to_print = simple_strtoul(s,NULL,0);
1181 return 0;
1182 }
1183 early_param("kstack", kstack_setup);
1184
1185
1186 static int __init code_bytes_setup(char *s)
1187 {
1188 code_bytes = simple_strtoul(s, NULL, 0);
1189 if (code_bytes > 8192)
1190 code_bytes = 8192;
1191
1192 return 1;
1193 }
1194 __setup("code_bytes=", code_bytes_setup);
This page took 0.067914 seconds and 5 git commands to generate.