lockdep: x86_64: connect the sysexit hook
[deliverable/linux.git] / arch / x86 / kernel / traps_64.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8
9 /*
10 * 'Traps.c' handles hardware traps and faults after we have saved some
11 * state in 'entry.S'.
12 */
13 #include <linux/sched.h>
14 #include <linux/kernel.h>
15 #include <linux/string.h>
16 #include <linux/errno.h>
17 #include <linux/ptrace.h>
18 #include <linux/timer.h>
19 #include <linux/mm.h>
20 #include <linux/init.h>
21 #include <linux/delay.h>
22 #include <linux/spinlock.h>
23 #include <linux/interrupt.h>
24 #include <linux/kallsyms.h>
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/nmi.h>
28 #include <linux/kprobes.h>
29 #include <linux/kexec.h>
30 #include <linux/unwind.h>
31 #include <linux/uaccess.h>
32 #include <linux/bug.h>
33 #include <linux/kdebug.h>
34
35 #if defined(CONFIG_EDAC)
36 #include <linux/edac.h>
37 #endif
38
39 #include <asm/system.h>
40 #include <asm/io.h>
41 #include <asm/atomic.h>
42 #include <asm/debugreg.h>
43 #include <asm/desc.h>
44 #include <asm/i387.h>
45 #include <asm/processor.h>
46 #include <asm/unwind.h>
47 #include <asm/smp.h>
48 #include <asm/pgalloc.h>
49 #include <asm/pda.h>
50 #include <asm/proto.h>
51 #include <asm/nmi.h>
52 #include <asm/stacktrace.h>
53
54 asmlinkage void divide_error(void);
55 asmlinkage void debug(void);
56 asmlinkage void nmi(void);
57 asmlinkage void int3(void);
58 asmlinkage void overflow(void);
59 asmlinkage void bounds(void);
60 asmlinkage void invalid_op(void);
61 asmlinkage void device_not_available(void);
62 asmlinkage void double_fault(void);
63 asmlinkage void coprocessor_segment_overrun(void);
64 asmlinkage void invalid_TSS(void);
65 asmlinkage void segment_not_present(void);
66 asmlinkage void stack_segment(void);
67 asmlinkage void general_protection(void);
68 asmlinkage void page_fault(void);
69 asmlinkage void coprocessor_error(void);
70 asmlinkage void simd_coprocessor_error(void);
71 asmlinkage void reserved(void);
72 asmlinkage void alignment_check(void);
73 asmlinkage void machine_check(void);
74 asmlinkage void spurious_interrupt_bug(void);
75
76 static inline void conditional_sti(struct pt_regs *regs)
77 {
78 if (regs->eflags & X86_EFLAGS_IF)
79 local_irq_enable();
80 }
81
82 static inline void preempt_conditional_sti(struct pt_regs *regs)
83 {
84 preempt_disable();
85 if (regs->eflags & X86_EFLAGS_IF)
86 local_irq_enable();
87 }
88
89 static inline void preempt_conditional_cli(struct pt_regs *regs)
90 {
91 if (regs->eflags & X86_EFLAGS_IF)
92 local_irq_disable();
93 /* Make sure to not schedule here because we could be running
94 on an exception stack. */
95 preempt_enable_no_resched();
96 }
97
98 int kstack_depth_to_print = 12;
99
100 #ifdef CONFIG_KALLSYMS
101 void printk_address(unsigned long address)
102 {
103 unsigned long offset = 0, symsize;
104 const char *symname;
105 char *modname;
106 char *delim = ":";
107 char namebuf[128];
108
109 symname = kallsyms_lookup(address, &symsize, &offset,
110 &modname, namebuf);
111 if (!symname) {
112 printk(" [<%016lx>]\n", address);
113 return;
114 }
115 if (!modname)
116 modname = delim = "";
117 printk(" [<%016lx>] %s%s%s%s+0x%lx/0x%lx\n",
118 address, delim, modname, delim, symname, offset, symsize);
119 }
120 #else
121 void printk_address(unsigned long address)
122 {
123 printk(" [<%016lx>]\n", address);
124 }
125 #endif
126
127 static unsigned long *in_exception_stack(unsigned cpu, unsigned long stack,
128 unsigned *usedp, char **idp)
129 {
130 static char ids[][8] = {
131 [DEBUG_STACK - 1] = "#DB",
132 [NMI_STACK - 1] = "NMI",
133 [DOUBLEFAULT_STACK - 1] = "#DF",
134 [STACKFAULT_STACK - 1] = "#SS",
135 [MCE_STACK - 1] = "#MC",
136 #if DEBUG_STKSZ > EXCEPTION_STKSZ
137 [N_EXCEPTION_STACKS ... N_EXCEPTION_STACKS + DEBUG_STKSZ / EXCEPTION_STKSZ - 2] = "#DB[?]"
138 #endif
139 };
140 unsigned k;
141
142 /*
143 * Iterate over all exception stacks, and figure out whether
144 * 'stack' is in one of them:
145 */
146 for (k = 0; k < N_EXCEPTION_STACKS; k++) {
147 unsigned long end = per_cpu(orig_ist, cpu).ist[k];
148 /*
149 * Is 'stack' above this exception frame's end?
150 * If yes then skip to the next frame.
151 */
152 if (stack >= end)
153 continue;
154 /*
155 * Is 'stack' above this exception frame's start address?
156 * If yes then we found the right frame.
157 */
158 if (stack >= end - EXCEPTION_STKSZ) {
159 /*
160 * Make sure we only iterate through an exception
161 * stack once. If it comes up for the second time
162 * then there's something wrong going on - just
163 * break out and return NULL:
164 */
165 if (*usedp & (1U << k))
166 break;
167 *usedp |= 1U << k;
168 *idp = ids[k];
169 return (unsigned long *)end;
170 }
171 /*
172 * If this is a debug stack, and if it has a larger size than
173 * the usual exception stacks, then 'stack' might still
174 * be within the lower portion of the debug stack:
175 */
176 #if DEBUG_STKSZ > EXCEPTION_STKSZ
177 if (k == DEBUG_STACK - 1 && stack >= end - DEBUG_STKSZ) {
178 unsigned j = N_EXCEPTION_STACKS - 1;
179
180 /*
181 * Black magic. A large debug stack is composed of
182 * multiple exception stack entries, which we
183 * iterate through now. Dont look:
184 */
185 do {
186 ++j;
187 end -= EXCEPTION_STKSZ;
188 ids[j][4] = '1' + (j - N_EXCEPTION_STACKS);
189 } while (stack < end - EXCEPTION_STKSZ);
190 if (*usedp & (1U << j))
191 break;
192 *usedp |= 1U << j;
193 *idp = ids[j];
194 return (unsigned long *)end;
195 }
196 #endif
197 }
198 return NULL;
199 }
200
201 #define MSG(txt) ops->warning(data, txt)
202
203 /*
204 * x86-64 can have upto three kernel stacks:
205 * process stack
206 * interrupt stack
207 * severe exception (double fault, nmi, stack fault, debug, mce) hardware stack
208 */
209
210 static inline int valid_stack_ptr(struct thread_info *tinfo, void *p)
211 {
212 void *t = (void *)tinfo;
213 return p > t && p < t + THREAD_SIZE - 3;
214 }
215
216 void dump_trace(struct task_struct *tsk, struct pt_regs *regs,
217 unsigned long *stack,
218 struct stacktrace_ops *ops, void *data)
219 {
220 const unsigned cpu = get_cpu();
221 unsigned long *irqstack_end = (unsigned long*)cpu_pda(cpu)->irqstackptr;
222 unsigned used = 0;
223 struct thread_info *tinfo;
224
225 if (!tsk)
226 tsk = current;
227
228 if (!stack) {
229 unsigned long dummy;
230 stack = &dummy;
231 if (tsk && tsk != current)
232 stack = (unsigned long *)tsk->thread.rsp;
233 }
234
235 /*
236 * Print function call entries within a stack. 'cond' is the
237 * "end of stackframe" condition, that the 'stack++'
238 * iteration will eventually trigger.
239 */
240 #define HANDLE_STACK(cond) \
241 do while (cond) { \
242 unsigned long addr = *stack++; \
243 /* Use unlocked access here because except for NMIs \
244 we should be already protected against module unloads */ \
245 if (__kernel_text_address(addr)) { \
246 /* \
247 * If the address is either in the text segment of the \
248 * kernel, or in the region which contains vmalloc'ed \
249 * memory, it *may* be the address of a calling \
250 * routine; if so, print it so that someone tracing \
251 * down the cause of the crash will be able to figure \
252 * out the call path that was taken. \
253 */ \
254 ops->address(data, addr); \
255 } \
256 } while (0)
257
258 /*
259 * Print function call entries in all stacks, starting at the
260 * current stack address. If the stacks consist of nested
261 * exceptions
262 */
263 for (;;) {
264 char *id;
265 unsigned long *estack_end;
266 estack_end = in_exception_stack(cpu, (unsigned long)stack,
267 &used, &id);
268
269 if (estack_end) {
270 if (ops->stack(data, id) < 0)
271 break;
272 HANDLE_STACK (stack < estack_end);
273 ops->stack(data, "<EOE>");
274 /*
275 * We link to the next stack via the
276 * second-to-last pointer (index -2 to end) in the
277 * exception stack:
278 */
279 stack = (unsigned long *) estack_end[-2];
280 continue;
281 }
282 if (irqstack_end) {
283 unsigned long *irqstack;
284 irqstack = irqstack_end -
285 (IRQSTACKSIZE - 64) / sizeof(*irqstack);
286
287 if (stack >= irqstack && stack < irqstack_end) {
288 if (ops->stack(data, "IRQ") < 0)
289 break;
290 HANDLE_STACK (stack < irqstack_end);
291 /*
292 * We link to the next stack (which would be
293 * the process stack normally) the last
294 * pointer (index -1 to end) in the IRQ stack:
295 */
296 stack = (unsigned long *) (irqstack_end[-1]);
297 irqstack_end = NULL;
298 ops->stack(data, "EOI");
299 continue;
300 }
301 }
302 break;
303 }
304
305 /*
306 * This handles the process stack:
307 */
308 tinfo = task_thread_info(tsk);
309 HANDLE_STACK (valid_stack_ptr(tinfo, stack));
310 #undef HANDLE_STACK
311 put_cpu();
312 }
313 EXPORT_SYMBOL(dump_trace);
314
315 static void
316 print_trace_warning_symbol(void *data, char *msg, unsigned long symbol)
317 {
318 print_symbol(msg, symbol);
319 printk("\n");
320 }
321
322 static void print_trace_warning(void *data, char *msg)
323 {
324 printk("%s\n", msg);
325 }
326
327 static int print_trace_stack(void *data, char *name)
328 {
329 printk(" <%s> ", name);
330 return 0;
331 }
332
333 static void print_trace_address(void *data, unsigned long addr)
334 {
335 touch_nmi_watchdog();
336 printk_address(addr);
337 }
338
339 static struct stacktrace_ops print_trace_ops = {
340 .warning = print_trace_warning,
341 .warning_symbol = print_trace_warning_symbol,
342 .stack = print_trace_stack,
343 .address = print_trace_address,
344 };
345
346 void
347 show_trace(struct task_struct *tsk, struct pt_regs *regs, unsigned long *stack)
348 {
349 printk("\nCall Trace:\n");
350 dump_trace(tsk, regs, stack, &print_trace_ops, NULL);
351 printk("\n");
352 }
353
354 static void
355 _show_stack(struct task_struct *tsk, struct pt_regs *regs, unsigned long *rsp)
356 {
357 unsigned long *stack;
358 int i;
359 const int cpu = smp_processor_id();
360 unsigned long *irqstack_end = (unsigned long *) (cpu_pda(cpu)->irqstackptr);
361 unsigned long *irqstack = (unsigned long *) (cpu_pda(cpu)->irqstackptr - IRQSTACKSIZE);
362
363 // debugging aid: "show_stack(NULL, NULL);" prints the
364 // back trace for this cpu.
365
366 if (rsp == NULL) {
367 if (tsk)
368 rsp = (unsigned long *)tsk->thread.rsp;
369 else
370 rsp = (unsigned long *)&rsp;
371 }
372
373 stack = rsp;
374 for(i=0; i < kstack_depth_to_print; i++) {
375 if (stack >= irqstack && stack <= irqstack_end) {
376 if (stack == irqstack_end) {
377 stack = (unsigned long *) (irqstack_end[-1]);
378 printk(" <EOI> ");
379 }
380 } else {
381 if (((long) stack & (THREAD_SIZE-1)) == 0)
382 break;
383 }
384 if (i && ((i % 4) == 0))
385 printk("\n");
386 printk(" %016lx", *stack++);
387 touch_nmi_watchdog();
388 }
389 show_trace(tsk, regs, rsp);
390 }
391
392 void show_stack(struct task_struct *tsk, unsigned long * rsp)
393 {
394 _show_stack(tsk, NULL, rsp);
395 }
396
397 /*
398 * The architecture-independent dump_stack generator
399 */
400 void dump_stack(void)
401 {
402 unsigned long dummy;
403 show_trace(NULL, NULL, &dummy);
404 }
405
406 EXPORT_SYMBOL(dump_stack);
407
408 void show_registers(struct pt_regs *regs)
409 {
410 int i;
411 int in_kernel = !user_mode(regs);
412 unsigned long rsp;
413 const int cpu = smp_processor_id();
414 struct task_struct *cur = cpu_pda(cpu)->pcurrent;
415
416 rsp = regs->rsp;
417 printk("CPU %d ", cpu);
418 __show_regs(regs);
419 printk("Process %s (pid: %d, threadinfo %p, task %p)\n",
420 cur->comm, cur->pid, task_thread_info(cur), cur);
421
422 /*
423 * When in-kernel, we also print out the stack and code at the
424 * time of the fault..
425 */
426 if (in_kernel) {
427 printk("Stack: ");
428 _show_stack(NULL, regs, (unsigned long*)rsp);
429
430 printk("\nCode: ");
431 if (regs->rip < PAGE_OFFSET)
432 goto bad;
433
434 for (i=0; i<20; i++) {
435 unsigned char c;
436 if (__get_user(c, &((unsigned char*)regs->rip)[i])) {
437 bad:
438 printk(" Bad RIP value.");
439 break;
440 }
441 printk("%02x ", c);
442 }
443 }
444 printk("\n");
445 }
446
447 int is_valid_bugaddr(unsigned long rip)
448 {
449 unsigned short ud2;
450
451 if (__copy_from_user(&ud2, (const void __user *) rip, sizeof(ud2)))
452 return 0;
453
454 return ud2 == 0x0b0f;
455 }
456
457 #ifdef CONFIG_BUG
458 void out_of_line_bug(void)
459 {
460 BUG();
461 }
462 EXPORT_SYMBOL(out_of_line_bug);
463 #endif
464
465 static DEFINE_SPINLOCK(die_lock);
466 static int die_owner = -1;
467 static unsigned int die_nest_count;
468
469 unsigned __kprobes long oops_begin(void)
470 {
471 int cpu;
472 unsigned long flags;
473
474 oops_enter();
475
476 /* racy, but better than risking deadlock. */
477 local_irq_save(flags);
478 cpu = smp_processor_id();
479 if (!spin_trylock(&die_lock)) {
480 if (cpu == die_owner)
481 /* nested oops. should stop eventually */;
482 else
483 spin_lock(&die_lock);
484 }
485 die_nest_count++;
486 die_owner = cpu;
487 console_verbose();
488 bust_spinlocks(1);
489 return flags;
490 }
491
492 void __kprobes oops_end(unsigned long flags)
493 {
494 die_owner = -1;
495 bust_spinlocks(0);
496 die_nest_count--;
497 if (die_nest_count)
498 /* We still own the lock */
499 local_irq_restore(flags);
500 else
501 /* Nest count reaches zero, release the lock. */
502 spin_unlock_irqrestore(&die_lock, flags);
503 if (panic_on_oops)
504 panic("Fatal exception");
505 oops_exit();
506 }
507
508 void __kprobes __die(const char * str, struct pt_regs * regs, long err)
509 {
510 static int die_counter;
511 printk(KERN_EMERG "%s: %04lx [%u] ", str, err & 0xffff,++die_counter);
512 #ifdef CONFIG_PREEMPT
513 printk("PREEMPT ");
514 #endif
515 #ifdef CONFIG_SMP
516 printk("SMP ");
517 #endif
518 #ifdef CONFIG_DEBUG_PAGEALLOC
519 printk("DEBUG_PAGEALLOC");
520 #endif
521 printk("\n");
522 notify_die(DIE_OOPS, str, regs, err, current->thread.trap_no, SIGSEGV);
523 show_registers(regs);
524 add_taint(TAINT_DIE);
525 /* Executive summary in case the oops scrolled away */
526 printk(KERN_ALERT "RIP ");
527 printk_address(regs->rip);
528 printk(" RSP <%016lx>\n", regs->rsp);
529 if (kexec_should_crash(current))
530 crash_kexec(regs);
531 }
532
533 void die(const char * str, struct pt_regs * regs, long err)
534 {
535 unsigned long flags = oops_begin();
536
537 if (!user_mode(regs))
538 report_bug(regs->rip, regs);
539
540 __die(str, regs, err);
541 oops_end(flags);
542 do_exit(SIGSEGV);
543 }
544
545 void __kprobes die_nmi(char *str, struct pt_regs *regs, int do_panic)
546 {
547 unsigned long flags = oops_begin();
548
549 /*
550 * We are in trouble anyway, lets at least try
551 * to get a message out.
552 */
553 printk(str, smp_processor_id());
554 show_registers(regs);
555 if (kexec_should_crash(current))
556 crash_kexec(regs);
557 if (do_panic || panic_on_oops)
558 panic("Non maskable interrupt");
559 oops_end(flags);
560 nmi_exit();
561 local_irq_enable();
562 do_exit(SIGSEGV);
563 }
564
565 static void __kprobes do_trap(int trapnr, int signr, char *str,
566 struct pt_regs * regs, long error_code,
567 siginfo_t *info)
568 {
569 struct task_struct *tsk = current;
570
571 if (user_mode(regs)) {
572 /*
573 * We want error_code and trap_no set for userspace
574 * faults and kernelspace faults which result in
575 * die(), but not kernelspace faults which are fixed
576 * up. die() gives the process no chance to handle
577 * the signal and notice the kernel fault information,
578 * so that won't result in polluting the information
579 * about previously queued, but not yet delivered,
580 * faults. See also do_general_protection below.
581 */
582 tsk->thread.error_code = error_code;
583 tsk->thread.trap_no = trapnr;
584
585 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
586 printk_ratelimit())
587 printk(KERN_INFO
588 "%s[%d] trap %s rip:%lx rsp:%lx error:%lx\n",
589 tsk->comm, tsk->pid, str,
590 regs->rip, regs->rsp, error_code);
591
592 if (info)
593 force_sig_info(signr, info, tsk);
594 else
595 force_sig(signr, tsk);
596 return;
597 }
598
599
600 /* kernel trap */
601 {
602 const struct exception_table_entry *fixup;
603 fixup = search_exception_tables(regs->rip);
604 if (fixup)
605 regs->rip = fixup->fixup;
606 else {
607 tsk->thread.error_code = error_code;
608 tsk->thread.trap_no = trapnr;
609 die(str, regs, error_code);
610 }
611 return;
612 }
613 }
614
615 #define DO_ERROR(trapnr, signr, str, name) \
616 asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
617 { \
618 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
619 == NOTIFY_STOP) \
620 return; \
621 conditional_sti(regs); \
622 do_trap(trapnr, signr, str, regs, error_code, NULL); \
623 }
624
625 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
626 asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
627 { \
628 siginfo_t info; \
629 info.si_signo = signr; \
630 info.si_errno = 0; \
631 info.si_code = sicode; \
632 info.si_addr = (void __user *)siaddr; \
633 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
634 == NOTIFY_STOP) \
635 return; \
636 conditional_sti(regs); \
637 do_trap(trapnr, signr, str, regs, error_code, &info); \
638 }
639
640 DO_ERROR_INFO( 0, SIGFPE, "divide error", divide_error, FPE_INTDIV, regs->rip)
641 DO_ERROR( 4, SIGSEGV, "overflow", overflow)
642 DO_ERROR( 5, SIGSEGV, "bounds", bounds)
643 DO_ERROR_INFO( 6, SIGILL, "invalid opcode", invalid_op, ILL_ILLOPN, regs->rip)
644 DO_ERROR( 7, SIGSEGV, "device not available", device_not_available)
645 DO_ERROR( 9, SIGFPE, "coprocessor segment overrun", coprocessor_segment_overrun)
646 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
647 DO_ERROR(11, SIGBUS, "segment not present", segment_not_present)
648 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
649 DO_ERROR(18, SIGSEGV, "reserved", reserved)
650
651 /* Runs on IST stack */
652 asmlinkage void do_stack_segment(struct pt_regs *regs, long error_code)
653 {
654 if (notify_die(DIE_TRAP, "stack segment", regs, error_code,
655 12, SIGBUS) == NOTIFY_STOP)
656 return;
657 preempt_conditional_sti(regs);
658 do_trap(12, SIGBUS, "stack segment", regs, error_code, NULL);
659 preempt_conditional_cli(regs);
660 }
661
662 asmlinkage void do_double_fault(struct pt_regs * regs, long error_code)
663 {
664 static const char str[] = "double fault";
665 struct task_struct *tsk = current;
666
667 /* Return not checked because double check cannot be ignored */
668 notify_die(DIE_TRAP, str, regs, error_code, 8, SIGSEGV);
669
670 tsk->thread.error_code = error_code;
671 tsk->thread.trap_no = 8;
672
673 /* This is always a kernel trap and never fixable (and thus must
674 never return). */
675 for (;;)
676 die(str, regs, error_code);
677 }
678
679 asmlinkage void __kprobes do_general_protection(struct pt_regs * regs,
680 long error_code)
681 {
682 struct task_struct *tsk = current;
683
684 conditional_sti(regs);
685
686 if (user_mode(regs)) {
687 tsk->thread.error_code = error_code;
688 tsk->thread.trap_no = 13;
689
690 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
691 printk_ratelimit())
692 printk(KERN_INFO
693 "%s[%d] general protection rip:%lx rsp:%lx error:%lx\n",
694 tsk->comm, tsk->pid,
695 regs->rip, regs->rsp, error_code);
696
697 force_sig(SIGSEGV, tsk);
698 return;
699 }
700
701 /* kernel gp */
702 {
703 const struct exception_table_entry *fixup;
704 fixup = search_exception_tables(regs->rip);
705 if (fixup) {
706 regs->rip = fixup->fixup;
707 return;
708 }
709
710 tsk->thread.error_code = error_code;
711 tsk->thread.trap_no = 13;
712 if (notify_die(DIE_GPF, "general protection fault", regs,
713 error_code, 13, SIGSEGV) == NOTIFY_STOP)
714 return;
715 die("general protection fault", regs, error_code);
716 }
717 }
718
719 static __kprobes void
720 mem_parity_error(unsigned char reason, struct pt_regs * regs)
721 {
722 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x.\n",
723 reason);
724 printk(KERN_EMERG "You have some hardware problem, likely on the PCI bus.\n");
725
726 #if defined(CONFIG_EDAC)
727 if(edac_handler_set()) {
728 edac_atomic_assert_error();
729 return;
730 }
731 #endif
732
733 if (panic_on_unrecovered_nmi)
734 panic("NMI: Not continuing");
735
736 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
737
738 /* Clear and disable the memory parity error line. */
739 reason = (reason & 0xf) | 4;
740 outb(reason, 0x61);
741 }
742
743 static __kprobes void
744 io_check_error(unsigned char reason, struct pt_regs * regs)
745 {
746 printk("NMI: IOCK error (debug interrupt?)\n");
747 show_registers(regs);
748
749 /* Re-enable the IOCK line, wait for a few seconds */
750 reason = (reason & 0xf) | 8;
751 outb(reason, 0x61);
752 mdelay(2000);
753 reason &= ~8;
754 outb(reason, 0x61);
755 }
756
757 static __kprobes void
758 unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
759 {
760 printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x.\n",
761 reason);
762 printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n");
763
764 if (panic_on_unrecovered_nmi)
765 panic("NMI: Not continuing");
766
767 printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
768 }
769
770 /* Runs on IST stack. This code must keep interrupts off all the time.
771 Nested NMIs are prevented by the CPU. */
772 asmlinkage __kprobes void default_do_nmi(struct pt_regs *regs)
773 {
774 unsigned char reason = 0;
775 int cpu;
776
777 cpu = smp_processor_id();
778
779 /* Only the BSP gets external NMIs from the system. */
780 if (!cpu)
781 reason = get_nmi_reason();
782
783 if (!(reason & 0xc0)) {
784 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
785 == NOTIFY_STOP)
786 return;
787 /*
788 * Ok, so this is none of the documented NMI sources,
789 * so it must be the NMI watchdog.
790 */
791 if (nmi_watchdog_tick(regs,reason))
792 return;
793 if (!do_nmi_callback(regs,cpu))
794 unknown_nmi_error(reason, regs);
795
796 return;
797 }
798 if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
799 return;
800
801 /* AK: following checks seem to be broken on modern chipsets. FIXME */
802
803 if (reason & 0x80)
804 mem_parity_error(reason, regs);
805 if (reason & 0x40)
806 io_check_error(reason, regs);
807 }
808
809 /* runs on IST stack. */
810 asmlinkage void __kprobes do_int3(struct pt_regs * regs, long error_code)
811 {
812 if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP) == NOTIFY_STOP) {
813 return;
814 }
815 preempt_conditional_sti(regs);
816 do_trap(3, SIGTRAP, "int3", regs, error_code, NULL);
817 preempt_conditional_cli(regs);
818 }
819
820 /* Help handler running on IST stack to switch back to user stack
821 for scheduling or signal handling. The actual stack switch is done in
822 entry.S */
823 asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs)
824 {
825 struct pt_regs *regs = eregs;
826 /* Did already sync */
827 if (eregs == (struct pt_regs *)eregs->rsp)
828 ;
829 /* Exception from user space */
830 else if (user_mode(eregs))
831 regs = task_pt_regs(current);
832 /* Exception from kernel and interrupts are enabled. Move to
833 kernel process stack. */
834 else if (eregs->eflags & X86_EFLAGS_IF)
835 regs = (struct pt_regs *)(eregs->rsp -= sizeof(struct pt_regs));
836 if (eregs != regs)
837 *regs = *eregs;
838 return regs;
839 }
840
841 /* runs on IST stack. */
842 asmlinkage void __kprobes do_debug(struct pt_regs * regs,
843 unsigned long error_code)
844 {
845 unsigned long condition;
846 struct task_struct *tsk = current;
847 siginfo_t info;
848
849 get_debugreg(condition, 6);
850
851 if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
852 SIGTRAP) == NOTIFY_STOP)
853 return;
854
855 preempt_conditional_sti(regs);
856
857 /* Mask out spurious debug traps due to lazy DR7 setting */
858 if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
859 if (!tsk->thread.debugreg7) {
860 goto clear_dr7;
861 }
862 }
863
864 tsk->thread.debugreg6 = condition;
865
866 /* Mask out spurious TF errors due to lazy TF clearing */
867 if (condition & DR_STEP) {
868 /*
869 * The TF error should be masked out only if the current
870 * process is not traced and if the TRAP flag has been set
871 * previously by a tracing process (condition detected by
872 * the PT_DTRACE flag); remember that the i386 TRAP flag
873 * can be modified by the process itself in user mode,
874 * allowing programs to debug themselves without the ptrace()
875 * interface.
876 */
877 if (!user_mode(regs))
878 goto clear_TF_reenable;
879 /*
880 * Was the TF flag set by a debugger? If so, clear it now,
881 * so that register information is correct.
882 */
883 if (tsk->ptrace & PT_DTRACE) {
884 regs->eflags &= ~TF_MASK;
885 tsk->ptrace &= ~PT_DTRACE;
886 }
887 }
888
889 /* Ok, finally something we can handle */
890 tsk->thread.trap_no = 1;
891 tsk->thread.error_code = error_code;
892 info.si_signo = SIGTRAP;
893 info.si_errno = 0;
894 info.si_code = TRAP_BRKPT;
895 info.si_addr = user_mode(regs) ? (void __user *)regs->rip : NULL;
896 force_sig_info(SIGTRAP, &info, tsk);
897
898 clear_dr7:
899 set_debugreg(0UL, 7);
900 preempt_conditional_cli(regs);
901 return;
902
903 clear_TF_reenable:
904 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
905 regs->eflags &= ~TF_MASK;
906 preempt_conditional_cli(regs);
907 }
908
909 static int kernel_math_error(struct pt_regs *regs, const char *str, int trapnr)
910 {
911 const struct exception_table_entry *fixup;
912 fixup = search_exception_tables(regs->rip);
913 if (fixup) {
914 regs->rip = fixup->fixup;
915 return 1;
916 }
917 notify_die(DIE_GPF, str, regs, 0, trapnr, SIGFPE);
918 /* Illegal floating point operation in the kernel */
919 current->thread.trap_no = trapnr;
920 die(str, regs, 0);
921 return 0;
922 }
923
924 /*
925 * Note that we play around with the 'TS' bit in an attempt to get
926 * the correct behaviour even in the presence of the asynchronous
927 * IRQ13 behaviour
928 */
929 asmlinkage void do_coprocessor_error(struct pt_regs *regs)
930 {
931 void __user *rip = (void __user *)(regs->rip);
932 struct task_struct * task;
933 siginfo_t info;
934 unsigned short cwd, swd;
935
936 conditional_sti(regs);
937 if (!user_mode(regs) &&
938 kernel_math_error(regs, "kernel x87 math error", 16))
939 return;
940
941 /*
942 * Save the info for the exception handler and clear the error.
943 */
944 task = current;
945 save_init_fpu(task);
946 task->thread.trap_no = 16;
947 task->thread.error_code = 0;
948 info.si_signo = SIGFPE;
949 info.si_errno = 0;
950 info.si_code = __SI_FAULT;
951 info.si_addr = rip;
952 /*
953 * (~cwd & swd) will mask out exceptions that are not set to unmasked
954 * status. 0x3f is the exception bits in these regs, 0x200 is the
955 * C1 reg you need in case of a stack fault, 0x040 is the stack
956 * fault bit. We should only be taking one exception at a time,
957 * so if this combination doesn't produce any single exception,
958 * then we have a bad program that isn't synchronizing its FPU usage
959 * and it will suffer the consequences since we won't be able to
960 * fully reproduce the context of the exception
961 */
962 cwd = get_fpu_cwd(task);
963 swd = get_fpu_swd(task);
964 switch (swd & ~cwd & 0x3f) {
965 case 0x000:
966 default:
967 break;
968 case 0x001: /* Invalid Op */
969 /*
970 * swd & 0x240 == 0x040: Stack Underflow
971 * swd & 0x240 == 0x240: Stack Overflow
972 * User must clear the SF bit (0x40) if set
973 */
974 info.si_code = FPE_FLTINV;
975 break;
976 case 0x002: /* Denormalize */
977 case 0x010: /* Underflow */
978 info.si_code = FPE_FLTUND;
979 break;
980 case 0x004: /* Zero Divide */
981 info.si_code = FPE_FLTDIV;
982 break;
983 case 0x008: /* Overflow */
984 info.si_code = FPE_FLTOVF;
985 break;
986 case 0x020: /* Precision */
987 info.si_code = FPE_FLTRES;
988 break;
989 }
990 force_sig_info(SIGFPE, &info, task);
991 }
992
993 asmlinkage void bad_intr(void)
994 {
995 printk("bad interrupt");
996 }
997
998 asmlinkage void do_simd_coprocessor_error(struct pt_regs *regs)
999 {
1000 void __user *rip = (void __user *)(regs->rip);
1001 struct task_struct * task;
1002 siginfo_t info;
1003 unsigned short mxcsr;
1004
1005 conditional_sti(regs);
1006 if (!user_mode(regs) &&
1007 kernel_math_error(regs, "kernel simd math error", 19))
1008 return;
1009
1010 /*
1011 * Save the info for the exception handler and clear the error.
1012 */
1013 task = current;
1014 save_init_fpu(task);
1015 task->thread.trap_no = 19;
1016 task->thread.error_code = 0;
1017 info.si_signo = SIGFPE;
1018 info.si_errno = 0;
1019 info.si_code = __SI_FAULT;
1020 info.si_addr = rip;
1021 /*
1022 * The SIMD FPU exceptions are handled a little differently, as there
1023 * is only a single status/control register. Thus, to determine which
1024 * unmasked exception was caught we must mask the exception mask bits
1025 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
1026 */
1027 mxcsr = get_fpu_mxcsr(task);
1028 switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
1029 case 0x000:
1030 default:
1031 break;
1032 case 0x001: /* Invalid Op */
1033 info.si_code = FPE_FLTINV;
1034 break;
1035 case 0x002: /* Denormalize */
1036 case 0x010: /* Underflow */
1037 info.si_code = FPE_FLTUND;
1038 break;
1039 case 0x004: /* Zero Divide */
1040 info.si_code = FPE_FLTDIV;
1041 break;
1042 case 0x008: /* Overflow */
1043 info.si_code = FPE_FLTOVF;
1044 break;
1045 case 0x020: /* Precision */
1046 info.si_code = FPE_FLTRES;
1047 break;
1048 }
1049 force_sig_info(SIGFPE, &info, task);
1050 }
1051
1052 asmlinkage void do_spurious_interrupt_bug(struct pt_regs * regs)
1053 {
1054 }
1055
1056 asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void)
1057 {
1058 }
1059
1060 asmlinkage void __attribute__((weak)) mce_threshold_interrupt(void)
1061 {
1062 }
1063
1064 /*
1065 * 'math_state_restore()' saves the current math information in the
1066 * old math state array, and gets the new ones from the current task
1067 *
1068 * Careful.. There are problems with IBM-designed IRQ13 behaviour.
1069 * Don't touch unless you *really* know how it works.
1070 */
1071 asmlinkage void math_state_restore(void)
1072 {
1073 struct task_struct *me = current;
1074 clts(); /* Allow maths ops (or we recurse) */
1075
1076 if (!used_math())
1077 init_fpu(me);
1078 restore_fpu_checking(&me->thread.i387.fxsave);
1079 task_thread_info(me)->status |= TS_USEDFPU;
1080 me->fpu_counter++;
1081 }
1082
1083 void __init trap_init(void)
1084 {
1085 set_intr_gate(0,&divide_error);
1086 set_intr_gate_ist(1,&debug,DEBUG_STACK);
1087 set_intr_gate_ist(2,&nmi,NMI_STACK);
1088 set_system_gate_ist(3,&int3,DEBUG_STACK); /* int3 can be called from all */
1089 set_system_gate(4,&overflow); /* int4 can be called from all */
1090 set_intr_gate(5,&bounds);
1091 set_intr_gate(6,&invalid_op);
1092 set_intr_gate(7,&device_not_available);
1093 set_intr_gate_ist(8,&double_fault, DOUBLEFAULT_STACK);
1094 set_intr_gate(9,&coprocessor_segment_overrun);
1095 set_intr_gate(10,&invalid_TSS);
1096 set_intr_gate(11,&segment_not_present);
1097 set_intr_gate_ist(12,&stack_segment,STACKFAULT_STACK);
1098 set_intr_gate(13,&general_protection);
1099 set_intr_gate(14,&page_fault);
1100 set_intr_gate(15,&spurious_interrupt_bug);
1101 set_intr_gate(16,&coprocessor_error);
1102 set_intr_gate(17,&alignment_check);
1103 #ifdef CONFIG_X86_MCE
1104 set_intr_gate_ist(18,&machine_check, MCE_STACK);
1105 #endif
1106 set_intr_gate(19,&simd_coprocessor_error);
1107
1108 #ifdef CONFIG_IA32_EMULATION
1109 set_system_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
1110 #endif
1111
1112 /*
1113 * Should be a barrier for any external CPU state.
1114 */
1115 cpu_init();
1116 }
1117
1118
1119 static int __init oops_setup(char *s)
1120 {
1121 if (!s)
1122 return -EINVAL;
1123 if (!strcmp(s, "panic"))
1124 panic_on_oops = 1;
1125 return 0;
1126 }
1127 early_param("oops", oops_setup);
1128
1129 static int __init kstack_setup(char *s)
1130 {
1131 if (!s)
1132 return -EINVAL;
1133 kstack_depth_to_print = simple_strtoul(s,NULL,0);
1134 return 0;
1135 }
1136 early_param("kstack", kstack_setup);
This page took 0.054636 seconds and 5 git commands to generate.