Merge branches 'pm-cpu', 'pm-cpuidle' and 'pm-domains'
[deliverable/linux.git] / arch / x86 / kernel / tsc.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/init.h>
6 #include <linux/module.h>
7 #include <linux/timer.h>
8 #include <linux/acpi_pmtmr.h>
9 #include <linux/cpufreq.h>
10 #include <linux/delay.h>
11 #include <linux/clocksource.h>
12 #include <linux/percpu.h>
13 #include <linux/timex.h>
14 #include <linux/static_key.h>
15
16 #include <asm/hpet.h>
17 #include <asm/timer.h>
18 #include <asm/vgtod.h>
19 #include <asm/time.h>
20 #include <asm/delay.h>
21 #include <asm/hypervisor.h>
22 #include <asm/nmi.h>
23 #include <asm/x86_init.h>
24
25 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
26 EXPORT_SYMBOL(cpu_khz);
27
28 unsigned int __read_mostly tsc_khz;
29 EXPORT_SYMBOL(tsc_khz);
30
31 /*
32 * TSC can be unstable due to cpufreq or due to unsynced TSCs
33 */
34 static int __read_mostly tsc_unstable;
35
36 /* native_sched_clock() is called before tsc_init(), so
37 we must start with the TSC soft disabled to prevent
38 erroneous rdtsc usage on !cpu_has_tsc processors */
39 static int __read_mostly tsc_disabled = -1;
40
41 static struct static_key __use_tsc = STATIC_KEY_INIT;
42
43 int tsc_clocksource_reliable;
44
45 /*
46 * Use a ring-buffer like data structure, where a writer advances the head by
47 * writing a new data entry and a reader advances the tail when it observes a
48 * new entry.
49 *
50 * Writers are made to wait on readers until there's space to write a new
51 * entry.
52 *
53 * This means that we can always use an {offset, mul} pair to compute a ns
54 * value that is 'roughly' in the right direction, even if we're writing a new
55 * {offset, mul} pair during the clock read.
56 *
57 * The down-side is that we can no longer guarantee strict monotonicity anymore
58 * (assuming the TSC was that to begin with), because while we compute the
59 * intersection point of the two clock slopes and make sure the time is
60 * continuous at the point of switching; we can no longer guarantee a reader is
61 * strictly before or after the switch point.
62 *
63 * It does mean a reader no longer needs to disable IRQs in order to avoid
64 * CPU-Freq updates messing with his times, and similarly an NMI reader will
65 * no longer run the risk of hitting half-written state.
66 */
67
68 struct cyc2ns {
69 struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */
70 struct cyc2ns_data *head; /* 48 + 8 = 56 */
71 struct cyc2ns_data *tail; /* 56 + 8 = 64 */
72 }; /* exactly fits one cacheline */
73
74 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
75
76 struct cyc2ns_data *cyc2ns_read_begin(void)
77 {
78 struct cyc2ns_data *head;
79
80 preempt_disable();
81
82 head = this_cpu_read(cyc2ns.head);
83 /*
84 * Ensure we observe the entry when we observe the pointer to it.
85 * matches the wmb from cyc2ns_write_end().
86 */
87 smp_read_barrier_depends();
88 head->__count++;
89 barrier();
90
91 return head;
92 }
93
94 void cyc2ns_read_end(struct cyc2ns_data *head)
95 {
96 barrier();
97 /*
98 * If we're the outer most nested read; update the tail pointer
99 * when we're done. This notifies possible pending writers
100 * that we've observed the head pointer and that the other
101 * entry is now free.
102 */
103 if (!--head->__count) {
104 /*
105 * x86-TSO does not reorder writes with older reads;
106 * therefore once this write becomes visible to another
107 * cpu, we must be finished reading the cyc2ns_data.
108 *
109 * matches with cyc2ns_write_begin().
110 */
111 this_cpu_write(cyc2ns.tail, head);
112 }
113 preempt_enable();
114 }
115
116 /*
117 * Begin writing a new @data entry for @cpu.
118 *
119 * Assumes some sort of write side lock; currently 'provided' by the assumption
120 * that cpufreq will call its notifiers sequentially.
121 */
122 static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
123 {
124 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
125 struct cyc2ns_data *data = c2n->data;
126
127 if (data == c2n->head)
128 data++;
129
130 /* XXX send an IPI to @cpu in order to guarantee a read? */
131
132 /*
133 * When we observe the tail write from cyc2ns_read_end(),
134 * the cpu must be done with that entry and its safe
135 * to start writing to it.
136 */
137 while (c2n->tail == data)
138 cpu_relax();
139
140 return data;
141 }
142
143 static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
144 {
145 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
146
147 /*
148 * Ensure the @data writes are visible before we publish the
149 * entry. Matches the data-depencency in cyc2ns_read_begin().
150 */
151 smp_wmb();
152
153 ACCESS_ONCE(c2n->head) = data;
154 }
155
156 /*
157 * Accelerators for sched_clock()
158 * convert from cycles(64bits) => nanoseconds (64bits)
159 * basic equation:
160 * ns = cycles / (freq / ns_per_sec)
161 * ns = cycles * (ns_per_sec / freq)
162 * ns = cycles * (10^9 / (cpu_khz * 10^3))
163 * ns = cycles * (10^6 / cpu_khz)
164 *
165 * Then we use scaling math (suggested by george@mvista.com) to get:
166 * ns = cycles * (10^6 * SC / cpu_khz) / SC
167 * ns = cycles * cyc2ns_scale / SC
168 *
169 * And since SC is a constant power of two, we can convert the div
170 * into a shift.
171 *
172 * We can use khz divisor instead of mhz to keep a better precision, since
173 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
174 * (mathieu.desnoyers@polymtl.ca)
175 *
176 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
177 */
178
179 #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
180
181 static void cyc2ns_data_init(struct cyc2ns_data *data)
182 {
183 data->cyc2ns_mul = 0;
184 data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
185 data->cyc2ns_offset = 0;
186 data->__count = 0;
187 }
188
189 static void cyc2ns_init(int cpu)
190 {
191 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
192
193 cyc2ns_data_init(&c2n->data[0]);
194 cyc2ns_data_init(&c2n->data[1]);
195
196 c2n->head = c2n->data;
197 c2n->tail = c2n->data;
198 }
199
200 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
201 {
202 struct cyc2ns_data *data, *tail;
203 unsigned long long ns;
204
205 /*
206 * See cyc2ns_read_*() for details; replicated in order to avoid
207 * an extra few instructions that came with the abstraction.
208 * Notable, it allows us to only do the __count and tail update
209 * dance when its actually needed.
210 */
211
212 preempt_disable_notrace();
213 data = this_cpu_read(cyc2ns.head);
214 tail = this_cpu_read(cyc2ns.tail);
215
216 if (likely(data == tail)) {
217 ns = data->cyc2ns_offset;
218 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
219 } else {
220 data->__count++;
221
222 barrier();
223
224 ns = data->cyc2ns_offset;
225 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
226
227 barrier();
228
229 if (!--data->__count)
230 this_cpu_write(cyc2ns.tail, data);
231 }
232 preempt_enable_notrace();
233
234 return ns;
235 }
236
237 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
238 {
239 unsigned long long tsc_now, ns_now;
240 struct cyc2ns_data *data;
241 unsigned long flags;
242
243 local_irq_save(flags);
244 sched_clock_idle_sleep_event();
245
246 if (!cpu_khz)
247 goto done;
248
249 data = cyc2ns_write_begin(cpu);
250
251 tsc_now = rdtsc();
252 ns_now = cycles_2_ns(tsc_now);
253
254 /*
255 * Compute a new multiplier as per the above comment and ensure our
256 * time function is continuous; see the comment near struct
257 * cyc2ns_data.
258 */
259 data->cyc2ns_mul =
260 DIV_ROUND_CLOSEST(NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR,
261 cpu_khz);
262 data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
263 data->cyc2ns_offset = ns_now -
264 mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
265
266 cyc2ns_write_end(cpu, data);
267
268 done:
269 sched_clock_idle_wakeup_event(0);
270 local_irq_restore(flags);
271 }
272 /*
273 * Scheduler clock - returns current time in nanosec units.
274 */
275 u64 native_sched_clock(void)
276 {
277 u64 tsc_now;
278
279 /*
280 * Fall back to jiffies if there's no TSC available:
281 * ( But note that we still use it if the TSC is marked
282 * unstable. We do this because unlike Time Of Day,
283 * the scheduler clock tolerates small errors and it's
284 * very important for it to be as fast as the platform
285 * can achieve it. )
286 */
287 if (!static_key_false(&__use_tsc)) {
288 /* No locking but a rare wrong value is not a big deal: */
289 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
290 }
291
292 /* read the Time Stamp Counter: */
293 tsc_now = rdtsc();
294
295 /* return the value in ns */
296 return cycles_2_ns(tsc_now);
297 }
298
299 /*
300 * Generate a sched_clock if you already have a TSC value.
301 */
302 u64 native_sched_clock_from_tsc(u64 tsc)
303 {
304 return cycles_2_ns(tsc);
305 }
306
307 /* We need to define a real function for sched_clock, to override the
308 weak default version */
309 #ifdef CONFIG_PARAVIRT
310 unsigned long long sched_clock(void)
311 {
312 return paravirt_sched_clock();
313 }
314 #else
315 unsigned long long
316 sched_clock(void) __attribute__((alias("native_sched_clock")));
317 #endif
318
319 int check_tsc_unstable(void)
320 {
321 return tsc_unstable;
322 }
323 EXPORT_SYMBOL_GPL(check_tsc_unstable);
324
325 int check_tsc_disabled(void)
326 {
327 return tsc_disabled;
328 }
329 EXPORT_SYMBOL_GPL(check_tsc_disabled);
330
331 #ifdef CONFIG_X86_TSC
332 int __init notsc_setup(char *str)
333 {
334 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
335 tsc_disabled = 1;
336 return 1;
337 }
338 #else
339 /*
340 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
341 * in cpu/common.c
342 */
343 int __init notsc_setup(char *str)
344 {
345 setup_clear_cpu_cap(X86_FEATURE_TSC);
346 return 1;
347 }
348 #endif
349
350 __setup("notsc", notsc_setup);
351
352 static int no_sched_irq_time;
353
354 static int __init tsc_setup(char *str)
355 {
356 if (!strcmp(str, "reliable"))
357 tsc_clocksource_reliable = 1;
358 if (!strncmp(str, "noirqtime", 9))
359 no_sched_irq_time = 1;
360 return 1;
361 }
362
363 __setup("tsc=", tsc_setup);
364
365 #define MAX_RETRIES 5
366 #define SMI_TRESHOLD 50000
367
368 /*
369 * Read TSC and the reference counters. Take care of SMI disturbance
370 */
371 static u64 tsc_read_refs(u64 *p, int hpet)
372 {
373 u64 t1, t2;
374 int i;
375
376 for (i = 0; i < MAX_RETRIES; i++) {
377 t1 = get_cycles();
378 if (hpet)
379 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
380 else
381 *p = acpi_pm_read_early();
382 t2 = get_cycles();
383 if ((t2 - t1) < SMI_TRESHOLD)
384 return t2;
385 }
386 return ULLONG_MAX;
387 }
388
389 /*
390 * Calculate the TSC frequency from HPET reference
391 */
392 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
393 {
394 u64 tmp;
395
396 if (hpet2 < hpet1)
397 hpet2 += 0x100000000ULL;
398 hpet2 -= hpet1;
399 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
400 do_div(tmp, 1000000);
401 do_div(deltatsc, tmp);
402
403 return (unsigned long) deltatsc;
404 }
405
406 /*
407 * Calculate the TSC frequency from PMTimer reference
408 */
409 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
410 {
411 u64 tmp;
412
413 if (!pm1 && !pm2)
414 return ULONG_MAX;
415
416 if (pm2 < pm1)
417 pm2 += (u64)ACPI_PM_OVRRUN;
418 pm2 -= pm1;
419 tmp = pm2 * 1000000000LL;
420 do_div(tmp, PMTMR_TICKS_PER_SEC);
421 do_div(deltatsc, tmp);
422
423 return (unsigned long) deltatsc;
424 }
425
426 #define CAL_MS 10
427 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
428 #define CAL_PIT_LOOPS 1000
429
430 #define CAL2_MS 50
431 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
432 #define CAL2_PIT_LOOPS 5000
433
434
435 /*
436 * Try to calibrate the TSC against the Programmable
437 * Interrupt Timer and return the frequency of the TSC
438 * in kHz.
439 *
440 * Return ULONG_MAX on failure to calibrate.
441 */
442 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
443 {
444 u64 tsc, t1, t2, delta;
445 unsigned long tscmin, tscmax;
446 int pitcnt;
447
448 /* Set the Gate high, disable speaker */
449 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
450
451 /*
452 * Setup CTC channel 2* for mode 0, (interrupt on terminal
453 * count mode), binary count. Set the latch register to 50ms
454 * (LSB then MSB) to begin countdown.
455 */
456 outb(0xb0, 0x43);
457 outb(latch & 0xff, 0x42);
458 outb(latch >> 8, 0x42);
459
460 tsc = t1 = t2 = get_cycles();
461
462 pitcnt = 0;
463 tscmax = 0;
464 tscmin = ULONG_MAX;
465 while ((inb(0x61) & 0x20) == 0) {
466 t2 = get_cycles();
467 delta = t2 - tsc;
468 tsc = t2;
469 if ((unsigned long) delta < tscmin)
470 tscmin = (unsigned int) delta;
471 if ((unsigned long) delta > tscmax)
472 tscmax = (unsigned int) delta;
473 pitcnt++;
474 }
475
476 /*
477 * Sanity checks:
478 *
479 * If we were not able to read the PIT more than loopmin
480 * times, then we have been hit by a massive SMI
481 *
482 * If the maximum is 10 times larger than the minimum,
483 * then we got hit by an SMI as well.
484 */
485 if (pitcnt < loopmin || tscmax > 10 * tscmin)
486 return ULONG_MAX;
487
488 /* Calculate the PIT value */
489 delta = t2 - t1;
490 do_div(delta, ms);
491 return delta;
492 }
493
494 /*
495 * This reads the current MSB of the PIT counter, and
496 * checks if we are running on sufficiently fast and
497 * non-virtualized hardware.
498 *
499 * Our expectations are:
500 *
501 * - the PIT is running at roughly 1.19MHz
502 *
503 * - each IO is going to take about 1us on real hardware,
504 * but we allow it to be much faster (by a factor of 10) or
505 * _slightly_ slower (ie we allow up to a 2us read+counter
506 * update - anything else implies a unacceptably slow CPU
507 * or PIT for the fast calibration to work.
508 *
509 * - with 256 PIT ticks to read the value, we have 214us to
510 * see the same MSB (and overhead like doing a single TSC
511 * read per MSB value etc).
512 *
513 * - We're doing 2 reads per loop (LSB, MSB), and we expect
514 * them each to take about a microsecond on real hardware.
515 * So we expect a count value of around 100. But we'll be
516 * generous, and accept anything over 50.
517 *
518 * - if the PIT is stuck, and we see *many* more reads, we
519 * return early (and the next caller of pit_expect_msb()
520 * then consider it a failure when they don't see the
521 * next expected value).
522 *
523 * These expectations mean that we know that we have seen the
524 * transition from one expected value to another with a fairly
525 * high accuracy, and we didn't miss any events. We can thus
526 * use the TSC value at the transitions to calculate a pretty
527 * good value for the TSC frequencty.
528 */
529 static inline int pit_verify_msb(unsigned char val)
530 {
531 /* Ignore LSB */
532 inb(0x42);
533 return inb(0x42) == val;
534 }
535
536 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
537 {
538 int count;
539 u64 tsc = 0, prev_tsc = 0;
540
541 for (count = 0; count < 50000; count++) {
542 if (!pit_verify_msb(val))
543 break;
544 prev_tsc = tsc;
545 tsc = get_cycles();
546 }
547 *deltap = get_cycles() - prev_tsc;
548 *tscp = tsc;
549
550 /*
551 * We require _some_ success, but the quality control
552 * will be based on the error terms on the TSC values.
553 */
554 return count > 5;
555 }
556
557 /*
558 * How many MSB values do we want to see? We aim for
559 * a maximum error rate of 500ppm (in practice the
560 * real error is much smaller), but refuse to spend
561 * more than 50ms on it.
562 */
563 #define MAX_QUICK_PIT_MS 50
564 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
565
566 static unsigned long quick_pit_calibrate(void)
567 {
568 int i;
569 u64 tsc, delta;
570 unsigned long d1, d2;
571
572 /* Set the Gate high, disable speaker */
573 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
574
575 /*
576 * Counter 2, mode 0 (one-shot), binary count
577 *
578 * NOTE! Mode 2 decrements by two (and then the
579 * output is flipped each time, giving the same
580 * final output frequency as a decrement-by-one),
581 * so mode 0 is much better when looking at the
582 * individual counts.
583 */
584 outb(0xb0, 0x43);
585
586 /* Start at 0xffff */
587 outb(0xff, 0x42);
588 outb(0xff, 0x42);
589
590 /*
591 * The PIT starts counting at the next edge, so we
592 * need to delay for a microsecond. The easiest way
593 * to do that is to just read back the 16-bit counter
594 * once from the PIT.
595 */
596 pit_verify_msb(0);
597
598 if (pit_expect_msb(0xff, &tsc, &d1)) {
599 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
600 if (!pit_expect_msb(0xff-i, &delta, &d2))
601 break;
602
603 delta -= tsc;
604
605 /*
606 * Extrapolate the error and fail fast if the error will
607 * never be below 500 ppm.
608 */
609 if (i == 1 &&
610 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
611 return 0;
612
613 /*
614 * Iterate until the error is less than 500 ppm
615 */
616 if (d1+d2 >= delta >> 11)
617 continue;
618
619 /*
620 * Check the PIT one more time to verify that
621 * all TSC reads were stable wrt the PIT.
622 *
623 * This also guarantees serialization of the
624 * last cycle read ('d2') in pit_expect_msb.
625 */
626 if (!pit_verify_msb(0xfe - i))
627 break;
628 goto success;
629 }
630 }
631 pr_info("Fast TSC calibration failed\n");
632 return 0;
633
634 success:
635 /*
636 * Ok, if we get here, then we've seen the
637 * MSB of the PIT decrement 'i' times, and the
638 * error has shrunk to less than 500 ppm.
639 *
640 * As a result, we can depend on there not being
641 * any odd delays anywhere, and the TSC reads are
642 * reliable (within the error).
643 *
644 * kHz = ticks / time-in-seconds / 1000;
645 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
646 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
647 */
648 delta *= PIT_TICK_RATE;
649 do_div(delta, i*256*1000);
650 pr_info("Fast TSC calibration using PIT\n");
651 return delta;
652 }
653
654 /**
655 * native_calibrate_tsc - calibrate the tsc on boot
656 */
657 unsigned long native_calibrate_tsc(void)
658 {
659 u64 tsc1, tsc2, delta, ref1, ref2;
660 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
661 unsigned long flags, latch, ms, fast_calibrate;
662 int hpet = is_hpet_enabled(), i, loopmin;
663
664 /* Calibrate TSC using MSR for Intel Atom SoCs */
665 local_irq_save(flags);
666 fast_calibrate = try_msr_calibrate_tsc();
667 local_irq_restore(flags);
668 if (fast_calibrate)
669 return fast_calibrate;
670
671 local_irq_save(flags);
672 fast_calibrate = quick_pit_calibrate();
673 local_irq_restore(flags);
674 if (fast_calibrate)
675 return fast_calibrate;
676
677 /*
678 * Run 5 calibration loops to get the lowest frequency value
679 * (the best estimate). We use two different calibration modes
680 * here:
681 *
682 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
683 * load a timeout of 50ms. We read the time right after we
684 * started the timer and wait until the PIT count down reaches
685 * zero. In each wait loop iteration we read the TSC and check
686 * the delta to the previous read. We keep track of the min
687 * and max values of that delta. The delta is mostly defined
688 * by the IO time of the PIT access, so we can detect when a
689 * SMI/SMM disturbance happened between the two reads. If the
690 * maximum time is significantly larger than the minimum time,
691 * then we discard the result and have another try.
692 *
693 * 2) Reference counter. If available we use the HPET or the
694 * PMTIMER as a reference to check the sanity of that value.
695 * We use separate TSC readouts and check inside of the
696 * reference read for a SMI/SMM disturbance. We dicard
697 * disturbed values here as well. We do that around the PIT
698 * calibration delay loop as we have to wait for a certain
699 * amount of time anyway.
700 */
701
702 /* Preset PIT loop values */
703 latch = CAL_LATCH;
704 ms = CAL_MS;
705 loopmin = CAL_PIT_LOOPS;
706
707 for (i = 0; i < 3; i++) {
708 unsigned long tsc_pit_khz;
709
710 /*
711 * Read the start value and the reference count of
712 * hpet/pmtimer when available. Then do the PIT
713 * calibration, which will take at least 50ms, and
714 * read the end value.
715 */
716 local_irq_save(flags);
717 tsc1 = tsc_read_refs(&ref1, hpet);
718 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
719 tsc2 = tsc_read_refs(&ref2, hpet);
720 local_irq_restore(flags);
721
722 /* Pick the lowest PIT TSC calibration so far */
723 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
724
725 /* hpet or pmtimer available ? */
726 if (ref1 == ref2)
727 continue;
728
729 /* Check, whether the sampling was disturbed by an SMI */
730 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
731 continue;
732
733 tsc2 = (tsc2 - tsc1) * 1000000LL;
734 if (hpet)
735 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
736 else
737 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
738
739 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
740
741 /* Check the reference deviation */
742 delta = ((u64) tsc_pit_min) * 100;
743 do_div(delta, tsc_ref_min);
744
745 /*
746 * If both calibration results are inside a 10% window
747 * then we can be sure, that the calibration
748 * succeeded. We break out of the loop right away. We
749 * use the reference value, as it is more precise.
750 */
751 if (delta >= 90 && delta <= 110) {
752 pr_info("PIT calibration matches %s. %d loops\n",
753 hpet ? "HPET" : "PMTIMER", i + 1);
754 return tsc_ref_min;
755 }
756
757 /*
758 * Check whether PIT failed more than once. This
759 * happens in virtualized environments. We need to
760 * give the virtual PC a slightly longer timeframe for
761 * the HPET/PMTIMER to make the result precise.
762 */
763 if (i == 1 && tsc_pit_min == ULONG_MAX) {
764 latch = CAL2_LATCH;
765 ms = CAL2_MS;
766 loopmin = CAL2_PIT_LOOPS;
767 }
768 }
769
770 /*
771 * Now check the results.
772 */
773 if (tsc_pit_min == ULONG_MAX) {
774 /* PIT gave no useful value */
775 pr_warn("Unable to calibrate against PIT\n");
776
777 /* We don't have an alternative source, disable TSC */
778 if (!hpet && !ref1 && !ref2) {
779 pr_notice("No reference (HPET/PMTIMER) available\n");
780 return 0;
781 }
782
783 /* The alternative source failed as well, disable TSC */
784 if (tsc_ref_min == ULONG_MAX) {
785 pr_warn("HPET/PMTIMER calibration failed\n");
786 return 0;
787 }
788
789 /* Use the alternative source */
790 pr_info("using %s reference calibration\n",
791 hpet ? "HPET" : "PMTIMER");
792
793 return tsc_ref_min;
794 }
795
796 /* We don't have an alternative source, use the PIT calibration value */
797 if (!hpet && !ref1 && !ref2) {
798 pr_info("Using PIT calibration value\n");
799 return tsc_pit_min;
800 }
801
802 /* The alternative source failed, use the PIT calibration value */
803 if (tsc_ref_min == ULONG_MAX) {
804 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
805 return tsc_pit_min;
806 }
807
808 /*
809 * The calibration values differ too much. In doubt, we use
810 * the PIT value as we know that there are PMTIMERs around
811 * running at double speed. At least we let the user know:
812 */
813 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
814 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
815 pr_info("Using PIT calibration value\n");
816 return tsc_pit_min;
817 }
818
819 int recalibrate_cpu_khz(void)
820 {
821 #ifndef CONFIG_SMP
822 unsigned long cpu_khz_old = cpu_khz;
823
824 if (cpu_has_tsc) {
825 tsc_khz = x86_platform.calibrate_tsc();
826 cpu_khz = tsc_khz;
827 cpu_data(0).loops_per_jiffy =
828 cpufreq_scale(cpu_data(0).loops_per_jiffy,
829 cpu_khz_old, cpu_khz);
830 return 0;
831 } else
832 return -ENODEV;
833 #else
834 return -ENODEV;
835 #endif
836 }
837
838 EXPORT_SYMBOL(recalibrate_cpu_khz);
839
840
841 static unsigned long long cyc2ns_suspend;
842
843 void tsc_save_sched_clock_state(void)
844 {
845 if (!sched_clock_stable())
846 return;
847
848 cyc2ns_suspend = sched_clock();
849 }
850
851 /*
852 * Even on processors with invariant TSC, TSC gets reset in some the
853 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
854 * arbitrary value (still sync'd across cpu's) during resume from such sleep
855 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
856 * that sched_clock() continues from the point where it was left off during
857 * suspend.
858 */
859 void tsc_restore_sched_clock_state(void)
860 {
861 unsigned long long offset;
862 unsigned long flags;
863 int cpu;
864
865 if (!sched_clock_stable())
866 return;
867
868 local_irq_save(flags);
869
870 /*
871 * We're comming out of suspend, there's no concurrency yet; don't
872 * bother being nice about the RCU stuff, just write to both
873 * data fields.
874 */
875
876 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
877 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
878
879 offset = cyc2ns_suspend - sched_clock();
880
881 for_each_possible_cpu(cpu) {
882 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
883 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
884 }
885
886 local_irq_restore(flags);
887 }
888
889 #ifdef CONFIG_CPU_FREQ
890
891 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
892 * changes.
893 *
894 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
895 * not that important because current Opteron setups do not support
896 * scaling on SMP anyroads.
897 *
898 * Should fix up last_tsc too. Currently gettimeofday in the
899 * first tick after the change will be slightly wrong.
900 */
901
902 static unsigned int ref_freq;
903 static unsigned long loops_per_jiffy_ref;
904 static unsigned long tsc_khz_ref;
905
906 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
907 void *data)
908 {
909 struct cpufreq_freqs *freq = data;
910 unsigned long *lpj;
911
912 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
913 return 0;
914
915 lpj = &boot_cpu_data.loops_per_jiffy;
916 #ifdef CONFIG_SMP
917 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
918 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
919 #endif
920
921 if (!ref_freq) {
922 ref_freq = freq->old;
923 loops_per_jiffy_ref = *lpj;
924 tsc_khz_ref = tsc_khz;
925 }
926 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
927 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
928 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
929
930 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
931 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
932 mark_tsc_unstable("cpufreq changes");
933
934 set_cyc2ns_scale(tsc_khz, freq->cpu);
935 }
936
937 return 0;
938 }
939
940 static struct notifier_block time_cpufreq_notifier_block = {
941 .notifier_call = time_cpufreq_notifier
942 };
943
944 static int __init cpufreq_tsc(void)
945 {
946 if (!cpu_has_tsc)
947 return 0;
948 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
949 return 0;
950 cpufreq_register_notifier(&time_cpufreq_notifier_block,
951 CPUFREQ_TRANSITION_NOTIFIER);
952 return 0;
953 }
954
955 core_initcall(cpufreq_tsc);
956
957 #endif /* CONFIG_CPU_FREQ */
958
959 /* clocksource code */
960
961 static struct clocksource clocksource_tsc;
962
963 /*
964 * We used to compare the TSC to the cycle_last value in the clocksource
965 * structure to avoid a nasty time-warp. This can be observed in a
966 * very small window right after one CPU updated cycle_last under
967 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
968 * is smaller than the cycle_last reference value due to a TSC which
969 * is slighty behind. This delta is nowhere else observable, but in
970 * that case it results in a forward time jump in the range of hours
971 * due to the unsigned delta calculation of the time keeping core
972 * code, which is necessary to support wrapping clocksources like pm
973 * timer.
974 *
975 * This sanity check is now done in the core timekeeping code.
976 * checking the result of read_tsc() - cycle_last for being negative.
977 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
978 */
979 static cycle_t read_tsc(struct clocksource *cs)
980 {
981 return (cycle_t)rdtsc_ordered();
982 }
983
984 /*
985 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
986 */
987 static struct clocksource clocksource_tsc = {
988 .name = "tsc",
989 .rating = 300,
990 .read = read_tsc,
991 .mask = CLOCKSOURCE_MASK(64),
992 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
993 CLOCK_SOURCE_MUST_VERIFY,
994 .archdata = { .vclock_mode = VCLOCK_TSC },
995 };
996
997 void mark_tsc_unstable(char *reason)
998 {
999 if (!tsc_unstable) {
1000 tsc_unstable = 1;
1001 clear_sched_clock_stable();
1002 disable_sched_clock_irqtime();
1003 pr_info("Marking TSC unstable due to %s\n", reason);
1004 /* Change only the rating, when not registered */
1005 if (clocksource_tsc.mult)
1006 clocksource_mark_unstable(&clocksource_tsc);
1007 else {
1008 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1009 clocksource_tsc.rating = 0;
1010 }
1011 }
1012 }
1013
1014 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1015
1016 static void __init check_system_tsc_reliable(void)
1017 {
1018 #ifdef CONFIG_MGEODE_LX
1019 /* RTSC counts during suspend */
1020 #define RTSC_SUSP 0x100
1021 unsigned long res_low, res_high;
1022
1023 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1024 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1025 if (res_low & RTSC_SUSP)
1026 tsc_clocksource_reliable = 1;
1027 #endif
1028 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1029 tsc_clocksource_reliable = 1;
1030 }
1031
1032 /*
1033 * Make an educated guess if the TSC is trustworthy and synchronized
1034 * over all CPUs.
1035 */
1036 int unsynchronized_tsc(void)
1037 {
1038 if (!cpu_has_tsc || tsc_unstable)
1039 return 1;
1040
1041 #ifdef CONFIG_SMP
1042 if (apic_is_clustered_box())
1043 return 1;
1044 #endif
1045
1046 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1047 return 0;
1048
1049 if (tsc_clocksource_reliable)
1050 return 0;
1051 /*
1052 * Intel systems are normally all synchronized.
1053 * Exceptions must mark TSC as unstable:
1054 */
1055 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1056 /* assume multi socket systems are not synchronized: */
1057 if (num_possible_cpus() > 1)
1058 return 1;
1059 }
1060
1061 return 0;
1062 }
1063
1064
1065 static void tsc_refine_calibration_work(struct work_struct *work);
1066 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1067 /**
1068 * tsc_refine_calibration_work - Further refine tsc freq calibration
1069 * @work - ignored.
1070 *
1071 * This functions uses delayed work over a period of a
1072 * second to further refine the TSC freq value. Since this is
1073 * timer based, instead of loop based, we don't block the boot
1074 * process while this longer calibration is done.
1075 *
1076 * If there are any calibration anomalies (too many SMIs, etc),
1077 * or the refined calibration is off by 1% of the fast early
1078 * calibration, we throw out the new calibration and use the
1079 * early calibration.
1080 */
1081 static void tsc_refine_calibration_work(struct work_struct *work)
1082 {
1083 static u64 tsc_start = -1, ref_start;
1084 static int hpet;
1085 u64 tsc_stop, ref_stop, delta;
1086 unsigned long freq;
1087
1088 /* Don't bother refining TSC on unstable systems */
1089 if (check_tsc_unstable())
1090 goto out;
1091
1092 /*
1093 * Since the work is started early in boot, we may be
1094 * delayed the first time we expire. So set the workqueue
1095 * again once we know timers are working.
1096 */
1097 if (tsc_start == -1) {
1098 /*
1099 * Only set hpet once, to avoid mixing hardware
1100 * if the hpet becomes enabled later.
1101 */
1102 hpet = is_hpet_enabled();
1103 schedule_delayed_work(&tsc_irqwork, HZ);
1104 tsc_start = tsc_read_refs(&ref_start, hpet);
1105 return;
1106 }
1107
1108 tsc_stop = tsc_read_refs(&ref_stop, hpet);
1109
1110 /* hpet or pmtimer available ? */
1111 if (ref_start == ref_stop)
1112 goto out;
1113
1114 /* Check, whether the sampling was disturbed by an SMI */
1115 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1116 goto out;
1117
1118 delta = tsc_stop - tsc_start;
1119 delta *= 1000000LL;
1120 if (hpet)
1121 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1122 else
1123 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1124
1125 /* Make sure we're within 1% */
1126 if (abs(tsc_khz - freq) > tsc_khz/100)
1127 goto out;
1128
1129 tsc_khz = freq;
1130 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1131 (unsigned long)tsc_khz / 1000,
1132 (unsigned long)tsc_khz % 1000);
1133
1134 out:
1135 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1136 }
1137
1138
1139 static int __init init_tsc_clocksource(void)
1140 {
1141 if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
1142 return 0;
1143
1144 if (tsc_clocksource_reliable)
1145 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1146 /* lower the rating if we already know its unstable: */
1147 if (check_tsc_unstable()) {
1148 clocksource_tsc.rating = 0;
1149 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1150 }
1151
1152 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1153 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1154
1155 /*
1156 * Trust the results of the earlier calibration on systems
1157 * exporting a reliable TSC.
1158 */
1159 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
1160 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1161 return 0;
1162 }
1163
1164 schedule_delayed_work(&tsc_irqwork, 0);
1165 return 0;
1166 }
1167 /*
1168 * We use device_initcall here, to ensure we run after the hpet
1169 * is fully initialized, which may occur at fs_initcall time.
1170 */
1171 device_initcall(init_tsc_clocksource);
1172
1173 void __init tsc_init(void)
1174 {
1175 u64 lpj;
1176 int cpu;
1177
1178 x86_init.timers.tsc_pre_init();
1179
1180 if (!cpu_has_tsc) {
1181 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1182 return;
1183 }
1184
1185 tsc_khz = x86_platform.calibrate_tsc();
1186 cpu_khz = tsc_khz;
1187
1188 if (!tsc_khz) {
1189 mark_tsc_unstable("could not calculate TSC khz");
1190 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1191 return;
1192 }
1193
1194 pr_info("Detected %lu.%03lu MHz processor\n",
1195 (unsigned long)cpu_khz / 1000,
1196 (unsigned long)cpu_khz % 1000);
1197
1198 /*
1199 * Secondary CPUs do not run through tsc_init(), so set up
1200 * all the scale factors for all CPUs, assuming the same
1201 * speed as the bootup CPU. (cpufreq notifiers will fix this
1202 * up if their speed diverges)
1203 */
1204 for_each_possible_cpu(cpu) {
1205 cyc2ns_init(cpu);
1206 set_cyc2ns_scale(cpu_khz, cpu);
1207 }
1208
1209 if (tsc_disabled > 0)
1210 return;
1211
1212 /* now allow native_sched_clock() to use rdtsc */
1213
1214 tsc_disabled = 0;
1215 static_key_slow_inc(&__use_tsc);
1216
1217 if (!no_sched_irq_time)
1218 enable_sched_clock_irqtime();
1219
1220 lpj = ((u64)tsc_khz * 1000);
1221 do_div(lpj, HZ);
1222 lpj_fine = lpj;
1223
1224 use_tsc_delay();
1225
1226 if (unsynchronized_tsc())
1227 mark_tsc_unstable("TSCs unsynchronized");
1228
1229 check_system_tsc_reliable();
1230 }
1231
1232 #ifdef CONFIG_SMP
1233 /*
1234 * If we have a constant TSC and are using the TSC for the delay loop,
1235 * we can skip clock calibration if another cpu in the same socket has already
1236 * been calibrated. This assumes that CONSTANT_TSC applies to all
1237 * cpus in the socket - this should be a safe assumption.
1238 */
1239 unsigned long calibrate_delay_is_known(void)
1240 {
1241 int i, cpu = smp_processor_id();
1242
1243 if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1244 return 0;
1245
1246 for_each_online_cpu(i)
1247 if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
1248 return cpu_data(i).loops_per_jiffy;
1249 return 0;
1250 }
1251 #endif
This page took 0.058503 seconds and 6 git commands to generate.