perf/x86: Improve accuracy of perf/sched clock
[deliverable/linux.git] / arch / x86 / kernel / tsc.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/init.h>
6 #include <linux/module.h>
7 #include <linux/timer.h>
8 #include <linux/acpi_pmtmr.h>
9 #include <linux/cpufreq.h>
10 #include <linux/delay.h>
11 #include <linux/clocksource.h>
12 #include <linux/percpu.h>
13 #include <linux/timex.h>
14 #include <linux/static_key.h>
15
16 #include <asm/hpet.h>
17 #include <asm/timer.h>
18 #include <asm/vgtod.h>
19 #include <asm/time.h>
20 #include <asm/delay.h>
21 #include <asm/hypervisor.h>
22 #include <asm/nmi.h>
23 #include <asm/x86_init.h>
24
25 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
26 EXPORT_SYMBOL(cpu_khz);
27
28 unsigned int __read_mostly tsc_khz;
29 EXPORT_SYMBOL(tsc_khz);
30
31 /*
32 * TSC can be unstable due to cpufreq or due to unsynced TSCs
33 */
34 static int __read_mostly tsc_unstable;
35
36 /* native_sched_clock() is called before tsc_init(), so
37 we must start with the TSC soft disabled to prevent
38 erroneous rdtsc usage on !cpu_has_tsc processors */
39 static int __read_mostly tsc_disabled = -1;
40
41 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
42
43 int tsc_clocksource_reliable;
44
45 /*
46 * Use a ring-buffer like data structure, where a writer advances the head by
47 * writing a new data entry and a reader advances the tail when it observes a
48 * new entry.
49 *
50 * Writers are made to wait on readers until there's space to write a new
51 * entry.
52 *
53 * This means that we can always use an {offset, mul} pair to compute a ns
54 * value that is 'roughly' in the right direction, even if we're writing a new
55 * {offset, mul} pair during the clock read.
56 *
57 * The down-side is that we can no longer guarantee strict monotonicity anymore
58 * (assuming the TSC was that to begin with), because while we compute the
59 * intersection point of the two clock slopes and make sure the time is
60 * continuous at the point of switching; we can no longer guarantee a reader is
61 * strictly before or after the switch point.
62 *
63 * It does mean a reader no longer needs to disable IRQs in order to avoid
64 * CPU-Freq updates messing with his times, and similarly an NMI reader will
65 * no longer run the risk of hitting half-written state.
66 */
67
68 struct cyc2ns {
69 struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */
70 struct cyc2ns_data *head; /* 48 + 8 = 56 */
71 struct cyc2ns_data *tail; /* 56 + 8 = 64 */
72 }; /* exactly fits one cacheline */
73
74 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
75
76 struct cyc2ns_data *cyc2ns_read_begin(void)
77 {
78 struct cyc2ns_data *head;
79
80 preempt_disable();
81
82 head = this_cpu_read(cyc2ns.head);
83 /*
84 * Ensure we observe the entry when we observe the pointer to it.
85 * matches the wmb from cyc2ns_write_end().
86 */
87 smp_read_barrier_depends();
88 head->__count++;
89 barrier();
90
91 return head;
92 }
93
94 void cyc2ns_read_end(struct cyc2ns_data *head)
95 {
96 barrier();
97 /*
98 * If we're the outer most nested read; update the tail pointer
99 * when we're done. This notifies possible pending writers
100 * that we've observed the head pointer and that the other
101 * entry is now free.
102 */
103 if (!--head->__count) {
104 /*
105 * x86-TSO does not reorder writes with older reads;
106 * therefore once this write becomes visible to another
107 * cpu, we must be finished reading the cyc2ns_data.
108 *
109 * matches with cyc2ns_write_begin().
110 */
111 this_cpu_write(cyc2ns.tail, head);
112 }
113 preempt_enable();
114 }
115
116 /*
117 * Begin writing a new @data entry for @cpu.
118 *
119 * Assumes some sort of write side lock; currently 'provided' by the assumption
120 * that cpufreq will call its notifiers sequentially.
121 */
122 static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
123 {
124 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
125 struct cyc2ns_data *data = c2n->data;
126
127 if (data == c2n->head)
128 data++;
129
130 /* XXX send an IPI to @cpu in order to guarantee a read? */
131
132 /*
133 * When we observe the tail write from cyc2ns_read_end(),
134 * the cpu must be done with that entry and its safe
135 * to start writing to it.
136 */
137 while (c2n->tail == data)
138 cpu_relax();
139
140 return data;
141 }
142
143 static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
144 {
145 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
146
147 /*
148 * Ensure the @data writes are visible before we publish the
149 * entry. Matches the data-depencency in cyc2ns_read_begin().
150 */
151 smp_wmb();
152
153 ACCESS_ONCE(c2n->head) = data;
154 }
155
156 /*
157 * Accelerators for sched_clock()
158 * convert from cycles(64bits) => nanoseconds (64bits)
159 * basic equation:
160 * ns = cycles / (freq / ns_per_sec)
161 * ns = cycles * (ns_per_sec / freq)
162 * ns = cycles * (10^9 / (cpu_khz * 10^3))
163 * ns = cycles * (10^6 / cpu_khz)
164 *
165 * Then we use scaling math (suggested by george@mvista.com) to get:
166 * ns = cycles * (10^6 * SC / cpu_khz) / SC
167 * ns = cycles * cyc2ns_scale / SC
168 *
169 * And since SC is a constant power of two, we can convert the div
170 * into a shift. The larger SC is, the more accurate the conversion, but
171 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
172 * (64-bit result) can be used.
173 *
174 * We can use khz divisor instead of mhz to keep a better precision.
175 * (mathieu.desnoyers@polymtl.ca)
176 *
177 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
178 */
179
180 static void cyc2ns_data_init(struct cyc2ns_data *data)
181 {
182 data->cyc2ns_mul = 0;
183 data->cyc2ns_shift = 0;
184 data->cyc2ns_offset = 0;
185 data->__count = 0;
186 }
187
188 static void cyc2ns_init(int cpu)
189 {
190 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
191
192 cyc2ns_data_init(&c2n->data[0]);
193 cyc2ns_data_init(&c2n->data[1]);
194
195 c2n->head = c2n->data;
196 c2n->tail = c2n->data;
197 }
198
199 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
200 {
201 struct cyc2ns_data *data, *tail;
202 unsigned long long ns;
203
204 /*
205 * See cyc2ns_read_*() for details; replicated in order to avoid
206 * an extra few instructions that came with the abstraction.
207 * Notable, it allows us to only do the __count and tail update
208 * dance when its actually needed.
209 */
210
211 preempt_disable_notrace();
212 data = this_cpu_read(cyc2ns.head);
213 tail = this_cpu_read(cyc2ns.tail);
214
215 if (likely(data == tail)) {
216 ns = data->cyc2ns_offset;
217 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
218 } else {
219 data->__count++;
220
221 barrier();
222
223 ns = data->cyc2ns_offset;
224 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
225
226 barrier();
227
228 if (!--data->__count)
229 this_cpu_write(cyc2ns.tail, data);
230 }
231 preempt_enable_notrace();
232
233 return ns;
234 }
235
236 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
237 {
238 unsigned long long tsc_now, ns_now;
239 struct cyc2ns_data *data;
240 unsigned long flags;
241
242 local_irq_save(flags);
243 sched_clock_idle_sleep_event();
244
245 if (!cpu_khz)
246 goto done;
247
248 data = cyc2ns_write_begin(cpu);
249
250 tsc_now = rdtsc();
251 ns_now = cycles_2_ns(tsc_now);
252
253 /*
254 * Compute a new multiplier as per the above comment and ensure our
255 * time function is continuous; see the comment near struct
256 * cyc2ns_data.
257 */
258 clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, cpu_khz,
259 NSEC_PER_MSEC, 0);
260
261 data->cyc2ns_offset = ns_now -
262 mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
263
264 cyc2ns_write_end(cpu, data);
265
266 done:
267 sched_clock_idle_wakeup_event(0);
268 local_irq_restore(flags);
269 }
270 /*
271 * Scheduler clock - returns current time in nanosec units.
272 */
273 u64 native_sched_clock(void)
274 {
275 if (static_branch_likely(&__use_tsc)) {
276 u64 tsc_now = rdtsc();
277
278 /* return the value in ns */
279 return cycles_2_ns(tsc_now);
280 }
281
282 /*
283 * Fall back to jiffies if there's no TSC available:
284 * ( But note that we still use it if the TSC is marked
285 * unstable. We do this because unlike Time Of Day,
286 * the scheduler clock tolerates small errors and it's
287 * very important for it to be as fast as the platform
288 * can achieve it. )
289 */
290
291 /* No locking but a rare wrong value is not a big deal: */
292 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
293 }
294
295 /*
296 * Generate a sched_clock if you already have a TSC value.
297 */
298 u64 native_sched_clock_from_tsc(u64 tsc)
299 {
300 return cycles_2_ns(tsc);
301 }
302
303 /* We need to define a real function for sched_clock, to override the
304 weak default version */
305 #ifdef CONFIG_PARAVIRT
306 unsigned long long sched_clock(void)
307 {
308 return paravirt_sched_clock();
309 }
310 #else
311 unsigned long long
312 sched_clock(void) __attribute__((alias("native_sched_clock")));
313 #endif
314
315 int check_tsc_unstable(void)
316 {
317 return tsc_unstable;
318 }
319 EXPORT_SYMBOL_GPL(check_tsc_unstable);
320
321 int check_tsc_disabled(void)
322 {
323 return tsc_disabled;
324 }
325 EXPORT_SYMBOL_GPL(check_tsc_disabled);
326
327 #ifdef CONFIG_X86_TSC
328 int __init notsc_setup(char *str)
329 {
330 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
331 tsc_disabled = 1;
332 return 1;
333 }
334 #else
335 /*
336 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
337 * in cpu/common.c
338 */
339 int __init notsc_setup(char *str)
340 {
341 setup_clear_cpu_cap(X86_FEATURE_TSC);
342 return 1;
343 }
344 #endif
345
346 __setup("notsc", notsc_setup);
347
348 static int no_sched_irq_time;
349
350 static int __init tsc_setup(char *str)
351 {
352 if (!strcmp(str, "reliable"))
353 tsc_clocksource_reliable = 1;
354 if (!strncmp(str, "noirqtime", 9))
355 no_sched_irq_time = 1;
356 return 1;
357 }
358
359 __setup("tsc=", tsc_setup);
360
361 #define MAX_RETRIES 5
362 #define SMI_TRESHOLD 50000
363
364 /*
365 * Read TSC and the reference counters. Take care of SMI disturbance
366 */
367 static u64 tsc_read_refs(u64 *p, int hpet)
368 {
369 u64 t1, t2;
370 int i;
371
372 for (i = 0; i < MAX_RETRIES; i++) {
373 t1 = get_cycles();
374 if (hpet)
375 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
376 else
377 *p = acpi_pm_read_early();
378 t2 = get_cycles();
379 if ((t2 - t1) < SMI_TRESHOLD)
380 return t2;
381 }
382 return ULLONG_MAX;
383 }
384
385 /*
386 * Calculate the TSC frequency from HPET reference
387 */
388 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
389 {
390 u64 tmp;
391
392 if (hpet2 < hpet1)
393 hpet2 += 0x100000000ULL;
394 hpet2 -= hpet1;
395 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
396 do_div(tmp, 1000000);
397 do_div(deltatsc, tmp);
398
399 return (unsigned long) deltatsc;
400 }
401
402 /*
403 * Calculate the TSC frequency from PMTimer reference
404 */
405 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
406 {
407 u64 tmp;
408
409 if (!pm1 && !pm2)
410 return ULONG_MAX;
411
412 if (pm2 < pm1)
413 pm2 += (u64)ACPI_PM_OVRRUN;
414 pm2 -= pm1;
415 tmp = pm2 * 1000000000LL;
416 do_div(tmp, PMTMR_TICKS_PER_SEC);
417 do_div(deltatsc, tmp);
418
419 return (unsigned long) deltatsc;
420 }
421
422 #define CAL_MS 10
423 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
424 #define CAL_PIT_LOOPS 1000
425
426 #define CAL2_MS 50
427 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
428 #define CAL2_PIT_LOOPS 5000
429
430
431 /*
432 * Try to calibrate the TSC against the Programmable
433 * Interrupt Timer and return the frequency of the TSC
434 * in kHz.
435 *
436 * Return ULONG_MAX on failure to calibrate.
437 */
438 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
439 {
440 u64 tsc, t1, t2, delta;
441 unsigned long tscmin, tscmax;
442 int pitcnt;
443
444 /* Set the Gate high, disable speaker */
445 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
446
447 /*
448 * Setup CTC channel 2* for mode 0, (interrupt on terminal
449 * count mode), binary count. Set the latch register to 50ms
450 * (LSB then MSB) to begin countdown.
451 */
452 outb(0xb0, 0x43);
453 outb(latch & 0xff, 0x42);
454 outb(latch >> 8, 0x42);
455
456 tsc = t1 = t2 = get_cycles();
457
458 pitcnt = 0;
459 tscmax = 0;
460 tscmin = ULONG_MAX;
461 while ((inb(0x61) & 0x20) == 0) {
462 t2 = get_cycles();
463 delta = t2 - tsc;
464 tsc = t2;
465 if ((unsigned long) delta < tscmin)
466 tscmin = (unsigned int) delta;
467 if ((unsigned long) delta > tscmax)
468 tscmax = (unsigned int) delta;
469 pitcnt++;
470 }
471
472 /*
473 * Sanity checks:
474 *
475 * If we were not able to read the PIT more than loopmin
476 * times, then we have been hit by a massive SMI
477 *
478 * If the maximum is 10 times larger than the minimum,
479 * then we got hit by an SMI as well.
480 */
481 if (pitcnt < loopmin || tscmax > 10 * tscmin)
482 return ULONG_MAX;
483
484 /* Calculate the PIT value */
485 delta = t2 - t1;
486 do_div(delta, ms);
487 return delta;
488 }
489
490 /*
491 * This reads the current MSB of the PIT counter, and
492 * checks if we are running on sufficiently fast and
493 * non-virtualized hardware.
494 *
495 * Our expectations are:
496 *
497 * - the PIT is running at roughly 1.19MHz
498 *
499 * - each IO is going to take about 1us on real hardware,
500 * but we allow it to be much faster (by a factor of 10) or
501 * _slightly_ slower (ie we allow up to a 2us read+counter
502 * update - anything else implies a unacceptably slow CPU
503 * or PIT for the fast calibration to work.
504 *
505 * - with 256 PIT ticks to read the value, we have 214us to
506 * see the same MSB (and overhead like doing a single TSC
507 * read per MSB value etc).
508 *
509 * - We're doing 2 reads per loop (LSB, MSB), and we expect
510 * them each to take about a microsecond on real hardware.
511 * So we expect a count value of around 100. But we'll be
512 * generous, and accept anything over 50.
513 *
514 * - if the PIT is stuck, and we see *many* more reads, we
515 * return early (and the next caller of pit_expect_msb()
516 * then consider it a failure when they don't see the
517 * next expected value).
518 *
519 * These expectations mean that we know that we have seen the
520 * transition from one expected value to another with a fairly
521 * high accuracy, and we didn't miss any events. We can thus
522 * use the TSC value at the transitions to calculate a pretty
523 * good value for the TSC frequencty.
524 */
525 static inline int pit_verify_msb(unsigned char val)
526 {
527 /* Ignore LSB */
528 inb(0x42);
529 return inb(0x42) == val;
530 }
531
532 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
533 {
534 int count;
535 u64 tsc = 0, prev_tsc = 0;
536
537 for (count = 0; count < 50000; count++) {
538 if (!pit_verify_msb(val))
539 break;
540 prev_tsc = tsc;
541 tsc = get_cycles();
542 }
543 *deltap = get_cycles() - prev_tsc;
544 *tscp = tsc;
545
546 /*
547 * We require _some_ success, but the quality control
548 * will be based on the error terms on the TSC values.
549 */
550 return count > 5;
551 }
552
553 /*
554 * How many MSB values do we want to see? We aim for
555 * a maximum error rate of 500ppm (in practice the
556 * real error is much smaller), but refuse to spend
557 * more than 50ms on it.
558 */
559 #define MAX_QUICK_PIT_MS 50
560 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
561
562 static unsigned long quick_pit_calibrate(void)
563 {
564 int i;
565 u64 tsc, delta;
566 unsigned long d1, d2;
567
568 /* Set the Gate high, disable speaker */
569 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
570
571 /*
572 * Counter 2, mode 0 (one-shot), binary count
573 *
574 * NOTE! Mode 2 decrements by two (and then the
575 * output is flipped each time, giving the same
576 * final output frequency as a decrement-by-one),
577 * so mode 0 is much better when looking at the
578 * individual counts.
579 */
580 outb(0xb0, 0x43);
581
582 /* Start at 0xffff */
583 outb(0xff, 0x42);
584 outb(0xff, 0x42);
585
586 /*
587 * The PIT starts counting at the next edge, so we
588 * need to delay for a microsecond. The easiest way
589 * to do that is to just read back the 16-bit counter
590 * once from the PIT.
591 */
592 pit_verify_msb(0);
593
594 if (pit_expect_msb(0xff, &tsc, &d1)) {
595 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
596 if (!pit_expect_msb(0xff-i, &delta, &d2))
597 break;
598
599 delta -= tsc;
600
601 /*
602 * Extrapolate the error and fail fast if the error will
603 * never be below 500 ppm.
604 */
605 if (i == 1 &&
606 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
607 return 0;
608
609 /*
610 * Iterate until the error is less than 500 ppm
611 */
612 if (d1+d2 >= delta >> 11)
613 continue;
614
615 /*
616 * Check the PIT one more time to verify that
617 * all TSC reads were stable wrt the PIT.
618 *
619 * This also guarantees serialization of the
620 * last cycle read ('d2') in pit_expect_msb.
621 */
622 if (!pit_verify_msb(0xfe - i))
623 break;
624 goto success;
625 }
626 }
627 pr_info("Fast TSC calibration failed\n");
628 return 0;
629
630 success:
631 /*
632 * Ok, if we get here, then we've seen the
633 * MSB of the PIT decrement 'i' times, and the
634 * error has shrunk to less than 500 ppm.
635 *
636 * As a result, we can depend on there not being
637 * any odd delays anywhere, and the TSC reads are
638 * reliable (within the error).
639 *
640 * kHz = ticks / time-in-seconds / 1000;
641 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
642 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
643 */
644 delta *= PIT_TICK_RATE;
645 do_div(delta, i*256*1000);
646 pr_info("Fast TSC calibration using PIT\n");
647 return delta;
648 }
649
650 /**
651 * native_calibrate_tsc - calibrate the tsc on boot
652 */
653 unsigned long native_calibrate_tsc(void)
654 {
655 u64 tsc1, tsc2, delta, ref1, ref2;
656 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
657 unsigned long flags, latch, ms, fast_calibrate;
658 int hpet = is_hpet_enabled(), i, loopmin;
659
660 /* Calibrate TSC using MSR for Intel Atom SoCs */
661 local_irq_save(flags);
662 fast_calibrate = try_msr_calibrate_tsc();
663 local_irq_restore(flags);
664 if (fast_calibrate)
665 return fast_calibrate;
666
667 local_irq_save(flags);
668 fast_calibrate = quick_pit_calibrate();
669 local_irq_restore(flags);
670 if (fast_calibrate)
671 return fast_calibrate;
672
673 /*
674 * Run 5 calibration loops to get the lowest frequency value
675 * (the best estimate). We use two different calibration modes
676 * here:
677 *
678 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
679 * load a timeout of 50ms. We read the time right after we
680 * started the timer and wait until the PIT count down reaches
681 * zero. In each wait loop iteration we read the TSC and check
682 * the delta to the previous read. We keep track of the min
683 * and max values of that delta. The delta is mostly defined
684 * by the IO time of the PIT access, so we can detect when a
685 * SMI/SMM disturbance happened between the two reads. If the
686 * maximum time is significantly larger than the minimum time,
687 * then we discard the result and have another try.
688 *
689 * 2) Reference counter. If available we use the HPET or the
690 * PMTIMER as a reference to check the sanity of that value.
691 * We use separate TSC readouts and check inside of the
692 * reference read for a SMI/SMM disturbance. We dicard
693 * disturbed values here as well. We do that around the PIT
694 * calibration delay loop as we have to wait for a certain
695 * amount of time anyway.
696 */
697
698 /* Preset PIT loop values */
699 latch = CAL_LATCH;
700 ms = CAL_MS;
701 loopmin = CAL_PIT_LOOPS;
702
703 for (i = 0; i < 3; i++) {
704 unsigned long tsc_pit_khz;
705
706 /*
707 * Read the start value and the reference count of
708 * hpet/pmtimer when available. Then do the PIT
709 * calibration, which will take at least 50ms, and
710 * read the end value.
711 */
712 local_irq_save(flags);
713 tsc1 = tsc_read_refs(&ref1, hpet);
714 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
715 tsc2 = tsc_read_refs(&ref2, hpet);
716 local_irq_restore(flags);
717
718 /* Pick the lowest PIT TSC calibration so far */
719 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
720
721 /* hpet or pmtimer available ? */
722 if (ref1 == ref2)
723 continue;
724
725 /* Check, whether the sampling was disturbed by an SMI */
726 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
727 continue;
728
729 tsc2 = (tsc2 - tsc1) * 1000000LL;
730 if (hpet)
731 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
732 else
733 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
734
735 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
736
737 /* Check the reference deviation */
738 delta = ((u64) tsc_pit_min) * 100;
739 do_div(delta, tsc_ref_min);
740
741 /*
742 * If both calibration results are inside a 10% window
743 * then we can be sure, that the calibration
744 * succeeded. We break out of the loop right away. We
745 * use the reference value, as it is more precise.
746 */
747 if (delta >= 90 && delta <= 110) {
748 pr_info("PIT calibration matches %s. %d loops\n",
749 hpet ? "HPET" : "PMTIMER", i + 1);
750 return tsc_ref_min;
751 }
752
753 /*
754 * Check whether PIT failed more than once. This
755 * happens in virtualized environments. We need to
756 * give the virtual PC a slightly longer timeframe for
757 * the HPET/PMTIMER to make the result precise.
758 */
759 if (i == 1 && tsc_pit_min == ULONG_MAX) {
760 latch = CAL2_LATCH;
761 ms = CAL2_MS;
762 loopmin = CAL2_PIT_LOOPS;
763 }
764 }
765
766 /*
767 * Now check the results.
768 */
769 if (tsc_pit_min == ULONG_MAX) {
770 /* PIT gave no useful value */
771 pr_warn("Unable to calibrate against PIT\n");
772
773 /* We don't have an alternative source, disable TSC */
774 if (!hpet && !ref1 && !ref2) {
775 pr_notice("No reference (HPET/PMTIMER) available\n");
776 return 0;
777 }
778
779 /* The alternative source failed as well, disable TSC */
780 if (tsc_ref_min == ULONG_MAX) {
781 pr_warn("HPET/PMTIMER calibration failed\n");
782 return 0;
783 }
784
785 /* Use the alternative source */
786 pr_info("using %s reference calibration\n",
787 hpet ? "HPET" : "PMTIMER");
788
789 return tsc_ref_min;
790 }
791
792 /* We don't have an alternative source, use the PIT calibration value */
793 if (!hpet && !ref1 && !ref2) {
794 pr_info("Using PIT calibration value\n");
795 return tsc_pit_min;
796 }
797
798 /* The alternative source failed, use the PIT calibration value */
799 if (tsc_ref_min == ULONG_MAX) {
800 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
801 return tsc_pit_min;
802 }
803
804 /*
805 * The calibration values differ too much. In doubt, we use
806 * the PIT value as we know that there are PMTIMERs around
807 * running at double speed. At least we let the user know:
808 */
809 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
810 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
811 pr_info("Using PIT calibration value\n");
812 return tsc_pit_min;
813 }
814
815 int recalibrate_cpu_khz(void)
816 {
817 #ifndef CONFIG_SMP
818 unsigned long cpu_khz_old = cpu_khz;
819
820 if (cpu_has_tsc) {
821 tsc_khz = x86_platform.calibrate_tsc();
822 cpu_khz = tsc_khz;
823 cpu_data(0).loops_per_jiffy =
824 cpufreq_scale(cpu_data(0).loops_per_jiffy,
825 cpu_khz_old, cpu_khz);
826 return 0;
827 } else
828 return -ENODEV;
829 #else
830 return -ENODEV;
831 #endif
832 }
833
834 EXPORT_SYMBOL(recalibrate_cpu_khz);
835
836
837 static unsigned long long cyc2ns_suspend;
838
839 void tsc_save_sched_clock_state(void)
840 {
841 if (!sched_clock_stable())
842 return;
843
844 cyc2ns_suspend = sched_clock();
845 }
846
847 /*
848 * Even on processors with invariant TSC, TSC gets reset in some the
849 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
850 * arbitrary value (still sync'd across cpu's) during resume from such sleep
851 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
852 * that sched_clock() continues from the point where it was left off during
853 * suspend.
854 */
855 void tsc_restore_sched_clock_state(void)
856 {
857 unsigned long long offset;
858 unsigned long flags;
859 int cpu;
860
861 if (!sched_clock_stable())
862 return;
863
864 local_irq_save(flags);
865
866 /*
867 * We're comming out of suspend, there's no concurrency yet; don't
868 * bother being nice about the RCU stuff, just write to both
869 * data fields.
870 */
871
872 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
873 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
874
875 offset = cyc2ns_suspend - sched_clock();
876
877 for_each_possible_cpu(cpu) {
878 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
879 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
880 }
881
882 local_irq_restore(flags);
883 }
884
885 #ifdef CONFIG_CPU_FREQ
886
887 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
888 * changes.
889 *
890 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
891 * not that important because current Opteron setups do not support
892 * scaling on SMP anyroads.
893 *
894 * Should fix up last_tsc too. Currently gettimeofday in the
895 * first tick after the change will be slightly wrong.
896 */
897
898 static unsigned int ref_freq;
899 static unsigned long loops_per_jiffy_ref;
900 static unsigned long tsc_khz_ref;
901
902 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
903 void *data)
904 {
905 struct cpufreq_freqs *freq = data;
906 unsigned long *lpj;
907
908 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
909 return 0;
910
911 lpj = &boot_cpu_data.loops_per_jiffy;
912 #ifdef CONFIG_SMP
913 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
914 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
915 #endif
916
917 if (!ref_freq) {
918 ref_freq = freq->old;
919 loops_per_jiffy_ref = *lpj;
920 tsc_khz_ref = tsc_khz;
921 }
922 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
923 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
924 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
925
926 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
927 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
928 mark_tsc_unstable("cpufreq changes");
929
930 set_cyc2ns_scale(tsc_khz, freq->cpu);
931 }
932
933 return 0;
934 }
935
936 static struct notifier_block time_cpufreq_notifier_block = {
937 .notifier_call = time_cpufreq_notifier
938 };
939
940 static int __init cpufreq_tsc(void)
941 {
942 if (!cpu_has_tsc)
943 return 0;
944 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
945 return 0;
946 cpufreq_register_notifier(&time_cpufreq_notifier_block,
947 CPUFREQ_TRANSITION_NOTIFIER);
948 return 0;
949 }
950
951 core_initcall(cpufreq_tsc);
952
953 #endif /* CONFIG_CPU_FREQ */
954
955 /* clocksource code */
956
957 static struct clocksource clocksource_tsc;
958
959 /*
960 * We used to compare the TSC to the cycle_last value in the clocksource
961 * structure to avoid a nasty time-warp. This can be observed in a
962 * very small window right after one CPU updated cycle_last under
963 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
964 * is smaller than the cycle_last reference value due to a TSC which
965 * is slighty behind. This delta is nowhere else observable, but in
966 * that case it results in a forward time jump in the range of hours
967 * due to the unsigned delta calculation of the time keeping core
968 * code, which is necessary to support wrapping clocksources like pm
969 * timer.
970 *
971 * This sanity check is now done in the core timekeeping code.
972 * checking the result of read_tsc() - cycle_last for being negative.
973 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
974 */
975 static cycle_t read_tsc(struct clocksource *cs)
976 {
977 return (cycle_t)rdtsc_ordered();
978 }
979
980 /*
981 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
982 */
983 static struct clocksource clocksource_tsc = {
984 .name = "tsc",
985 .rating = 300,
986 .read = read_tsc,
987 .mask = CLOCKSOURCE_MASK(64),
988 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
989 CLOCK_SOURCE_MUST_VERIFY,
990 .archdata = { .vclock_mode = VCLOCK_TSC },
991 };
992
993 void mark_tsc_unstable(char *reason)
994 {
995 if (!tsc_unstable) {
996 tsc_unstable = 1;
997 clear_sched_clock_stable();
998 disable_sched_clock_irqtime();
999 pr_info("Marking TSC unstable due to %s\n", reason);
1000 /* Change only the rating, when not registered */
1001 if (clocksource_tsc.mult)
1002 clocksource_mark_unstable(&clocksource_tsc);
1003 else {
1004 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1005 clocksource_tsc.rating = 0;
1006 }
1007 }
1008 }
1009
1010 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1011
1012 static void __init check_system_tsc_reliable(void)
1013 {
1014 #ifdef CONFIG_MGEODE_LX
1015 /* RTSC counts during suspend */
1016 #define RTSC_SUSP 0x100
1017 unsigned long res_low, res_high;
1018
1019 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1020 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1021 if (res_low & RTSC_SUSP)
1022 tsc_clocksource_reliable = 1;
1023 #endif
1024 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1025 tsc_clocksource_reliable = 1;
1026 }
1027
1028 /*
1029 * Make an educated guess if the TSC is trustworthy and synchronized
1030 * over all CPUs.
1031 */
1032 int unsynchronized_tsc(void)
1033 {
1034 if (!cpu_has_tsc || tsc_unstable)
1035 return 1;
1036
1037 #ifdef CONFIG_SMP
1038 if (apic_is_clustered_box())
1039 return 1;
1040 #endif
1041
1042 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1043 return 0;
1044
1045 if (tsc_clocksource_reliable)
1046 return 0;
1047 /*
1048 * Intel systems are normally all synchronized.
1049 * Exceptions must mark TSC as unstable:
1050 */
1051 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1052 /* assume multi socket systems are not synchronized: */
1053 if (num_possible_cpus() > 1)
1054 return 1;
1055 }
1056
1057 return 0;
1058 }
1059
1060
1061 static void tsc_refine_calibration_work(struct work_struct *work);
1062 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1063 /**
1064 * tsc_refine_calibration_work - Further refine tsc freq calibration
1065 * @work - ignored.
1066 *
1067 * This functions uses delayed work over a period of a
1068 * second to further refine the TSC freq value. Since this is
1069 * timer based, instead of loop based, we don't block the boot
1070 * process while this longer calibration is done.
1071 *
1072 * If there are any calibration anomalies (too many SMIs, etc),
1073 * or the refined calibration is off by 1% of the fast early
1074 * calibration, we throw out the new calibration and use the
1075 * early calibration.
1076 */
1077 static void tsc_refine_calibration_work(struct work_struct *work)
1078 {
1079 static u64 tsc_start = -1, ref_start;
1080 static int hpet;
1081 u64 tsc_stop, ref_stop, delta;
1082 unsigned long freq;
1083
1084 /* Don't bother refining TSC on unstable systems */
1085 if (check_tsc_unstable())
1086 goto out;
1087
1088 /*
1089 * Since the work is started early in boot, we may be
1090 * delayed the first time we expire. So set the workqueue
1091 * again once we know timers are working.
1092 */
1093 if (tsc_start == -1) {
1094 /*
1095 * Only set hpet once, to avoid mixing hardware
1096 * if the hpet becomes enabled later.
1097 */
1098 hpet = is_hpet_enabled();
1099 schedule_delayed_work(&tsc_irqwork, HZ);
1100 tsc_start = tsc_read_refs(&ref_start, hpet);
1101 return;
1102 }
1103
1104 tsc_stop = tsc_read_refs(&ref_stop, hpet);
1105
1106 /* hpet or pmtimer available ? */
1107 if (ref_start == ref_stop)
1108 goto out;
1109
1110 /* Check, whether the sampling was disturbed by an SMI */
1111 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1112 goto out;
1113
1114 delta = tsc_stop - tsc_start;
1115 delta *= 1000000LL;
1116 if (hpet)
1117 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1118 else
1119 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1120
1121 /* Make sure we're within 1% */
1122 if (abs(tsc_khz - freq) > tsc_khz/100)
1123 goto out;
1124
1125 tsc_khz = freq;
1126 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1127 (unsigned long)tsc_khz / 1000,
1128 (unsigned long)tsc_khz % 1000);
1129
1130 out:
1131 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1132 }
1133
1134
1135 static int __init init_tsc_clocksource(void)
1136 {
1137 if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
1138 return 0;
1139
1140 if (tsc_clocksource_reliable)
1141 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1142 /* lower the rating if we already know its unstable: */
1143 if (check_tsc_unstable()) {
1144 clocksource_tsc.rating = 0;
1145 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1146 }
1147
1148 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1149 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1150
1151 /*
1152 * Trust the results of the earlier calibration on systems
1153 * exporting a reliable TSC.
1154 */
1155 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
1156 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1157 return 0;
1158 }
1159
1160 schedule_delayed_work(&tsc_irqwork, 0);
1161 return 0;
1162 }
1163 /*
1164 * We use device_initcall here, to ensure we run after the hpet
1165 * is fully initialized, which may occur at fs_initcall time.
1166 */
1167 device_initcall(init_tsc_clocksource);
1168
1169 void __init tsc_init(void)
1170 {
1171 u64 lpj;
1172 int cpu;
1173
1174 x86_init.timers.tsc_pre_init();
1175
1176 if (!cpu_has_tsc) {
1177 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1178 return;
1179 }
1180
1181 tsc_khz = x86_platform.calibrate_tsc();
1182 cpu_khz = tsc_khz;
1183
1184 if (!tsc_khz) {
1185 mark_tsc_unstable("could not calculate TSC khz");
1186 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1187 return;
1188 }
1189
1190 pr_info("Detected %lu.%03lu MHz processor\n",
1191 (unsigned long)cpu_khz / 1000,
1192 (unsigned long)cpu_khz % 1000);
1193
1194 /*
1195 * Secondary CPUs do not run through tsc_init(), so set up
1196 * all the scale factors for all CPUs, assuming the same
1197 * speed as the bootup CPU. (cpufreq notifiers will fix this
1198 * up if their speed diverges)
1199 */
1200 for_each_possible_cpu(cpu) {
1201 cyc2ns_init(cpu);
1202 set_cyc2ns_scale(cpu_khz, cpu);
1203 }
1204
1205 if (tsc_disabled > 0)
1206 return;
1207
1208 /* now allow native_sched_clock() to use rdtsc */
1209
1210 tsc_disabled = 0;
1211 static_branch_enable(&__use_tsc);
1212
1213 if (!no_sched_irq_time)
1214 enable_sched_clock_irqtime();
1215
1216 lpj = ((u64)tsc_khz * 1000);
1217 do_div(lpj, HZ);
1218 lpj_fine = lpj;
1219
1220 use_tsc_delay();
1221
1222 if (unsynchronized_tsc())
1223 mark_tsc_unstable("TSCs unsynchronized");
1224
1225 check_system_tsc_reliable();
1226 }
1227
1228 #ifdef CONFIG_SMP
1229 /*
1230 * If we have a constant TSC and are using the TSC for the delay loop,
1231 * we can skip clock calibration if another cpu in the same socket has already
1232 * been calibrated. This assumes that CONSTANT_TSC applies to all
1233 * cpus in the socket - this should be a safe assumption.
1234 */
1235 unsigned long calibrate_delay_is_known(void)
1236 {
1237 int i, cpu = smp_processor_id();
1238
1239 if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1240 return 0;
1241
1242 for_each_online_cpu(i)
1243 if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
1244 return cpu_data(i).loops_per_jiffy;
1245 return 0;
1246 }
1247 #endif
This page took 0.058533 seconds and 6 git commands to generate.