X86: drivers: remove __dev* attributes.
[deliverable/linux.git] / arch / x86 / kernel / vm86_32.c
1 /*
2 * Copyright (C) 1994 Linus Torvalds
3 *
4 * 29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
5 * stack - Manfred Spraul <manfred@colorfullife.com>
6 *
7 * 22 mar 2002 - Manfred detected the stackfaults, but didn't handle
8 * them correctly. Now the emulation will be in a
9 * consistent state after stackfaults - Kasper Dupont
10 * <kasperd@daimi.au.dk>
11 *
12 * 22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
13 * <kasperd@daimi.au.dk>
14 *
15 * ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
16 * caused by Kasper Dupont's changes - Stas Sergeev
17 *
18 * 4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
19 * Kasper Dupont <kasperd@daimi.au.dk>
20 *
21 * 9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
22 * Kasper Dupont <kasperd@daimi.au.dk>
23 *
24 * 9 apr 2002 - Changed stack access macros to jump to a label
25 * instead of returning to userspace. This simplifies
26 * do_int, and is needed by handle_vm6_fault. Kasper
27 * Dupont <kasperd@daimi.au.dk>
28 *
29 */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/capability.h>
34 #include <linux/errno.h>
35 #include <linux/interrupt.h>
36 #include <linux/sched.h>
37 #include <linux/kernel.h>
38 #include <linux/signal.h>
39 #include <linux/string.h>
40 #include <linux/mm.h>
41 #include <linux/smp.h>
42 #include <linux/highmem.h>
43 #include <linux/ptrace.h>
44 #include <linux/audit.h>
45 #include <linux/stddef.h>
46
47 #include <asm/uaccess.h>
48 #include <asm/io.h>
49 #include <asm/tlbflush.h>
50 #include <asm/irq.h>
51 #include <asm/syscalls.h>
52
53 /*
54 * Known problems:
55 *
56 * Interrupt handling is not guaranteed:
57 * - a real x86 will disable all interrupts for one instruction
58 * after a "mov ss,xx" to make stack handling atomic even without
59 * the 'lss' instruction. We can't guarantee this in v86 mode,
60 * as the next instruction might result in a page fault or similar.
61 * - a real x86 will have interrupts disabled for one instruction
62 * past the 'sti' that enables them. We don't bother with all the
63 * details yet.
64 *
65 * Let's hope these problems do not actually matter for anything.
66 */
67
68
69 #define KVM86 ((struct kernel_vm86_struct *)regs)
70 #define VMPI KVM86->vm86plus
71
72
73 /*
74 * 8- and 16-bit register defines..
75 */
76 #define AL(regs) (((unsigned char *)&((regs)->pt.ax))[0])
77 #define AH(regs) (((unsigned char *)&((regs)->pt.ax))[1])
78 #define IP(regs) (*(unsigned short *)&((regs)->pt.ip))
79 #define SP(regs) (*(unsigned short *)&((regs)->pt.sp))
80
81 /*
82 * virtual flags (16 and 32-bit versions)
83 */
84 #define VFLAGS (*(unsigned short *)&(current->thread.v86flags))
85 #define VEFLAGS (current->thread.v86flags)
86
87 #define set_flags(X, new, mask) \
88 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
89
90 #define SAFE_MASK (0xDD5)
91 #define RETURN_MASK (0xDFF)
92
93 /* convert kernel_vm86_regs to vm86_regs */
94 static int copy_vm86_regs_to_user(struct vm86_regs __user *user,
95 const struct kernel_vm86_regs *regs)
96 {
97 int ret = 0;
98
99 /*
100 * kernel_vm86_regs is missing gs, so copy everything up to
101 * (but not including) orig_eax, and then rest including orig_eax.
102 */
103 ret += copy_to_user(user, regs, offsetof(struct kernel_vm86_regs, pt.orig_ax));
104 ret += copy_to_user(&user->orig_eax, &regs->pt.orig_ax,
105 sizeof(struct kernel_vm86_regs) -
106 offsetof(struct kernel_vm86_regs, pt.orig_ax));
107
108 return ret;
109 }
110
111 /* convert vm86_regs to kernel_vm86_regs */
112 static int copy_vm86_regs_from_user(struct kernel_vm86_regs *regs,
113 const struct vm86_regs __user *user,
114 unsigned extra)
115 {
116 int ret = 0;
117
118 /* copy ax-fs inclusive */
119 ret += copy_from_user(regs, user, offsetof(struct kernel_vm86_regs, pt.orig_ax));
120 /* copy orig_ax-__gsh+extra */
121 ret += copy_from_user(&regs->pt.orig_ax, &user->orig_eax,
122 sizeof(struct kernel_vm86_regs) -
123 offsetof(struct kernel_vm86_regs, pt.orig_ax) +
124 extra);
125 return ret;
126 }
127
128 struct pt_regs *save_v86_state(struct kernel_vm86_regs *regs)
129 {
130 struct tss_struct *tss;
131 struct pt_regs *ret;
132 unsigned long tmp;
133
134 /*
135 * This gets called from entry.S with interrupts disabled, but
136 * from process context. Enable interrupts here, before trying
137 * to access user space.
138 */
139 local_irq_enable();
140
141 if (!current->thread.vm86_info) {
142 pr_alert("no vm86_info: BAD\n");
143 do_exit(SIGSEGV);
144 }
145 set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | current->thread.v86mask);
146 tmp = copy_vm86_regs_to_user(&current->thread.vm86_info->regs, regs);
147 tmp += put_user(current->thread.screen_bitmap, &current->thread.vm86_info->screen_bitmap);
148 if (tmp) {
149 pr_alert("could not access userspace vm86_info\n");
150 do_exit(SIGSEGV);
151 }
152
153 tss = &per_cpu(init_tss, get_cpu());
154 current->thread.sp0 = current->thread.saved_sp0;
155 current->thread.sysenter_cs = __KERNEL_CS;
156 load_sp0(tss, &current->thread);
157 current->thread.saved_sp0 = 0;
158 put_cpu();
159
160 ret = KVM86->regs32;
161
162 ret->fs = current->thread.saved_fs;
163 set_user_gs(ret, current->thread.saved_gs);
164
165 return ret;
166 }
167
168 static void mark_screen_rdonly(struct mm_struct *mm)
169 {
170 pgd_t *pgd;
171 pud_t *pud;
172 pmd_t *pmd;
173 pte_t *pte;
174 spinlock_t *ptl;
175 int i;
176
177 down_write(&mm->mmap_sem);
178 pgd = pgd_offset(mm, 0xA0000);
179 if (pgd_none_or_clear_bad(pgd))
180 goto out;
181 pud = pud_offset(pgd, 0xA0000);
182 if (pud_none_or_clear_bad(pud))
183 goto out;
184 pmd = pmd_offset(pud, 0xA0000);
185 split_huge_page_pmd_mm(mm, 0xA0000, pmd);
186 if (pmd_none_or_clear_bad(pmd))
187 goto out;
188 pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
189 for (i = 0; i < 32; i++) {
190 if (pte_present(*pte))
191 set_pte(pte, pte_wrprotect(*pte));
192 pte++;
193 }
194 pte_unmap_unlock(pte, ptl);
195 out:
196 up_write(&mm->mmap_sem);
197 flush_tlb();
198 }
199
200
201
202 static int do_vm86_irq_handling(int subfunction, int irqnumber);
203 static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk);
204
205 int sys_vm86old(struct vm86_struct __user *v86, struct pt_regs *regs)
206 {
207 struct kernel_vm86_struct info; /* declare this _on top_,
208 * this avoids wasting of stack space.
209 * This remains on the stack until we
210 * return to 32 bit user space.
211 */
212 struct task_struct *tsk;
213 int tmp, ret = -EPERM;
214
215 tsk = current;
216 if (tsk->thread.saved_sp0)
217 goto out;
218 tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
219 offsetof(struct kernel_vm86_struct, vm86plus) -
220 sizeof(info.regs));
221 ret = -EFAULT;
222 if (tmp)
223 goto out;
224 memset(&info.vm86plus, 0, (int)&info.regs32 - (int)&info.vm86plus);
225 info.regs32 = regs;
226 tsk->thread.vm86_info = v86;
227 do_sys_vm86(&info, tsk);
228 ret = 0; /* we never return here */
229 out:
230 return ret;
231 }
232
233
234 int sys_vm86(unsigned long cmd, unsigned long arg, struct pt_regs *regs)
235 {
236 struct kernel_vm86_struct info; /* declare this _on top_,
237 * this avoids wasting of stack space.
238 * This remains on the stack until we
239 * return to 32 bit user space.
240 */
241 struct task_struct *tsk;
242 int tmp, ret;
243 struct vm86plus_struct __user *v86;
244
245 tsk = current;
246 switch (cmd) {
247 case VM86_REQUEST_IRQ:
248 case VM86_FREE_IRQ:
249 case VM86_GET_IRQ_BITS:
250 case VM86_GET_AND_RESET_IRQ:
251 ret = do_vm86_irq_handling(cmd, (int)arg);
252 goto out;
253 case VM86_PLUS_INSTALL_CHECK:
254 /*
255 * NOTE: on old vm86 stuff this will return the error
256 * from access_ok(), because the subfunction is
257 * interpreted as (invalid) address to vm86_struct.
258 * So the installation check works.
259 */
260 ret = 0;
261 goto out;
262 }
263
264 /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
265 ret = -EPERM;
266 if (tsk->thread.saved_sp0)
267 goto out;
268 v86 = (struct vm86plus_struct __user *)arg;
269 tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
270 offsetof(struct kernel_vm86_struct, regs32) -
271 sizeof(info.regs));
272 ret = -EFAULT;
273 if (tmp)
274 goto out;
275 info.regs32 = regs;
276 info.vm86plus.is_vm86pus = 1;
277 tsk->thread.vm86_info = (struct vm86_struct __user *)v86;
278 do_sys_vm86(&info, tsk);
279 ret = 0; /* we never return here */
280 out:
281 return ret;
282 }
283
284
285 static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk)
286 {
287 struct tss_struct *tss;
288 /*
289 * make sure the vm86() system call doesn't try to do anything silly
290 */
291 info->regs.pt.ds = 0;
292 info->regs.pt.es = 0;
293 info->regs.pt.fs = 0;
294 #ifndef CONFIG_X86_32_LAZY_GS
295 info->regs.pt.gs = 0;
296 #endif
297
298 /*
299 * The flags register is also special: we cannot trust that the user
300 * has set it up safely, so this makes sure interrupt etc flags are
301 * inherited from protected mode.
302 */
303 VEFLAGS = info->regs.pt.flags;
304 info->regs.pt.flags &= SAFE_MASK;
305 info->regs.pt.flags |= info->regs32->flags & ~SAFE_MASK;
306 info->regs.pt.flags |= X86_VM_MASK;
307
308 switch (info->cpu_type) {
309 case CPU_286:
310 tsk->thread.v86mask = 0;
311 break;
312 case CPU_386:
313 tsk->thread.v86mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
314 break;
315 case CPU_486:
316 tsk->thread.v86mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
317 break;
318 default:
319 tsk->thread.v86mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
320 break;
321 }
322
323 /*
324 * Save old state, set default return value (%ax) to 0 (VM86_SIGNAL)
325 */
326 info->regs32->ax = VM86_SIGNAL;
327 tsk->thread.saved_sp0 = tsk->thread.sp0;
328 tsk->thread.saved_fs = info->regs32->fs;
329 tsk->thread.saved_gs = get_user_gs(info->regs32);
330
331 tss = &per_cpu(init_tss, get_cpu());
332 tsk->thread.sp0 = (unsigned long) &info->VM86_TSS_ESP0;
333 if (cpu_has_sep)
334 tsk->thread.sysenter_cs = 0;
335 load_sp0(tss, &tsk->thread);
336 put_cpu();
337
338 tsk->thread.screen_bitmap = info->screen_bitmap;
339 if (info->flags & VM86_SCREEN_BITMAP)
340 mark_screen_rdonly(tsk->mm);
341
342 /*call __audit_syscall_exit since we do not exit via the normal paths */
343 #ifdef CONFIG_AUDITSYSCALL
344 if (unlikely(current->audit_context))
345 __audit_syscall_exit(1, 0);
346 #endif
347
348 __asm__ __volatile__(
349 "movl %0,%%esp\n\t"
350 "movl %1,%%ebp\n\t"
351 #ifdef CONFIG_X86_32_LAZY_GS
352 "mov %2, %%gs\n\t"
353 #endif
354 "jmp resume_userspace"
355 : /* no outputs */
356 :"r" (&info->regs), "r" (task_thread_info(tsk)), "r" (0));
357 /* we never return here */
358 }
359
360 static inline void return_to_32bit(struct kernel_vm86_regs *regs16, int retval)
361 {
362 struct pt_regs *regs32;
363
364 regs32 = save_v86_state(regs16);
365 regs32->ax = retval;
366 __asm__ __volatile__("movl %0,%%esp\n\t"
367 "movl %1,%%ebp\n\t"
368 "jmp resume_userspace"
369 : : "r" (regs32), "r" (current_thread_info()));
370 }
371
372 static inline void set_IF(struct kernel_vm86_regs *regs)
373 {
374 VEFLAGS |= X86_EFLAGS_VIF;
375 if (VEFLAGS & X86_EFLAGS_VIP)
376 return_to_32bit(regs, VM86_STI);
377 }
378
379 static inline void clear_IF(struct kernel_vm86_regs *regs)
380 {
381 VEFLAGS &= ~X86_EFLAGS_VIF;
382 }
383
384 static inline void clear_TF(struct kernel_vm86_regs *regs)
385 {
386 regs->pt.flags &= ~X86_EFLAGS_TF;
387 }
388
389 static inline void clear_AC(struct kernel_vm86_regs *regs)
390 {
391 regs->pt.flags &= ~X86_EFLAGS_AC;
392 }
393
394 /*
395 * It is correct to call set_IF(regs) from the set_vflags_*
396 * functions. However someone forgot to call clear_IF(regs)
397 * in the opposite case.
398 * After the command sequence CLI PUSHF STI POPF you should
399 * end up with interrupts disabled, but you ended up with
400 * interrupts enabled.
401 * ( I was testing my own changes, but the only bug I
402 * could find was in a function I had not changed. )
403 * [KD]
404 */
405
406 static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
407 {
408 set_flags(VEFLAGS, flags, current->thread.v86mask);
409 set_flags(regs->pt.flags, flags, SAFE_MASK);
410 if (flags & X86_EFLAGS_IF)
411 set_IF(regs);
412 else
413 clear_IF(regs);
414 }
415
416 static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
417 {
418 set_flags(VFLAGS, flags, current->thread.v86mask);
419 set_flags(regs->pt.flags, flags, SAFE_MASK);
420 if (flags & X86_EFLAGS_IF)
421 set_IF(regs);
422 else
423 clear_IF(regs);
424 }
425
426 static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
427 {
428 unsigned long flags = regs->pt.flags & RETURN_MASK;
429
430 if (VEFLAGS & X86_EFLAGS_VIF)
431 flags |= X86_EFLAGS_IF;
432 flags |= X86_EFLAGS_IOPL;
433 return flags | (VEFLAGS & current->thread.v86mask);
434 }
435
436 static inline int is_revectored(int nr, struct revectored_struct *bitmap)
437 {
438 __asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
439 :"=r" (nr)
440 :"m" (*bitmap), "r" (nr));
441 return nr;
442 }
443
444 #define val_byte(val, n) (((__u8 *)&val)[n])
445
446 #define pushb(base, ptr, val, err_label) \
447 do { \
448 __u8 __val = val; \
449 ptr--; \
450 if (put_user(__val, base + ptr) < 0) \
451 goto err_label; \
452 } while (0)
453
454 #define pushw(base, ptr, val, err_label) \
455 do { \
456 __u16 __val = val; \
457 ptr--; \
458 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
459 goto err_label; \
460 ptr--; \
461 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
462 goto err_label; \
463 } while (0)
464
465 #define pushl(base, ptr, val, err_label) \
466 do { \
467 __u32 __val = val; \
468 ptr--; \
469 if (put_user(val_byte(__val, 3), base + ptr) < 0) \
470 goto err_label; \
471 ptr--; \
472 if (put_user(val_byte(__val, 2), base + ptr) < 0) \
473 goto err_label; \
474 ptr--; \
475 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
476 goto err_label; \
477 ptr--; \
478 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
479 goto err_label; \
480 } while (0)
481
482 #define popb(base, ptr, err_label) \
483 ({ \
484 __u8 __res; \
485 if (get_user(__res, base + ptr) < 0) \
486 goto err_label; \
487 ptr++; \
488 __res; \
489 })
490
491 #define popw(base, ptr, err_label) \
492 ({ \
493 __u16 __res; \
494 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
495 goto err_label; \
496 ptr++; \
497 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
498 goto err_label; \
499 ptr++; \
500 __res; \
501 })
502
503 #define popl(base, ptr, err_label) \
504 ({ \
505 __u32 __res; \
506 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
507 goto err_label; \
508 ptr++; \
509 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
510 goto err_label; \
511 ptr++; \
512 if (get_user(val_byte(__res, 2), base + ptr) < 0) \
513 goto err_label; \
514 ptr++; \
515 if (get_user(val_byte(__res, 3), base + ptr) < 0) \
516 goto err_label; \
517 ptr++; \
518 __res; \
519 })
520
521 /* There are so many possible reasons for this function to return
522 * VM86_INTx, so adding another doesn't bother me. We can expect
523 * userspace programs to be able to handle it. (Getting a problem
524 * in userspace is always better than an Oops anyway.) [KD]
525 */
526 static void do_int(struct kernel_vm86_regs *regs, int i,
527 unsigned char __user *ssp, unsigned short sp)
528 {
529 unsigned long __user *intr_ptr;
530 unsigned long segoffs;
531
532 if (regs->pt.cs == BIOSSEG)
533 goto cannot_handle;
534 if (is_revectored(i, &KVM86->int_revectored))
535 goto cannot_handle;
536 if (i == 0x21 && is_revectored(AH(regs), &KVM86->int21_revectored))
537 goto cannot_handle;
538 intr_ptr = (unsigned long __user *) (i << 2);
539 if (get_user(segoffs, intr_ptr))
540 goto cannot_handle;
541 if ((segoffs >> 16) == BIOSSEG)
542 goto cannot_handle;
543 pushw(ssp, sp, get_vflags(regs), cannot_handle);
544 pushw(ssp, sp, regs->pt.cs, cannot_handle);
545 pushw(ssp, sp, IP(regs), cannot_handle);
546 regs->pt.cs = segoffs >> 16;
547 SP(regs) -= 6;
548 IP(regs) = segoffs & 0xffff;
549 clear_TF(regs);
550 clear_IF(regs);
551 clear_AC(regs);
552 return;
553
554 cannot_handle:
555 return_to_32bit(regs, VM86_INTx + (i << 8));
556 }
557
558 int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
559 {
560 if (VMPI.is_vm86pus) {
561 if ((trapno == 3) || (trapno == 1)) {
562 KVM86->regs32->ax = VM86_TRAP + (trapno << 8);
563 /* setting this flag forces the code in entry_32.S to
564 the path where we call save_v86_state() and change
565 the stack pointer to KVM86->regs32 */
566 set_thread_flag(TIF_NOTIFY_RESUME);
567 return 0;
568 }
569 do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
570 return 0;
571 }
572 if (trapno != 1)
573 return 1; /* we let this handle by the calling routine */
574 current->thread.trap_nr = trapno;
575 current->thread.error_code = error_code;
576 force_sig(SIGTRAP, current);
577 return 0;
578 }
579
580 void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
581 {
582 unsigned char opcode;
583 unsigned char __user *csp;
584 unsigned char __user *ssp;
585 unsigned short ip, sp, orig_flags;
586 int data32, pref_done;
587
588 #define CHECK_IF_IN_TRAP \
589 if (VMPI.vm86dbg_active && VMPI.vm86dbg_TFpendig) \
590 newflags |= X86_EFLAGS_TF
591 #define VM86_FAULT_RETURN do { \
592 if (VMPI.force_return_for_pic && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) \
593 return_to_32bit(regs, VM86_PICRETURN); \
594 if (orig_flags & X86_EFLAGS_TF) \
595 handle_vm86_trap(regs, 0, 1); \
596 return; } while (0)
597
598 orig_flags = *(unsigned short *)&regs->pt.flags;
599
600 csp = (unsigned char __user *) (regs->pt.cs << 4);
601 ssp = (unsigned char __user *) (regs->pt.ss << 4);
602 sp = SP(regs);
603 ip = IP(regs);
604
605 data32 = 0;
606 pref_done = 0;
607 do {
608 switch (opcode = popb(csp, ip, simulate_sigsegv)) {
609 case 0x66: /* 32-bit data */ data32 = 1; break;
610 case 0x67: /* 32-bit address */ break;
611 case 0x2e: /* CS */ break;
612 case 0x3e: /* DS */ break;
613 case 0x26: /* ES */ break;
614 case 0x36: /* SS */ break;
615 case 0x65: /* GS */ break;
616 case 0x64: /* FS */ break;
617 case 0xf2: /* repnz */ break;
618 case 0xf3: /* rep */ break;
619 default: pref_done = 1;
620 }
621 } while (!pref_done);
622
623 switch (opcode) {
624
625 /* pushf */
626 case 0x9c:
627 if (data32) {
628 pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
629 SP(regs) -= 4;
630 } else {
631 pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
632 SP(regs) -= 2;
633 }
634 IP(regs) = ip;
635 VM86_FAULT_RETURN;
636
637 /* popf */
638 case 0x9d:
639 {
640 unsigned long newflags;
641 if (data32) {
642 newflags = popl(ssp, sp, simulate_sigsegv);
643 SP(regs) += 4;
644 } else {
645 newflags = popw(ssp, sp, simulate_sigsegv);
646 SP(regs) += 2;
647 }
648 IP(regs) = ip;
649 CHECK_IF_IN_TRAP;
650 if (data32)
651 set_vflags_long(newflags, regs);
652 else
653 set_vflags_short(newflags, regs);
654
655 VM86_FAULT_RETURN;
656 }
657
658 /* int xx */
659 case 0xcd: {
660 int intno = popb(csp, ip, simulate_sigsegv);
661 IP(regs) = ip;
662 if (VMPI.vm86dbg_active) {
663 if ((1 << (intno & 7)) & VMPI.vm86dbg_intxxtab[intno >> 3])
664 return_to_32bit(regs, VM86_INTx + (intno << 8));
665 }
666 do_int(regs, intno, ssp, sp);
667 return;
668 }
669
670 /* iret */
671 case 0xcf:
672 {
673 unsigned long newip;
674 unsigned long newcs;
675 unsigned long newflags;
676 if (data32) {
677 newip = popl(ssp, sp, simulate_sigsegv);
678 newcs = popl(ssp, sp, simulate_sigsegv);
679 newflags = popl(ssp, sp, simulate_sigsegv);
680 SP(regs) += 12;
681 } else {
682 newip = popw(ssp, sp, simulate_sigsegv);
683 newcs = popw(ssp, sp, simulate_sigsegv);
684 newflags = popw(ssp, sp, simulate_sigsegv);
685 SP(regs) += 6;
686 }
687 IP(regs) = newip;
688 regs->pt.cs = newcs;
689 CHECK_IF_IN_TRAP;
690 if (data32) {
691 set_vflags_long(newflags, regs);
692 } else {
693 set_vflags_short(newflags, regs);
694 }
695 VM86_FAULT_RETURN;
696 }
697
698 /* cli */
699 case 0xfa:
700 IP(regs) = ip;
701 clear_IF(regs);
702 VM86_FAULT_RETURN;
703
704 /* sti */
705 /*
706 * Damn. This is incorrect: the 'sti' instruction should actually
707 * enable interrupts after the /next/ instruction. Not good.
708 *
709 * Probably needs some horsing around with the TF flag. Aiee..
710 */
711 case 0xfb:
712 IP(regs) = ip;
713 set_IF(regs);
714 VM86_FAULT_RETURN;
715
716 default:
717 return_to_32bit(regs, VM86_UNKNOWN);
718 }
719
720 return;
721
722 simulate_sigsegv:
723 /* FIXME: After a long discussion with Stas we finally
724 * agreed, that this is wrong. Here we should
725 * really send a SIGSEGV to the user program.
726 * But how do we create the correct context? We
727 * are inside a general protection fault handler
728 * and has just returned from a page fault handler.
729 * The correct context for the signal handler
730 * should be a mixture of the two, but how do we
731 * get the information? [KD]
732 */
733 return_to_32bit(regs, VM86_UNKNOWN);
734 }
735
736 /* ---------------- vm86 special IRQ passing stuff ----------------- */
737
738 #define VM86_IRQNAME "vm86irq"
739
740 static struct vm86_irqs {
741 struct task_struct *tsk;
742 int sig;
743 } vm86_irqs[16];
744
745 static DEFINE_SPINLOCK(irqbits_lock);
746 static int irqbits;
747
748 #define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
749 | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO) | (1 << SIGURG) \
750 | (1 << SIGUNUSED))
751
752 static irqreturn_t irq_handler(int intno, void *dev_id)
753 {
754 int irq_bit;
755 unsigned long flags;
756
757 spin_lock_irqsave(&irqbits_lock, flags);
758 irq_bit = 1 << intno;
759 if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
760 goto out;
761 irqbits |= irq_bit;
762 if (vm86_irqs[intno].sig)
763 send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
764 /*
765 * IRQ will be re-enabled when user asks for the irq (whether
766 * polling or as a result of the signal)
767 */
768 disable_irq_nosync(intno);
769 spin_unlock_irqrestore(&irqbits_lock, flags);
770 return IRQ_HANDLED;
771
772 out:
773 spin_unlock_irqrestore(&irqbits_lock, flags);
774 return IRQ_NONE;
775 }
776
777 static inline void free_vm86_irq(int irqnumber)
778 {
779 unsigned long flags;
780
781 free_irq(irqnumber, NULL);
782 vm86_irqs[irqnumber].tsk = NULL;
783
784 spin_lock_irqsave(&irqbits_lock, flags);
785 irqbits &= ~(1 << irqnumber);
786 spin_unlock_irqrestore(&irqbits_lock, flags);
787 }
788
789 void release_vm86_irqs(struct task_struct *task)
790 {
791 int i;
792 for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
793 if (vm86_irqs[i].tsk == task)
794 free_vm86_irq(i);
795 }
796
797 static inline int get_and_reset_irq(int irqnumber)
798 {
799 int bit;
800 unsigned long flags;
801 int ret = 0;
802
803 if (invalid_vm86_irq(irqnumber)) return 0;
804 if (vm86_irqs[irqnumber].tsk != current) return 0;
805 spin_lock_irqsave(&irqbits_lock, flags);
806 bit = irqbits & (1 << irqnumber);
807 irqbits &= ~bit;
808 if (bit) {
809 enable_irq(irqnumber);
810 ret = 1;
811 }
812
813 spin_unlock_irqrestore(&irqbits_lock, flags);
814 return ret;
815 }
816
817
818 static int do_vm86_irq_handling(int subfunction, int irqnumber)
819 {
820 int ret;
821 switch (subfunction) {
822 case VM86_GET_AND_RESET_IRQ: {
823 return get_and_reset_irq(irqnumber);
824 }
825 case VM86_GET_IRQ_BITS: {
826 return irqbits;
827 }
828 case VM86_REQUEST_IRQ: {
829 int sig = irqnumber >> 8;
830 int irq = irqnumber & 255;
831 if (!capable(CAP_SYS_ADMIN)) return -EPERM;
832 if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
833 if (invalid_vm86_irq(irq)) return -EPERM;
834 if (vm86_irqs[irq].tsk) return -EPERM;
835 ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
836 if (ret) return ret;
837 vm86_irqs[irq].sig = sig;
838 vm86_irqs[irq].tsk = current;
839 return irq;
840 }
841 case VM86_FREE_IRQ: {
842 if (invalid_vm86_irq(irqnumber)) return -EPERM;
843 if (!vm86_irqs[irqnumber].tsk) return 0;
844 if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
845 free_vm86_irq(irqnumber);
846 return 0;
847 }
848 }
849 return -EINVAL;
850 }
851
This page took 0.072649 seconds and 5 git commands to generate.