KVM: Remove internal timer abstraction
[deliverable/linux.git] / arch / x86 / kvm / i8254.c
1 /*
2 * 8253/8254 interval timer emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2006 Intel Corporation
6 * Copyright (c) 2007 Keir Fraser, XenSource Inc
7 * Copyright (c) 2008 Intel Corporation
8 * Copyright 2009 Red Hat, Inc. and/or its affiliates.
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 *
28 * Authors:
29 * Sheng Yang <sheng.yang@intel.com>
30 * Based on QEMU and Xen.
31 */
32
33 #define pr_fmt(fmt) "pit: " fmt
34
35 #include <linux/kvm_host.h>
36 #include <linux/slab.h>
37
38 #include "irq.h"
39 #include "i8254.h"
40
41 #ifndef CONFIG_X86_64
42 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
43 #else
44 #define mod_64(x, y) ((x) % (y))
45 #endif
46
47 #define RW_STATE_LSB 1
48 #define RW_STATE_MSB 2
49 #define RW_STATE_WORD0 3
50 #define RW_STATE_WORD1 4
51
52 /* Compute with 96 bit intermediate result: (a*b)/c */
53 static u64 muldiv64(u64 a, u32 b, u32 c)
54 {
55 union {
56 u64 ll;
57 struct {
58 u32 low, high;
59 } l;
60 } u, res;
61 u64 rl, rh;
62
63 u.ll = a;
64 rl = (u64)u.l.low * (u64)b;
65 rh = (u64)u.l.high * (u64)b;
66 rh += (rl >> 32);
67 res.l.high = div64_u64(rh, c);
68 res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
69 return res.ll;
70 }
71
72 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
73 {
74 struct kvm_kpit_channel_state *c =
75 &kvm->arch.vpit->pit_state.channels[channel];
76
77 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
78
79 switch (c->mode) {
80 default:
81 case 0:
82 case 4:
83 /* XXX: just disable/enable counting */
84 break;
85 case 1:
86 case 2:
87 case 3:
88 case 5:
89 /* Restart counting on rising edge. */
90 if (c->gate < val)
91 c->count_load_time = ktime_get();
92 break;
93 }
94
95 c->gate = val;
96 }
97
98 static int pit_get_gate(struct kvm *kvm, int channel)
99 {
100 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
101
102 return kvm->arch.vpit->pit_state.channels[channel].gate;
103 }
104
105 static s64 __kpit_elapsed(struct kvm *kvm)
106 {
107 s64 elapsed;
108 ktime_t remaining;
109 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
110
111 if (!ps->pit_timer.period)
112 return 0;
113
114 /*
115 * The Counter does not stop when it reaches zero. In
116 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
117 * the highest count, either FFFF hex for binary counting
118 * or 9999 for BCD counting, and continues counting.
119 * Modes 2 and 3 are periodic; the Counter reloads
120 * itself with the initial count and continues counting
121 * from there.
122 */
123 remaining = hrtimer_get_remaining(&ps->pit_timer.timer);
124 elapsed = ps->pit_timer.period - ktime_to_ns(remaining);
125 elapsed = mod_64(elapsed, ps->pit_timer.period);
126
127 return elapsed;
128 }
129
130 static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
131 int channel)
132 {
133 if (channel == 0)
134 return __kpit_elapsed(kvm);
135
136 return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
137 }
138
139 static int pit_get_count(struct kvm *kvm, int channel)
140 {
141 struct kvm_kpit_channel_state *c =
142 &kvm->arch.vpit->pit_state.channels[channel];
143 s64 d, t;
144 int counter;
145
146 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
147
148 t = kpit_elapsed(kvm, c, channel);
149 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
150
151 switch (c->mode) {
152 case 0:
153 case 1:
154 case 4:
155 case 5:
156 counter = (c->count - d) & 0xffff;
157 break;
158 case 3:
159 /* XXX: may be incorrect for odd counts */
160 counter = c->count - (mod_64((2 * d), c->count));
161 break;
162 default:
163 counter = c->count - mod_64(d, c->count);
164 break;
165 }
166 return counter;
167 }
168
169 static int pit_get_out(struct kvm *kvm, int channel)
170 {
171 struct kvm_kpit_channel_state *c =
172 &kvm->arch.vpit->pit_state.channels[channel];
173 s64 d, t;
174 int out;
175
176 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
177
178 t = kpit_elapsed(kvm, c, channel);
179 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
180
181 switch (c->mode) {
182 default:
183 case 0:
184 out = (d >= c->count);
185 break;
186 case 1:
187 out = (d < c->count);
188 break;
189 case 2:
190 out = ((mod_64(d, c->count) == 0) && (d != 0));
191 break;
192 case 3:
193 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
194 break;
195 case 4:
196 case 5:
197 out = (d == c->count);
198 break;
199 }
200
201 return out;
202 }
203
204 static void pit_latch_count(struct kvm *kvm, int channel)
205 {
206 struct kvm_kpit_channel_state *c =
207 &kvm->arch.vpit->pit_state.channels[channel];
208
209 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
210
211 if (!c->count_latched) {
212 c->latched_count = pit_get_count(kvm, channel);
213 c->count_latched = c->rw_mode;
214 }
215 }
216
217 static void pit_latch_status(struct kvm *kvm, int channel)
218 {
219 struct kvm_kpit_channel_state *c =
220 &kvm->arch.vpit->pit_state.channels[channel];
221
222 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
223
224 if (!c->status_latched) {
225 /* TODO: Return NULL COUNT (bit 6). */
226 c->status = ((pit_get_out(kvm, channel) << 7) |
227 (c->rw_mode << 4) |
228 (c->mode << 1) |
229 c->bcd);
230 c->status_latched = 1;
231 }
232 }
233
234 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
235 {
236 struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
237 irq_ack_notifier);
238 int value;
239
240 spin_lock(&ps->inject_lock);
241 value = atomic_dec_return(&ps->pit_timer.pending);
242 if (value < 0)
243 /* spurious acks can be generated if, for example, the
244 * PIC is being reset. Handle it gracefully here
245 */
246 atomic_inc(&ps->pit_timer.pending);
247 else if (value > 0)
248 /* in this case, we had multiple outstanding pit interrupts
249 * that we needed to inject. Reinject
250 */
251 queue_kthread_work(&ps->pit->worker, &ps->pit->expired);
252 ps->irq_ack = 1;
253 spin_unlock(&ps->inject_lock);
254 }
255
256 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
257 {
258 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
259 struct hrtimer *timer;
260
261 if (!kvm_vcpu_is_bsp(vcpu) || !pit)
262 return;
263
264 timer = &pit->pit_state.pit_timer.timer;
265 if (hrtimer_cancel(timer))
266 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
267 }
268
269 static void destroy_pit_timer(struct kvm_pit *pit)
270 {
271 hrtimer_cancel(&pit->pit_state.pit_timer.timer);
272 flush_kthread_work(&pit->expired);
273 }
274
275 static bool kpit_is_periodic(struct kvm_pit_timer *ktimer)
276 {
277 struct kvm_kpit_state *ps = container_of(ktimer, struct kvm_kpit_state,
278 pit_timer);
279 return ps->is_periodic;
280 }
281
282 static struct kvm_pit_timer_ops kpit_ops = {
283 .is_periodic = kpit_is_periodic,
284 };
285
286 static void pit_do_work(struct kthread_work *work)
287 {
288 struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
289 struct kvm *kvm = pit->kvm;
290 struct kvm_vcpu *vcpu;
291 int i;
292 struct kvm_kpit_state *ps = &pit->pit_state;
293 int inject = 0;
294
295 /* Try to inject pending interrupts when
296 * last one has been acked.
297 */
298 spin_lock(&ps->inject_lock);
299 if (ps->irq_ack) {
300 ps->irq_ack = 0;
301 inject = 1;
302 }
303 spin_unlock(&ps->inject_lock);
304 if (inject) {
305 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
306 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
307
308 /*
309 * Provides NMI watchdog support via Virtual Wire mode.
310 * The route is: PIT -> PIC -> LVT0 in NMI mode.
311 *
312 * Note: Our Virtual Wire implementation is simplified, only
313 * propagating PIT interrupts to all VCPUs when they have set
314 * LVT0 to NMI delivery. Other PIC interrupts are just sent to
315 * VCPU0, and only if its LVT0 is in EXTINT mode.
316 */
317 if (kvm->arch.vapics_in_nmi_mode > 0)
318 kvm_for_each_vcpu(i, vcpu, kvm)
319 kvm_apic_nmi_wd_deliver(vcpu);
320 }
321 }
322
323 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
324 {
325 struct kvm_pit_timer *ktimer = container_of(data, struct kvm_pit_timer, timer);
326 struct kvm_pit *pt = ktimer->kvm->arch.vpit;
327
328 if (ktimer->reinject || !atomic_read(&ktimer->pending)) {
329 atomic_inc(&ktimer->pending);
330 queue_kthread_work(&pt->worker, &pt->expired);
331 }
332
333 if (ktimer->t_ops->is_periodic(ktimer)) {
334 hrtimer_add_expires_ns(&ktimer->timer, ktimer->period);
335 return HRTIMER_RESTART;
336 } else
337 return HRTIMER_NORESTART;
338 }
339
340 static void create_pit_timer(struct kvm *kvm, u32 val, int is_period)
341 {
342 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
343 struct kvm_pit_timer *pt = &ps->pit_timer;
344 s64 interval;
345
346 if (!irqchip_in_kernel(kvm) || ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)
347 return;
348
349 interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
350
351 pr_debug("create pit timer, interval is %llu nsec\n", interval);
352
353 /* TODO The new value only affected after the retriggered */
354 hrtimer_cancel(&pt->timer);
355 flush_kthread_work(&ps->pit->expired);
356 pt->period = interval;
357 ps->is_periodic = is_period;
358
359 pt->timer.function = pit_timer_fn;
360 pt->t_ops = &kpit_ops;
361 pt->kvm = ps->pit->kvm;
362
363 atomic_set(&pt->pending, 0);
364 ps->irq_ack = 1;
365
366 hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
367 HRTIMER_MODE_ABS);
368 }
369
370 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
371 {
372 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
373
374 WARN_ON(!mutex_is_locked(&ps->lock));
375
376 pr_debug("load_count val is %d, channel is %d\n", val, channel);
377
378 /*
379 * The largest possible initial count is 0; this is equivalent
380 * to 216 for binary counting and 104 for BCD counting.
381 */
382 if (val == 0)
383 val = 0x10000;
384
385 ps->channels[channel].count = val;
386
387 if (channel != 0) {
388 ps->channels[channel].count_load_time = ktime_get();
389 return;
390 }
391
392 /* Two types of timer
393 * mode 1 is one shot, mode 2 is period, otherwise del timer */
394 switch (ps->channels[0].mode) {
395 case 0:
396 case 1:
397 /* FIXME: enhance mode 4 precision */
398 case 4:
399 create_pit_timer(kvm, val, 0);
400 break;
401 case 2:
402 case 3:
403 create_pit_timer(kvm, val, 1);
404 break;
405 default:
406 destroy_pit_timer(kvm->arch.vpit);
407 }
408 }
409
410 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start)
411 {
412 u8 saved_mode;
413 if (hpet_legacy_start) {
414 /* save existing mode for later reenablement */
415 saved_mode = kvm->arch.vpit->pit_state.channels[0].mode;
416 kvm->arch.vpit->pit_state.channels[0].mode = 0xff; /* disable timer */
417 pit_load_count(kvm, channel, val);
418 kvm->arch.vpit->pit_state.channels[0].mode = saved_mode;
419 } else {
420 pit_load_count(kvm, channel, val);
421 }
422 }
423
424 static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
425 {
426 return container_of(dev, struct kvm_pit, dev);
427 }
428
429 static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
430 {
431 return container_of(dev, struct kvm_pit, speaker_dev);
432 }
433
434 static inline int pit_in_range(gpa_t addr)
435 {
436 return ((addr >= KVM_PIT_BASE_ADDRESS) &&
437 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
438 }
439
440 static int pit_ioport_write(struct kvm_io_device *this,
441 gpa_t addr, int len, const void *data)
442 {
443 struct kvm_pit *pit = dev_to_pit(this);
444 struct kvm_kpit_state *pit_state = &pit->pit_state;
445 struct kvm *kvm = pit->kvm;
446 int channel, access;
447 struct kvm_kpit_channel_state *s;
448 u32 val = *(u32 *) data;
449 if (!pit_in_range(addr))
450 return -EOPNOTSUPP;
451
452 val &= 0xff;
453 addr &= KVM_PIT_CHANNEL_MASK;
454
455 mutex_lock(&pit_state->lock);
456
457 if (val != 0)
458 pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
459 (unsigned int)addr, len, val);
460
461 if (addr == 3) {
462 channel = val >> 6;
463 if (channel == 3) {
464 /* Read-Back Command. */
465 for (channel = 0; channel < 3; channel++) {
466 s = &pit_state->channels[channel];
467 if (val & (2 << channel)) {
468 if (!(val & 0x20))
469 pit_latch_count(kvm, channel);
470 if (!(val & 0x10))
471 pit_latch_status(kvm, channel);
472 }
473 }
474 } else {
475 /* Select Counter <channel>. */
476 s = &pit_state->channels[channel];
477 access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
478 if (access == 0) {
479 pit_latch_count(kvm, channel);
480 } else {
481 s->rw_mode = access;
482 s->read_state = access;
483 s->write_state = access;
484 s->mode = (val >> 1) & 7;
485 if (s->mode > 5)
486 s->mode -= 4;
487 s->bcd = val & 1;
488 }
489 }
490 } else {
491 /* Write Count. */
492 s = &pit_state->channels[addr];
493 switch (s->write_state) {
494 default:
495 case RW_STATE_LSB:
496 pit_load_count(kvm, addr, val);
497 break;
498 case RW_STATE_MSB:
499 pit_load_count(kvm, addr, val << 8);
500 break;
501 case RW_STATE_WORD0:
502 s->write_latch = val;
503 s->write_state = RW_STATE_WORD1;
504 break;
505 case RW_STATE_WORD1:
506 pit_load_count(kvm, addr, s->write_latch | (val << 8));
507 s->write_state = RW_STATE_WORD0;
508 break;
509 }
510 }
511
512 mutex_unlock(&pit_state->lock);
513 return 0;
514 }
515
516 static int pit_ioport_read(struct kvm_io_device *this,
517 gpa_t addr, int len, void *data)
518 {
519 struct kvm_pit *pit = dev_to_pit(this);
520 struct kvm_kpit_state *pit_state = &pit->pit_state;
521 struct kvm *kvm = pit->kvm;
522 int ret, count;
523 struct kvm_kpit_channel_state *s;
524 if (!pit_in_range(addr))
525 return -EOPNOTSUPP;
526
527 addr &= KVM_PIT_CHANNEL_MASK;
528 if (addr == 3)
529 return 0;
530
531 s = &pit_state->channels[addr];
532
533 mutex_lock(&pit_state->lock);
534
535 if (s->status_latched) {
536 s->status_latched = 0;
537 ret = s->status;
538 } else if (s->count_latched) {
539 switch (s->count_latched) {
540 default:
541 case RW_STATE_LSB:
542 ret = s->latched_count & 0xff;
543 s->count_latched = 0;
544 break;
545 case RW_STATE_MSB:
546 ret = s->latched_count >> 8;
547 s->count_latched = 0;
548 break;
549 case RW_STATE_WORD0:
550 ret = s->latched_count & 0xff;
551 s->count_latched = RW_STATE_MSB;
552 break;
553 }
554 } else {
555 switch (s->read_state) {
556 default:
557 case RW_STATE_LSB:
558 count = pit_get_count(kvm, addr);
559 ret = count & 0xff;
560 break;
561 case RW_STATE_MSB:
562 count = pit_get_count(kvm, addr);
563 ret = (count >> 8) & 0xff;
564 break;
565 case RW_STATE_WORD0:
566 count = pit_get_count(kvm, addr);
567 ret = count & 0xff;
568 s->read_state = RW_STATE_WORD1;
569 break;
570 case RW_STATE_WORD1:
571 count = pit_get_count(kvm, addr);
572 ret = (count >> 8) & 0xff;
573 s->read_state = RW_STATE_WORD0;
574 break;
575 }
576 }
577
578 if (len > sizeof(ret))
579 len = sizeof(ret);
580 memcpy(data, (char *)&ret, len);
581
582 mutex_unlock(&pit_state->lock);
583 return 0;
584 }
585
586 static int speaker_ioport_write(struct kvm_io_device *this,
587 gpa_t addr, int len, const void *data)
588 {
589 struct kvm_pit *pit = speaker_to_pit(this);
590 struct kvm_kpit_state *pit_state = &pit->pit_state;
591 struct kvm *kvm = pit->kvm;
592 u32 val = *(u32 *) data;
593 if (addr != KVM_SPEAKER_BASE_ADDRESS)
594 return -EOPNOTSUPP;
595
596 mutex_lock(&pit_state->lock);
597 pit_state->speaker_data_on = (val >> 1) & 1;
598 pit_set_gate(kvm, 2, val & 1);
599 mutex_unlock(&pit_state->lock);
600 return 0;
601 }
602
603 static int speaker_ioport_read(struct kvm_io_device *this,
604 gpa_t addr, int len, void *data)
605 {
606 struct kvm_pit *pit = speaker_to_pit(this);
607 struct kvm_kpit_state *pit_state = &pit->pit_state;
608 struct kvm *kvm = pit->kvm;
609 unsigned int refresh_clock;
610 int ret;
611 if (addr != KVM_SPEAKER_BASE_ADDRESS)
612 return -EOPNOTSUPP;
613
614 /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
615 refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
616
617 mutex_lock(&pit_state->lock);
618 ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
619 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
620 if (len > sizeof(ret))
621 len = sizeof(ret);
622 memcpy(data, (char *)&ret, len);
623 mutex_unlock(&pit_state->lock);
624 return 0;
625 }
626
627 void kvm_pit_reset(struct kvm_pit *pit)
628 {
629 int i;
630 struct kvm_kpit_channel_state *c;
631
632 mutex_lock(&pit->pit_state.lock);
633 pit->pit_state.flags = 0;
634 for (i = 0; i < 3; i++) {
635 c = &pit->pit_state.channels[i];
636 c->mode = 0xff;
637 c->gate = (i != 2);
638 pit_load_count(pit->kvm, i, 0);
639 }
640 mutex_unlock(&pit->pit_state.lock);
641
642 atomic_set(&pit->pit_state.pit_timer.pending, 0);
643 pit->pit_state.irq_ack = 1;
644 }
645
646 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
647 {
648 struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
649
650 if (!mask) {
651 atomic_set(&pit->pit_state.pit_timer.pending, 0);
652 pit->pit_state.irq_ack = 1;
653 }
654 }
655
656 static const struct kvm_io_device_ops pit_dev_ops = {
657 .read = pit_ioport_read,
658 .write = pit_ioport_write,
659 };
660
661 static const struct kvm_io_device_ops speaker_dev_ops = {
662 .read = speaker_ioport_read,
663 .write = speaker_ioport_write,
664 };
665
666 /* Caller must hold slots_lock */
667 struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
668 {
669 struct kvm_pit *pit;
670 struct kvm_kpit_state *pit_state;
671 struct pid *pid;
672 pid_t pid_nr;
673 int ret;
674
675 pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
676 if (!pit)
677 return NULL;
678
679 pit->irq_source_id = kvm_request_irq_source_id(kvm);
680 if (pit->irq_source_id < 0) {
681 kfree(pit);
682 return NULL;
683 }
684
685 mutex_init(&pit->pit_state.lock);
686 mutex_lock(&pit->pit_state.lock);
687 spin_lock_init(&pit->pit_state.inject_lock);
688
689 pid = get_pid(task_tgid(current));
690 pid_nr = pid_vnr(pid);
691 put_pid(pid);
692
693 init_kthread_worker(&pit->worker);
694 pit->worker_task = kthread_run(kthread_worker_fn, &pit->worker,
695 "kvm-pit/%d", pid_nr);
696 if (IS_ERR(pit->worker_task)) {
697 mutex_unlock(&pit->pit_state.lock);
698 kvm_free_irq_source_id(kvm, pit->irq_source_id);
699 kfree(pit);
700 return NULL;
701 }
702 init_kthread_work(&pit->expired, pit_do_work);
703
704 kvm->arch.vpit = pit;
705 pit->kvm = kvm;
706
707 pit_state = &pit->pit_state;
708 pit_state->pit = pit;
709 hrtimer_init(&pit_state->pit_timer.timer,
710 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
711 pit_state->irq_ack_notifier.gsi = 0;
712 pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
713 kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
714 pit_state->pit_timer.reinject = true;
715 mutex_unlock(&pit->pit_state.lock);
716
717 kvm_pit_reset(pit);
718
719 pit->mask_notifier.func = pit_mask_notifer;
720 kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
721
722 kvm_iodevice_init(&pit->dev, &pit_dev_ops);
723 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS,
724 KVM_PIT_MEM_LENGTH, &pit->dev);
725 if (ret < 0)
726 goto fail;
727
728 if (flags & KVM_PIT_SPEAKER_DUMMY) {
729 kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
730 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
731 KVM_SPEAKER_BASE_ADDRESS, 4,
732 &pit->speaker_dev);
733 if (ret < 0)
734 goto fail_unregister;
735 }
736
737 return pit;
738
739 fail_unregister:
740 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
741
742 fail:
743 kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
744 kvm_unregister_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
745 kvm_free_irq_source_id(kvm, pit->irq_source_id);
746 kthread_stop(pit->worker_task);
747 kfree(pit);
748 return NULL;
749 }
750
751 void kvm_free_pit(struct kvm *kvm)
752 {
753 struct hrtimer *timer;
754
755 if (kvm->arch.vpit) {
756 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &kvm->arch.vpit->dev);
757 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
758 &kvm->arch.vpit->speaker_dev);
759 kvm_unregister_irq_mask_notifier(kvm, 0,
760 &kvm->arch.vpit->mask_notifier);
761 kvm_unregister_irq_ack_notifier(kvm,
762 &kvm->arch.vpit->pit_state.irq_ack_notifier);
763 mutex_lock(&kvm->arch.vpit->pit_state.lock);
764 timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
765 hrtimer_cancel(timer);
766 flush_kthread_work(&kvm->arch.vpit->expired);
767 kthread_stop(kvm->arch.vpit->worker_task);
768 kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
769 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
770 kfree(kvm->arch.vpit);
771 }
772 }
This page took 0.087394 seconds and 5 git commands to generate.