Merge tag 'master-2014-11-25' of git://git.kernel.org/pub/scm/linux/kernel/git/linvil...
[deliverable/linux.git] / arch / x86 / kvm / i8254.c
1 /*
2 * 8253/8254 interval timer emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2006 Intel Corporation
6 * Copyright (c) 2007 Keir Fraser, XenSource Inc
7 * Copyright (c) 2008 Intel Corporation
8 * Copyright 2009 Red Hat, Inc. and/or its affiliates.
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 *
28 * Authors:
29 * Sheng Yang <sheng.yang@intel.com>
30 * Based on QEMU and Xen.
31 */
32
33 #define pr_fmt(fmt) "pit: " fmt
34
35 #include <linux/kvm_host.h>
36 #include <linux/slab.h>
37
38 #include "irq.h"
39 #include "i8254.h"
40 #include "x86.h"
41
42 #ifndef CONFIG_X86_64
43 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
44 #else
45 #define mod_64(x, y) ((x) % (y))
46 #endif
47
48 #define RW_STATE_LSB 1
49 #define RW_STATE_MSB 2
50 #define RW_STATE_WORD0 3
51 #define RW_STATE_WORD1 4
52
53 /* Compute with 96 bit intermediate result: (a*b)/c */
54 static u64 muldiv64(u64 a, u32 b, u32 c)
55 {
56 union {
57 u64 ll;
58 struct {
59 u32 low, high;
60 } l;
61 } u, res;
62 u64 rl, rh;
63
64 u.ll = a;
65 rl = (u64)u.l.low * (u64)b;
66 rh = (u64)u.l.high * (u64)b;
67 rh += (rl >> 32);
68 res.l.high = div64_u64(rh, c);
69 res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
70 return res.ll;
71 }
72
73 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
74 {
75 struct kvm_kpit_channel_state *c =
76 &kvm->arch.vpit->pit_state.channels[channel];
77
78 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
79
80 switch (c->mode) {
81 default:
82 case 0:
83 case 4:
84 /* XXX: just disable/enable counting */
85 break;
86 case 1:
87 case 2:
88 case 3:
89 case 5:
90 /* Restart counting on rising edge. */
91 if (c->gate < val)
92 c->count_load_time = ktime_get();
93 break;
94 }
95
96 c->gate = val;
97 }
98
99 static int pit_get_gate(struct kvm *kvm, int channel)
100 {
101 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
102
103 return kvm->arch.vpit->pit_state.channels[channel].gate;
104 }
105
106 static s64 __kpit_elapsed(struct kvm *kvm)
107 {
108 s64 elapsed;
109 ktime_t remaining;
110 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
111
112 if (!ps->period)
113 return 0;
114
115 /*
116 * The Counter does not stop when it reaches zero. In
117 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
118 * the highest count, either FFFF hex for binary counting
119 * or 9999 for BCD counting, and continues counting.
120 * Modes 2 and 3 are periodic; the Counter reloads
121 * itself with the initial count and continues counting
122 * from there.
123 */
124 remaining = hrtimer_get_remaining(&ps->timer);
125 elapsed = ps->period - ktime_to_ns(remaining);
126
127 return elapsed;
128 }
129
130 static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
131 int channel)
132 {
133 if (channel == 0)
134 return __kpit_elapsed(kvm);
135
136 return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
137 }
138
139 static int pit_get_count(struct kvm *kvm, int channel)
140 {
141 struct kvm_kpit_channel_state *c =
142 &kvm->arch.vpit->pit_state.channels[channel];
143 s64 d, t;
144 int counter;
145
146 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
147
148 t = kpit_elapsed(kvm, c, channel);
149 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
150
151 switch (c->mode) {
152 case 0:
153 case 1:
154 case 4:
155 case 5:
156 counter = (c->count - d) & 0xffff;
157 break;
158 case 3:
159 /* XXX: may be incorrect for odd counts */
160 counter = c->count - (mod_64((2 * d), c->count));
161 break;
162 default:
163 counter = c->count - mod_64(d, c->count);
164 break;
165 }
166 return counter;
167 }
168
169 static int pit_get_out(struct kvm *kvm, int channel)
170 {
171 struct kvm_kpit_channel_state *c =
172 &kvm->arch.vpit->pit_state.channels[channel];
173 s64 d, t;
174 int out;
175
176 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
177
178 t = kpit_elapsed(kvm, c, channel);
179 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
180
181 switch (c->mode) {
182 default:
183 case 0:
184 out = (d >= c->count);
185 break;
186 case 1:
187 out = (d < c->count);
188 break;
189 case 2:
190 out = ((mod_64(d, c->count) == 0) && (d != 0));
191 break;
192 case 3:
193 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
194 break;
195 case 4:
196 case 5:
197 out = (d == c->count);
198 break;
199 }
200
201 return out;
202 }
203
204 static void pit_latch_count(struct kvm *kvm, int channel)
205 {
206 struct kvm_kpit_channel_state *c =
207 &kvm->arch.vpit->pit_state.channels[channel];
208
209 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
210
211 if (!c->count_latched) {
212 c->latched_count = pit_get_count(kvm, channel);
213 c->count_latched = c->rw_mode;
214 }
215 }
216
217 static void pit_latch_status(struct kvm *kvm, int channel)
218 {
219 struct kvm_kpit_channel_state *c =
220 &kvm->arch.vpit->pit_state.channels[channel];
221
222 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
223
224 if (!c->status_latched) {
225 /* TODO: Return NULL COUNT (bit 6). */
226 c->status = ((pit_get_out(kvm, channel) << 7) |
227 (c->rw_mode << 4) |
228 (c->mode << 1) |
229 c->bcd);
230 c->status_latched = 1;
231 }
232 }
233
234 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
235 {
236 struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
237 irq_ack_notifier);
238 int value;
239
240 spin_lock(&ps->inject_lock);
241 value = atomic_dec_return(&ps->pending);
242 if (value < 0)
243 /* spurious acks can be generated if, for example, the
244 * PIC is being reset. Handle it gracefully here
245 */
246 atomic_inc(&ps->pending);
247 else if (value > 0)
248 /* in this case, we had multiple outstanding pit interrupts
249 * that we needed to inject. Reinject
250 */
251 queue_kthread_work(&ps->pit->worker, &ps->pit->expired);
252 ps->irq_ack = 1;
253 spin_unlock(&ps->inject_lock);
254 }
255
256 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
257 {
258 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
259 struct hrtimer *timer;
260
261 if (!kvm_vcpu_is_bsp(vcpu) || !pit)
262 return;
263
264 timer = &pit->pit_state.timer;
265 mutex_lock(&pit->pit_state.lock);
266 if (hrtimer_cancel(timer))
267 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
268 mutex_unlock(&pit->pit_state.lock);
269 }
270
271 static void destroy_pit_timer(struct kvm_pit *pit)
272 {
273 hrtimer_cancel(&pit->pit_state.timer);
274 flush_kthread_work(&pit->expired);
275 }
276
277 static void pit_do_work(struct kthread_work *work)
278 {
279 struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
280 struct kvm *kvm = pit->kvm;
281 struct kvm_vcpu *vcpu;
282 int i;
283 struct kvm_kpit_state *ps = &pit->pit_state;
284 int inject = 0;
285
286 /* Try to inject pending interrupts when
287 * last one has been acked.
288 */
289 spin_lock(&ps->inject_lock);
290 if (ps->irq_ack) {
291 ps->irq_ack = 0;
292 inject = 1;
293 }
294 spin_unlock(&ps->inject_lock);
295 if (inject) {
296 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1, false);
297 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0, false);
298
299 /*
300 * Provides NMI watchdog support via Virtual Wire mode.
301 * The route is: PIT -> PIC -> LVT0 in NMI mode.
302 *
303 * Note: Our Virtual Wire implementation is simplified, only
304 * propagating PIT interrupts to all VCPUs when they have set
305 * LVT0 to NMI delivery. Other PIC interrupts are just sent to
306 * VCPU0, and only if its LVT0 is in EXTINT mode.
307 */
308 if (kvm->arch.vapics_in_nmi_mode > 0)
309 kvm_for_each_vcpu(i, vcpu, kvm)
310 kvm_apic_nmi_wd_deliver(vcpu);
311 }
312 }
313
314 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
315 {
316 struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer);
317 struct kvm_pit *pt = ps->kvm->arch.vpit;
318
319 if (ps->reinject || !atomic_read(&ps->pending)) {
320 atomic_inc(&ps->pending);
321 queue_kthread_work(&pt->worker, &pt->expired);
322 }
323
324 if (ps->is_periodic) {
325 hrtimer_add_expires_ns(&ps->timer, ps->period);
326 return HRTIMER_RESTART;
327 } else
328 return HRTIMER_NORESTART;
329 }
330
331 static void create_pit_timer(struct kvm *kvm, u32 val, int is_period)
332 {
333 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
334 s64 interval;
335
336 if (!irqchip_in_kernel(kvm) || ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)
337 return;
338
339 interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
340
341 pr_debug("create pit timer, interval is %llu nsec\n", interval);
342
343 /* TODO The new value only affected after the retriggered */
344 hrtimer_cancel(&ps->timer);
345 flush_kthread_work(&ps->pit->expired);
346 ps->period = interval;
347 ps->is_periodic = is_period;
348
349 ps->timer.function = pit_timer_fn;
350 ps->kvm = ps->pit->kvm;
351
352 atomic_set(&ps->pending, 0);
353 ps->irq_ack = 1;
354
355 /*
356 * Do not allow the guest to program periodic timers with small
357 * interval, since the hrtimers are not throttled by the host
358 * scheduler.
359 */
360 if (ps->is_periodic) {
361 s64 min_period = min_timer_period_us * 1000LL;
362
363 if (ps->period < min_period) {
364 pr_info_ratelimited(
365 "kvm: requested %lld ns "
366 "i8254 timer period limited to %lld ns\n",
367 ps->period, min_period);
368 ps->period = min_period;
369 }
370 }
371
372 hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval),
373 HRTIMER_MODE_ABS);
374 }
375
376 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
377 {
378 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
379
380 WARN_ON(!mutex_is_locked(&ps->lock));
381
382 pr_debug("load_count val is %d, channel is %d\n", val, channel);
383
384 /*
385 * The largest possible initial count is 0; this is equivalent
386 * to 216 for binary counting and 104 for BCD counting.
387 */
388 if (val == 0)
389 val = 0x10000;
390
391 ps->channels[channel].count = val;
392
393 if (channel != 0) {
394 ps->channels[channel].count_load_time = ktime_get();
395 return;
396 }
397
398 /* Two types of timer
399 * mode 1 is one shot, mode 2 is period, otherwise del timer */
400 switch (ps->channels[0].mode) {
401 case 0:
402 case 1:
403 /* FIXME: enhance mode 4 precision */
404 case 4:
405 create_pit_timer(kvm, val, 0);
406 break;
407 case 2:
408 case 3:
409 create_pit_timer(kvm, val, 1);
410 break;
411 default:
412 destroy_pit_timer(kvm->arch.vpit);
413 }
414 }
415
416 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start)
417 {
418 u8 saved_mode;
419 if (hpet_legacy_start) {
420 /* save existing mode for later reenablement */
421 saved_mode = kvm->arch.vpit->pit_state.channels[0].mode;
422 kvm->arch.vpit->pit_state.channels[0].mode = 0xff; /* disable timer */
423 pit_load_count(kvm, channel, val);
424 kvm->arch.vpit->pit_state.channels[0].mode = saved_mode;
425 } else {
426 pit_load_count(kvm, channel, val);
427 }
428 }
429
430 static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
431 {
432 return container_of(dev, struct kvm_pit, dev);
433 }
434
435 static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
436 {
437 return container_of(dev, struct kvm_pit, speaker_dev);
438 }
439
440 static inline int pit_in_range(gpa_t addr)
441 {
442 return ((addr >= KVM_PIT_BASE_ADDRESS) &&
443 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
444 }
445
446 static int pit_ioport_write(struct kvm_io_device *this,
447 gpa_t addr, int len, const void *data)
448 {
449 struct kvm_pit *pit = dev_to_pit(this);
450 struct kvm_kpit_state *pit_state = &pit->pit_state;
451 struct kvm *kvm = pit->kvm;
452 int channel, access;
453 struct kvm_kpit_channel_state *s;
454 u32 val = *(u32 *) data;
455 if (!pit_in_range(addr))
456 return -EOPNOTSUPP;
457
458 val &= 0xff;
459 addr &= KVM_PIT_CHANNEL_MASK;
460
461 mutex_lock(&pit_state->lock);
462
463 if (val != 0)
464 pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
465 (unsigned int)addr, len, val);
466
467 if (addr == 3) {
468 channel = val >> 6;
469 if (channel == 3) {
470 /* Read-Back Command. */
471 for (channel = 0; channel < 3; channel++) {
472 s = &pit_state->channels[channel];
473 if (val & (2 << channel)) {
474 if (!(val & 0x20))
475 pit_latch_count(kvm, channel);
476 if (!(val & 0x10))
477 pit_latch_status(kvm, channel);
478 }
479 }
480 } else {
481 /* Select Counter <channel>. */
482 s = &pit_state->channels[channel];
483 access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
484 if (access == 0) {
485 pit_latch_count(kvm, channel);
486 } else {
487 s->rw_mode = access;
488 s->read_state = access;
489 s->write_state = access;
490 s->mode = (val >> 1) & 7;
491 if (s->mode > 5)
492 s->mode -= 4;
493 s->bcd = val & 1;
494 }
495 }
496 } else {
497 /* Write Count. */
498 s = &pit_state->channels[addr];
499 switch (s->write_state) {
500 default:
501 case RW_STATE_LSB:
502 pit_load_count(kvm, addr, val);
503 break;
504 case RW_STATE_MSB:
505 pit_load_count(kvm, addr, val << 8);
506 break;
507 case RW_STATE_WORD0:
508 s->write_latch = val;
509 s->write_state = RW_STATE_WORD1;
510 break;
511 case RW_STATE_WORD1:
512 pit_load_count(kvm, addr, s->write_latch | (val << 8));
513 s->write_state = RW_STATE_WORD0;
514 break;
515 }
516 }
517
518 mutex_unlock(&pit_state->lock);
519 return 0;
520 }
521
522 static int pit_ioport_read(struct kvm_io_device *this,
523 gpa_t addr, int len, void *data)
524 {
525 struct kvm_pit *pit = dev_to_pit(this);
526 struct kvm_kpit_state *pit_state = &pit->pit_state;
527 struct kvm *kvm = pit->kvm;
528 int ret, count;
529 struct kvm_kpit_channel_state *s;
530 if (!pit_in_range(addr))
531 return -EOPNOTSUPP;
532
533 addr &= KVM_PIT_CHANNEL_MASK;
534 if (addr == 3)
535 return 0;
536
537 s = &pit_state->channels[addr];
538
539 mutex_lock(&pit_state->lock);
540
541 if (s->status_latched) {
542 s->status_latched = 0;
543 ret = s->status;
544 } else if (s->count_latched) {
545 switch (s->count_latched) {
546 default:
547 case RW_STATE_LSB:
548 ret = s->latched_count & 0xff;
549 s->count_latched = 0;
550 break;
551 case RW_STATE_MSB:
552 ret = s->latched_count >> 8;
553 s->count_latched = 0;
554 break;
555 case RW_STATE_WORD0:
556 ret = s->latched_count & 0xff;
557 s->count_latched = RW_STATE_MSB;
558 break;
559 }
560 } else {
561 switch (s->read_state) {
562 default:
563 case RW_STATE_LSB:
564 count = pit_get_count(kvm, addr);
565 ret = count & 0xff;
566 break;
567 case RW_STATE_MSB:
568 count = pit_get_count(kvm, addr);
569 ret = (count >> 8) & 0xff;
570 break;
571 case RW_STATE_WORD0:
572 count = pit_get_count(kvm, addr);
573 ret = count & 0xff;
574 s->read_state = RW_STATE_WORD1;
575 break;
576 case RW_STATE_WORD1:
577 count = pit_get_count(kvm, addr);
578 ret = (count >> 8) & 0xff;
579 s->read_state = RW_STATE_WORD0;
580 break;
581 }
582 }
583
584 if (len > sizeof(ret))
585 len = sizeof(ret);
586 memcpy(data, (char *)&ret, len);
587
588 mutex_unlock(&pit_state->lock);
589 return 0;
590 }
591
592 static int speaker_ioport_write(struct kvm_io_device *this,
593 gpa_t addr, int len, const void *data)
594 {
595 struct kvm_pit *pit = speaker_to_pit(this);
596 struct kvm_kpit_state *pit_state = &pit->pit_state;
597 struct kvm *kvm = pit->kvm;
598 u32 val = *(u32 *) data;
599 if (addr != KVM_SPEAKER_BASE_ADDRESS)
600 return -EOPNOTSUPP;
601
602 mutex_lock(&pit_state->lock);
603 pit_state->speaker_data_on = (val >> 1) & 1;
604 pit_set_gate(kvm, 2, val & 1);
605 mutex_unlock(&pit_state->lock);
606 return 0;
607 }
608
609 static int speaker_ioport_read(struct kvm_io_device *this,
610 gpa_t addr, int len, void *data)
611 {
612 struct kvm_pit *pit = speaker_to_pit(this);
613 struct kvm_kpit_state *pit_state = &pit->pit_state;
614 struct kvm *kvm = pit->kvm;
615 unsigned int refresh_clock;
616 int ret;
617 if (addr != KVM_SPEAKER_BASE_ADDRESS)
618 return -EOPNOTSUPP;
619
620 /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
621 refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
622
623 mutex_lock(&pit_state->lock);
624 ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
625 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
626 if (len > sizeof(ret))
627 len = sizeof(ret);
628 memcpy(data, (char *)&ret, len);
629 mutex_unlock(&pit_state->lock);
630 return 0;
631 }
632
633 void kvm_pit_reset(struct kvm_pit *pit)
634 {
635 int i;
636 struct kvm_kpit_channel_state *c;
637
638 mutex_lock(&pit->pit_state.lock);
639 pit->pit_state.flags = 0;
640 for (i = 0; i < 3; i++) {
641 c = &pit->pit_state.channels[i];
642 c->mode = 0xff;
643 c->gate = (i != 2);
644 pit_load_count(pit->kvm, i, 0);
645 }
646 mutex_unlock(&pit->pit_state.lock);
647
648 atomic_set(&pit->pit_state.pending, 0);
649 pit->pit_state.irq_ack = 1;
650 }
651
652 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
653 {
654 struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
655
656 if (!mask) {
657 atomic_set(&pit->pit_state.pending, 0);
658 pit->pit_state.irq_ack = 1;
659 }
660 }
661
662 static const struct kvm_io_device_ops pit_dev_ops = {
663 .read = pit_ioport_read,
664 .write = pit_ioport_write,
665 };
666
667 static const struct kvm_io_device_ops speaker_dev_ops = {
668 .read = speaker_ioport_read,
669 .write = speaker_ioport_write,
670 };
671
672 /* Caller must hold slots_lock */
673 struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
674 {
675 struct kvm_pit *pit;
676 struct kvm_kpit_state *pit_state;
677 struct pid *pid;
678 pid_t pid_nr;
679 int ret;
680
681 pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
682 if (!pit)
683 return NULL;
684
685 pit->irq_source_id = kvm_request_irq_source_id(kvm);
686 if (pit->irq_source_id < 0) {
687 kfree(pit);
688 return NULL;
689 }
690
691 mutex_init(&pit->pit_state.lock);
692 mutex_lock(&pit->pit_state.lock);
693 spin_lock_init(&pit->pit_state.inject_lock);
694
695 pid = get_pid(task_tgid(current));
696 pid_nr = pid_vnr(pid);
697 put_pid(pid);
698
699 init_kthread_worker(&pit->worker);
700 pit->worker_task = kthread_run(kthread_worker_fn, &pit->worker,
701 "kvm-pit/%d", pid_nr);
702 if (IS_ERR(pit->worker_task)) {
703 mutex_unlock(&pit->pit_state.lock);
704 kvm_free_irq_source_id(kvm, pit->irq_source_id);
705 kfree(pit);
706 return NULL;
707 }
708 init_kthread_work(&pit->expired, pit_do_work);
709
710 kvm->arch.vpit = pit;
711 pit->kvm = kvm;
712
713 pit_state = &pit->pit_state;
714 pit_state->pit = pit;
715 hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
716 pit_state->irq_ack_notifier.gsi = 0;
717 pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
718 kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
719 pit_state->reinject = true;
720 mutex_unlock(&pit->pit_state.lock);
721
722 kvm_pit_reset(pit);
723
724 pit->mask_notifier.func = pit_mask_notifer;
725 kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
726
727 kvm_iodevice_init(&pit->dev, &pit_dev_ops);
728 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS,
729 KVM_PIT_MEM_LENGTH, &pit->dev);
730 if (ret < 0)
731 goto fail;
732
733 if (flags & KVM_PIT_SPEAKER_DUMMY) {
734 kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
735 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
736 KVM_SPEAKER_BASE_ADDRESS, 4,
737 &pit->speaker_dev);
738 if (ret < 0)
739 goto fail_unregister;
740 }
741
742 return pit;
743
744 fail_unregister:
745 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
746
747 fail:
748 kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
749 kvm_unregister_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
750 kvm_free_irq_source_id(kvm, pit->irq_source_id);
751 kthread_stop(pit->worker_task);
752 kfree(pit);
753 return NULL;
754 }
755
756 void kvm_free_pit(struct kvm *kvm)
757 {
758 struct hrtimer *timer;
759
760 if (kvm->arch.vpit) {
761 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &kvm->arch.vpit->dev);
762 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
763 &kvm->arch.vpit->speaker_dev);
764 kvm_unregister_irq_mask_notifier(kvm, 0,
765 &kvm->arch.vpit->mask_notifier);
766 kvm_unregister_irq_ack_notifier(kvm,
767 &kvm->arch.vpit->pit_state.irq_ack_notifier);
768 mutex_lock(&kvm->arch.vpit->pit_state.lock);
769 timer = &kvm->arch.vpit->pit_state.timer;
770 hrtimer_cancel(timer);
771 flush_kthread_work(&kvm->arch.vpit->expired);
772 kthread_stop(kvm->arch.vpit->worker_task);
773 kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
774 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
775 kfree(kvm->arch.vpit);
776 }
777 }
This page took 0.049751 seconds and 5 git commands to generate.