KVM: close timer injection race window in __vcpu_run
[deliverable/linux.git] / arch / x86 / kvm / i8254.c
1 /*
2 * 8253/8254 interval timer emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2006 Intel Corporation
6 * Copyright (c) 2007 Keir Fraser, XenSource Inc
7 * Copyright (c) 2008 Intel Corporation
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a copy
10 * of this software and associated documentation files (the "Software"), to deal
11 * in the Software without restriction, including without limitation the rights
12 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13 * copies of the Software, and to permit persons to whom the Software is
14 * furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included in
17 * all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 * THE SOFTWARE.
26 *
27 * Authors:
28 * Sheng Yang <sheng.yang@intel.com>
29 * Based on QEMU and Xen.
30 */
31
32 #include <linux/kvm_host.h>
33
34 #include "irq.h"
35 #include "i8254.h"
36
37 #ifndef CONFIG_X86_64
38 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
39 #else
40 #define mod_64(x, y) ((x) % (y))
41 #endif
42
43 #define RW_STATE_LSB 1
44 #define RW_STATE_MSB 2
45 #define RW_STATE_WORD0 3
46 #define RW_STATE_WORD1 4
47
48 /* Compute with 96 bit intermediate result: (a*b)/c */
49 static u64 muldiv64(u64 a, u32 b, u32 c)
50 {
51 union {
52 u64 ll;
53 struct {
54 u32 low, high;
55 } l;
56 } u, res;
57 u64 rl, rh;
58
59 u.ll = a;
60 rl = (u64)u.l.low * (u64)b;
61 rh = (u64)u.l.high * (u64)b;
62 rh += (rl >> 32);
63 res.l.high = div64_u64(rh, c);
64 res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
65 return res.ll;
66 }
67
68 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
69 {
70 struct kvm_kpit_channel_state *c =
71 &kvm->arch.vpit->pit_state.channels[channel];
72
73 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
74
75 switch (c->mode) {
76 default:
77 case 0:
78 case 4:
79 /* XXX: just disable/enable counting */
80 break;
81 case 1:
82 case 2:
83 case 3:
84 case 5:
85 /* Restart counting on rising edge. */
86 if (c->gate < val)
87 c->count_load_time = ktime_get();
88 break;
89 }
90
91 c->gate = val;
92 }
93
94 int pit_get_gate(struct kvm *kvm, int channel)
95 {
96 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
97
98 return kvm->arch.vpit->pit_state.channels[channel].gate;
99 }
100
101 static int pit_get_count(struct kvm *kvm, int channel)
102 {
103 struct kvm_kpit_channel_state *c =
104 &kvm->arch.vpit->pit_state.channels[channel];
105 s64 d, t;
106 int counter;
107
108 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
109
110 t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
111 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
112
113 switch (c->mode) {
114 case 0:
115 case 1:
116 case 4:
117 case 5:
118 counter = (c->count - d) & 0xffff;
119 break;
120 case 3:
121 /* XXX: may be incorrect for odd counts */
122 counter = c->count - (mod_64((2 * d), c->count));
123 break;
124 default:
125 counter = c->count - mod_64(d, c->count);
126 break;
127 }
128 return counter;
129 }
130
131 static int pit_get_out(struct kvm *kvm, int channel)
132 {
133 struct kvm_kpit_channel_state *c =
134 &kvm->arch.vpit->pit_state.channels[channel];
135 s64 d, t;
136 int out;
137
138 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
139
140 t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
141 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
142
143 switch (c->mode) {
144 default:
145 case 0:
146 out = (d >= c->count);
147 break;
148 case 1:
149 out = (d < c->count);
150 break;
151 case 2:
152 out = ((mod_64(d, c->count) == 0) && (d != 0));
153 break;
154 case 3:
155 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
156 break;
157 case 4:
158 case 5:
159 out = (d == c->count);
160 break;
161 }
162
163 return out;
164 }
165
166 static void pit_latch_count(struct kvm *kvm, int channel)
167 {
168 struct kvm_kpit_channel_state *c =
169 &kvm->arch.vpit->pit_state.channels[channel];
170
171 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
172
173 if (!c->count_latched) {
174 c->latched_count = pit_get_count(kvm, channel);
175 c->count_latched = c->rw_mode;
176 }
177 }
178
179 static void pit_latch_status(struct kvm *kvm, int channel)
180 {
181 struct kvm_kpit_channel_state *c =
182 &kvm->arch.vpit->pit_state.channels[channel];
183
184 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
185
186 if (!c->status_latched) {
187 /* TODO: Return NULL COUNT (bit 6). */
188 c->status = ((pit_get_out(kvm, channel) << 7) |
189 (c->rw_mode << 4) |
190 (c->mode << 1) |
191 c->bcd);
192 c->status_latched = 1;
193 }
194 }
195
196 int __pit_timer_fn(struct kvm_kpit_state *ps)
197 {
198 struct kvm_vcpu *vcpu0 = ps->pit->kvm->vcpus[0];
199 struct kvm_kpit_timer *pt = &ps->pit_timer;
200
201 atomic_inc(&pt->pending);
202 smp_mb__after_atomic_inc();
203 if (vcpu0) {
204 set_bit(KVM_REQ_PENDING_TIMER, &vcpu0->requests);
205 if (waitqueue_active(&vcpu0->wq)) {
206 vcpu0->arch.mp_state = KVM_MP_STATE_RUNNABLE;
207 wake_up_interruptible(&vcpu0->wq);
208 }
209 }
210
211 pt->timer.expires = ktime_add_ns(pt->timer.expires, pt->period);
212 pt->scheduled = ktime_to_ns(pt->timer.expires);
213
214 return (pt->period == 0 ? 0 : 1);
215 }
216
217 int pit_has_pending_timer(struct kvm_vcpu *vcpu)
218 {
219 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
220
221 if (pit && vcpu->vcpu_id == 0 && pit->pit_state.inject_pending)
222 return atomic_read(&pit->pit_state.pit_timer.pending);
223
224 return 0;
225 }
226
227 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
228 {
229 struct kvm_kpit_state *ps;
230 int restart_timer = 0;
231
232 ps = container_of(data, struct kvm_kpit_state, pit_timer.timer);
233
234 restart_timer = __pit_timer_fn(ps);
235
236 if (restart_timer)
237 return HRTIMER_RESTART;
238 else
239 return HRTIMER_NORESTART;
240 }
241
242 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
243 {
244 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
245 struct hrtimer *timer;
246
247 if (vcpu->vcpu_id != 0 || !pit)
248 return;
249
250 timer = &pit->pit_state.pit_timer.timer;
251 if (hrtimer_cancel(timer))
252 hrtimer_start(timer, timer->expires, HRTIMER_MODE_ABS);
253 }
254
255 static void destroy_pit_timer(struct kvm_kpit_timer *pt)
256 {
257 pr_debug("pit: execute del timer!\n");
258 hrtimer_cancel(&pt->timer);
259 }
260
261 static void create_pit_timer(struct kvm_kpit_timer *pt, u32 val, int is_period)
262 {
263 s64 interval;
264
265 interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
266
267 pr_debug("pit: create pit timer, interval is %llu nsec\n", interval);
268
269 /* TODO The new value only affected after the retriggered */
270 hrtimer_cancel(&pt->timer);
271 pt->period = (is_period == 0) ? 0 : interval;
272 pt->timer.function = pit_timer_fn;
273 atomic_set(&pt->pending, 0);
274
275 hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
276 HRTIMER_MODE_ABS);
277 }
278
279 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
280 {
281 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
282
283 WARN_ON(!mutex_is_locked(&ps->lock));
284
285 pr_debug("pit: load_count val is %d, channel is %d\n", val, channel);
286
287 /*
288 * Though spec said the state of 8254 is undefined after power-up,
289 * seems some tricky OS like Windows XP depends on IRQ0 interrupt
290 * when booting up.
291 * So here setting initialize rate for it, and not a specific number
292 */
293 if (val == 0)
294 val = 0x10000;
295
296 ps->channels[channel].count_load_time = ktime_get();
297 ps->channels[channel].count = val;
298
299 if (channel != 0)
300 return;
301
302 /* Two types of timer
303 * mode 1 is one shot, mode 2 is period, otherwise del timer */
304 switch (ps->channels[0].mode) {
305 case 1:
306 /* FIXME: enhance mode 4 precision */
307 case 4:
308 create_pit_timer(&ps->pit_timer, val, 0);
309 break;
310 case 2:
311 create_pit_timer(&ps->pit_timer, val, 1);
312 break;
313 default:
314 destroy_pit_timer(&ps->pit_timer);
315 }
316 }
317
318 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val)
319 {
320 mutex_lock(&kvm->arch.vpit->pit_state.lock);
321 pit_load_count(kvm, channel, val);
322 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
323 }
324
325 static void pit_ioport_write(struct kvm_io_device *this,
326 gpa_t addr, int len, const void *data)
327 {
328 struct kvm_pit *pit = (struct kvm_pit *)this->private;
329 struct kvm_kpit_state *pit_state = &pit->pit_state;
330 struct kvm *kvm = pit->kvm;
331 int channel, access;
332 struct kvm_kpit_channel_state *s;
333 u32 val = *(u32 *) data;
334
335 val &= 0xff;
336 addr &= KVM_PIT_CHANNEL_MASK;
337
338 mutex_lock(&pit_state->lock);
339
340 if (val != 0)
341 pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
342 (unsigned int)addr, len, val);
343
344 if (addr == 3) {
345 channel = val >> 6;
346 if (channel == 3) {
347 /* Read-Back Command. */
348 for (channel = 0; channel < 3; channel++) {
349 s = &pit_state->channels[channel];
350 if (val & (2 << channel)) {
351 if (!(val & 0x20))
352 pit_latch_count(kvm, channel);
353 if (!(val & 0x10))
354 pit_latch_status(kvm, channel);
355 }
356 }
357 } else {
358 /* Select Counter <channel>. */
359 s = &pit_state->channels[channel];
360 access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
361 if (access == 0) {
362 pit_latch_count(kvm, channel);
363 } else {
364 s->rw_mode = access;
365 s->read_state = access;
366 s->write_state = access;
367 s->mode = (val >> 1) & 7;
368 if (s->mode > 5)
369 s->mode -= 4;
370 s->bcd = val & 1;
371 }
372 }
373 } else {
374 /* Write Count. */
375 s = &pit_state->channels[addr];
376 switch (s->write_state) {
377 default:
378 case RW_STATE_LSB:
379 pit_load_count(kvm, addr, val);
380 break;
381 case RW_STATE_MSB:
382 pit_load_count(kvm, addr, val << 8);
383 break;
384 case RW_STATE_WORD0:
385 s->write_latch = val;
386 s->write_state = RW_STATE_WORD1;
387 break;
388 case RW_STATE_WORD1:
389 pit_load_count(kvm, addr, s->write_latch | (val << 8));
390 s->write_state = RW_STATE_WORD0;
391 break;
392 }
393 }
394
395 mutex_unlock(&pit_state->lock);
396 }
397
398 static void pit_ioport_read(struct kvm_io_device *this,
399 gpa_t addr, int len, void *data)
400 {
401 struct kvm_pit *pit = (struct kvm_pit *)this->private;
402 struct kvm_kpit_state *pit_state = &pit->pit_state;
403 struct kvm *kvm = pit->kvm;
404 int ret, count;
405 struct kvm_kpit_channel_state *s;
406
407 addr &= KVM_PIT_CHANNEL_MASK;
408 s = &pit_state->channels[addr];
409
410 mutex_lock(&pit_state->lock);
411
412 if (s->status_latched) {
413 s->status_latched = 0;
414 ret = s->status;
415 } else if (s->count_latched) {
416 switch (s->count_latched) {
417 default:
418 case RW_STATE_LSB:
419 ret = s->latched_count & 0xff;
420 s->count_latched = 0;
421 break;
422 case RW_STATE_MSB:
423 ret = s->latched_count >> 8;
424 s->count_latched = 0;
425 break;
426 case RW_STATE_WORD0:
427 ret = s->latched_count & 0xff;
428 s->count_latched = RW_STATE_MSB;
429 break;
430 }
431 } else {
432 switch (s->read_state) {
433 default:
434 case RW_STATE_LSB:
435 count = pit_get_count(kvm, addr);
436 ret = count & 0xff;
437 break;
438 case RW_STATE_MSB:
439 count = pit_get_count(kvm, addr);
440 ret = (count >> 8) & 0xff;
441 break;
442 case RW_STATE_WORD0:
443 count = pit_get_count(kvm, addr);
444 ret = count & 0xff;
445 s->read_state = RW_STATE_WORD1;
446 break;
447 case RW_STATE_WORD1:
448 count = pit_get_count(kvm, addr);
449 ret = (count >> 8) & 0xff;
450 s->read_state = RW_STATE_WORD0;
451 break;
452 }
453 }
454
455 if (len > sizeof(ret))
456 len = sizeof(ret);
457 memcpy(data, (char *)&ret, len);
458
459 mutex_unlock(&pit_state->lock);
460 }
461
462 static int pit_in_range(struct kvm_io_device *this, gpa_t addr)
463 {
464 return ((addr >= KVM_PIT_BASE_ADDRESS) &&
465 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
466 }
467
468 static void speaker_ioport_write(struct kvm_io_device *this,
469 gpa_t addr, int len, const void *data)
470 {
471 struct kvm_pit *pit = (struct kvm_pit *)this->private;
472 struct kvm_kpit_state *pit_state = &pit->pit_state;
473 struct kvm *kvm = pit->kvm;
474 u32 val = *(u32 *) data;
475
476 mutex_lock(&pit_state->lock);
477 pit_state->speaker_data_on = (val >> 1) & 1;
478 pit_set_gate(kvm, 2, val & 1);
479 mutex_unlock(&pit_state->lock);
480 }
481
482 static void speaker_ioport_read(struct kvm_io_device *this,
483 gpa_t addr, int len, void *data)
484 {
485 struct kvm_pit *pit = (struct kvm_pit *)this->private;
486 struct kvm_kpit_state *pit_state = &pit->pit_state;
487 struct kvm *kvm = pit->kvm;
488 unsigned int refresh_clock;
489 int ret;
490
491 /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
492 refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
493
494 mutex_lock(&pit_state->lock);
495 ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
496 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
497 if (len > sizeof(ret))
498 len = sizeof(ret);
499 memcpy(data, (char *)&ret, len);
500 mutex_unlock(&pit_state->lock);
501 }
502
503 static int speaker_in_range(struct kvm_io_device *this, gpa_t addr)
504 {
505 return (addr == KVM_SPEAKER_BASE_ADDRESS);
506 }
507
508 void kvm_pit_reset(struct kvm_pit *pit)
509 {
510 int i;
511 struct kvm_kpit_channel_state *c;
512
513 mutex_lock(&pit->pit_state.lock);
514 for (i = 0; i < 3; i++) {
515 c = &pit->pit_state.channels[i];
516 c->mode = 0xff;
517 c->gate = (i != 2);
518 pit_load_count(pit->kvm, i, 0);
519 }
520 mutex_unlock(&pit->pit_state.lock);
521
522 atomic_set(&pit->pit_state.pit_timer.pending, 0);
523 pit->pit_state.inject_pending = 1;
524 }
525
526 struct kvm_pit *kvm_create_pit(struct kvm *kvm)
527 {
528 struct kvm_pit *pit;
529 struct kvm_kpit_state *pit_state;
530
531 pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
532 if (!pit)
533 return NULL;
534
535 mutex_init(&pit->pit_state.lock);
536 mutex_lock(&pit->pit_state.lock);
537
538 /* Initialize PIO device */
539 pit->dev.read = pit_ioport_read;
540 pit->dev.write = pit_ioport_write;
541 pit->dev.in_range = pit_in_range;
542 pit->dev.private = pit;
543 kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);
544
545 pit->speaker_dev.read = speaker_ioport_read;
546 pit->speaker_dev.write = speaker_ioport_write;
547 pit->speaker_dev.in_range = speaker_in_range;
548 pit->speaker_dev.private = pit;
549 kvm_io_bus_register_dev(&kvm->pio_bus, &pit->speaker_dev);
550
551 kvm->arch.vpit = pit;
552 pit->kvm = kvm;
553
554 pit_state = &pit->pit_state;
555 pit_state->pit = pit;
556 hrtimer_init(&pit_state->pit_timer.timer,
557 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
558 mutex_unlock(&pit->pit_state.lock);
559
560 kvm_pit_reset(pit);
561
562 return pit;
563 }
564
565 void kvm_free_pit(struct kvm *kvm)
566 {
567 struct hrtimer *timer;
568
569 if (kvm->arch.vpit) {
570 mutex_lock(&kvm->arch.vpit->pit_state.lock);
571 timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
572 hrtimer_cancel(timer);
573 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
574 kfree(kvm->arch.vpit);
575 }
576 }
577
578 void __inject_pit_timer_intr(struct kvm *kvm)
579 {
580 mutex_lock(&kvm->lock);
581 kvm_ioapic_set_irq(kvm->arch.vioapic, 0, 1);
582 kvm_ioapic_set_irq(kvm->arch.vioapic, 0, 0);
583 kvm_pic_set_irq(pic_irqchip(kvm), 0, 1);
584 kvm_pic_set_irq(pic_irqchip(kvm), 0, 0);
585 mutex_unlock(&kvm->lock);
586 }
587
588 void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
589 {
590 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
591 struct kvm *kvm = vcpu->kvm;
592 struct kvm_kpit_state *ps;
593
594 if (vcpu && pit) {
595 ps = &pit->pit_state;
596
597 /* Try to inject pending interrupts when:
598 * 1. Pending exists
599 * 2. Last interrupt was accepted or waited for too long time*/
600 if (atomic_read(&ps->pit_timer.pending) &&
601 (ps->inject_pending ||
602 (jiffies - ps->last_injected_time
603 >= KVM_MAX_PIT_INTR_INTERVAL))) {
604 ps->inject_pending = 0;
605 __inject_pit_timer_intr(kvm);
606 ps->last_injected_time = jiffies;
607 }
608 }
609 }
610
611 void kvm_pit_timer_intr_post(struct kvm_vcpu *vcpu, int vec)
612 {
613 struct kvm_arch *arch = &vcpu->kvm->arch;
614 struct kvm_kpit_state *ps;
615
616 if (vcpu && arch->vpit) {
617 ps = &arch->vpit->pit_state;
618 if (atomic_read(&ps->pit_timer.pending) &&
619 (((arch->vpic->pics[0].imr & 1) == 0 &&
620 arch->vpic->pics[0].irq_base == vec) ||
621 (arch->vioapic->redirtbl[0].fields.vector == vec &&
622 arch->vioapic->redirtbl[0].fields.mask != 1))) {
623 ps->inject_pending = 1;
624 atomic_dec(&ps->pit_timer.pending);
625 ps->channels[0].count_load_time = ktime_get();
626 }
627 }
628 }
This page took 0.062802 seconds and 5 git commands to generate.