KVM: PIT: remove unused scheduled variable
[deliverable/linux.git] / arch / x86 / kvm / i8254.c
1 /*
2 * 8253/8254 interval timer emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2006 Intel Corporation
6 * Copyright (c) 2007 Keir Fraser, XenSource Inc
7 * Copyright (c) 2008 Intel Corporation
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a copy
10 * of this software and associated documentation files (the "Software"), to deal
11 * in the Software without restriction, including without limitation the rights
12 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13 * copies of the Software, and to permit persons to whom the Software is
14 * furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included in
17 * all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 * THE SOFTWARE.
26 *
27 * Authors:
28 * Sheng Yang <sheng.yang@intel.com>
29 * Based on QEMU and Xen.
30 */
31
32 #include <linux/kvm_host.h>
33
34 #include "irq.h"
35 #include "i8254.h"
36
37 #ifndef CONFIG_X86_64
38 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
39 #else
40 #define mod_64(x, y) ((x) % (y))
41 #endif
42
43 #define RW_STATE_LSB 1
44 #define RW_STATE_MSB 2
45 #define RW_STATE_WORD0 3
46 #define RW_STATE_WORD1 4
47
48 /* Compute with 96 bit intermediate result: (a*b)/c */
49 static u64 muldiv64(u64 a, u32 b, u32 c)
50 {
51 union {
52 u64 ll;
53 struct {
54 u32 low, high;
55 } l;
56 } u, res;
57 u64 rl, rh;
58
59 u.ll = a;
60 rl = (u64)u.l.low * (u64)b;
61 rh = (u64)u.l.high * (u64)b;
62 rh += (rl >> 32);
63 res.l.high = div64_u64(rh, c);
64 res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
65 return res.ll;
66 }
67
68 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
69 {
70 struct kvm_kpit_channel_state *c =
71 &kvm->arch.vpit->pit_state.channels[channel];
72
73 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
74
75 switch (c->mode) {
76 default:
77 case 0:
78 case 4:
79 /* XXX: just disable/enable counting */
80 break;
81 case 1:
82 case 2:
83 case 3:
84 case 5:
85 /* Restart counting on rising edge. */
86 if (c->gate < val)
87 c->count_load_time = ktime_get();
88 break;
89 }
90
91 c->gate = val;
92 }
93
94 static int pit_get_gate(struct kvm *kvm, int channel)
95 {
96 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
97
98 return kvm->arch.vpit->pit_state.channels[channel].gate;
99 }
100
101 static int pit_get_count(struct kvm *kvm, int channel)
102 {
103 struct kvm_kpit_channel_state *c =
104 &kvm->arch.vpit->pit_state.channels[channel];
105 s64 d, t;
106 int counter;
107
108 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
109
110 t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
111 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
112
113 switch (c->mode) {
114 case 0:
115 case 1:
116 case 4:
117 case 5:
118 counter = (c->count - d) & 0xffff;
119 break;
120 case 3:
121 /* XXX: may be incorrect for odd counts */
122 counter = c->count - (mod_64((2 * d), c->count));
123 break;
124 default:
125 counter = c->count - mod_64(d, c->count);
126 break;
127 }
128 return counter;
129 }
130
131 static int pit_get_out(struct kvm *kvm, int channel)
132 {
133 struct kvm_kpit_channel_state *c =
134 &kvm->arch.vpit->pit_state.channels[channel];
135 s64 d, t;
136 int out;
137
138 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
139
140 t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
141 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
142
143 switch (c->mode) {
144 default:
145 case 0:
146 out = (d >= c->count);
147 break;
148 case 1:
149 out = (d < c->count);
150 break;
151 case 2:
152 out = ((mod_64(d, c->count) == 0) && (d != 0));
153 break;
154 case 3:
155 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
156 break;
157 case 4:
158 case 5:
159 out = (d == c->count);
160 break;
161 }
162
163 return out;
164 }
165
166 static void pit_latch_count(struct kvm *kvm, int channel)
167 {
168 struct kvm_kpit_channel_state *c =
169 &kvm->arch.vpit->pit_state.channels[channel];
170
171 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
172
173 if (!c->count_latched) {
174 c->latched_count = pit_get_count(kvm, channel);
175 c->count_latched = c->rw_mode;
176 }
177 }
178
179 static void pit_latch_status(struct kvm *kvm, int channel)
180 {
181 struct kvm_kpit_channel_state *c =
182 &kvm->arch.vpit->pit_state.channels[channel];
183
184 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
185
186 if (!c->status_latched) {
187 /* TODO: Return NULL COUNT (bit 6). */
188 c->status = ((pit_get_out(kvm, channel) << 7) |
189 (c->rw_mode << 4) |
190 (c->mode << 1) |
191 c->bcd);
192 c->status_latched = 1;
193 }
194 }
195
196 static int __pit_timer_fn(struct kvm_kpit_state *ps)
197 {
198 struct kvm_vcpu *vcpu0 = ps->pit->kvm->vcpus[0];
199 struct kvm_kpit_timer *pt = &ps->pit_timer;
200
201 if (!atomic_inc_and_test(&pt->pending))
202 set_bit(KVM_REQ_PENDING_TIMER, &vcpu0->requests);
203
204 if (!pt->reinject)
205 atomic_set(&pt->pending, 1);
206
207 if (vcpu0 && waitqueue_active(&vcpu0->wq))
208 wake_up_interruptible(&vcpu0->wq);
209
210 hrtimer_add_expires_ns(&pt->timer, pt->period);
211 if (pt->period)
212 ps->channels[0].count_load_time = ktime_get();
213
214 return (pt->period == 0 ? 0 : 1);
215 }
216
217 int pit_has_pending_timer(struct kvm_vcpu *vcpu)
218 {
219 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
220
221 if (pit && vcpu->vcpu_id == 0 && pit->pit_state.irq_ack)
222 return atomic_read(&pit->pit_state.pit_timer.pending);
223 return 0;
224 }
225
226 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
227 {
228 struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
229 irq_ack_notifier);
230 spin_lock(&ps->inject_lock);
231 if (atomic_dec_return(&ps->pit_timer.pending) < 0)
232 atomic_inc(&ps->pit_timer.pending);
233 ps->irq_ack = 1;
234 spin_unlock(&ps->inject_lock);
235 }
236
237 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
238 {
239 struct kvm_kpit_state *ps;
240 int restart_timer = 0;
241
242 ps = container_of(data, struct kvm_kpit_state, pit_timer.timer);
243
244 restart_timer = __pit_timer_fn(ps);
245
246 if (restart_timer)
247 return HRTIMER_RESTART;
248 else
249 return HRTIMER_NORESTART;
250 }
251
252 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
253 {
254 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
255 struct hrtimer *timer;
256
257 if (vcpu->vcpu_id != 0 || !pit)
258 return;
259
260 timer = &pit->pit_state.pit_timer.timer;
261 if (hrtimer_cancel(timer))
262 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
263 }
264
265 static void destroy_pit_timer(struct kvm_kpit_timer *pt)
266 {
267 pr_debug("pit: execute del timer!\n");
268 hrtimer_cancel(&pt->timer);
269 }
270
271 static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period)
272 {
273 struct kvm_kpit_timer *pt = &ps->pit_timer;
274 s64 interval;
275
276 interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
277
278 pr_debug("pit: create pit timer, interval is %llu nsec\n", interval);
279
280 /* TODO The new value only affected after the retriggered */
281 hrtimer_cancel(&pt->timer);
282 pt->period = (is_period == 0) ? 0 : interval;
283 pt->timer.function = pit_timer_fn;
284 atomic_set(&pt->pending, 0);
285 ps->irq_ack = 1;
286
287 hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
288 HRTIMER_MODE_ABS);
289 }
290
291 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
292 {
293 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
294
295 WARN_ON(!mutex_is_locked(&ps->lock));
296
297 pr_debug("pit: load_count val is %d, channel is %d\n", val, channel);
298
299 /*
300 * Though spec said the state of 8254 is undefined after power-up,
301 * seems some tricky OS like Windows XP depends on IRQ0 interrupt
302 * when booting up.
303 * So here setting initialize rate for it, and not a specific number
304 */
305 if (val == 0)
306 val = 0x10000;
307
308 ps->channels[channel].count_load_time = ktime_get();
309 ps->channels[channel].count = val;
310
311 if (channel != 0)
312 return;
313
314 /* Two types of timer
315 * mode 1 is one shot, mode 2 is period, otherwise del timer */
316 switch (ps->channels[0].mode) {
317 case 1:
318 /* FIXME: enhance mode 4 precision */
319 case 4:
320 create_pit_timer(ps, val, 0);
321 break;
322 case 2:
323 case 3:
324 create_pit_timer(ps, val, 1);
325 break;
326 default:
327 destroy_pit_timer(&ps->pit_timer);
328 }
329 }
330
331 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val)
332 {
333 mutex_lock(&kvm->arch.vpit->pit_state.lock);
334 pit_load_count(kvm, channel, val);
335 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
336 }
337
338 static void pit_ioport_write(struct kvm_io_device *this,
339 gpa_t addr, int len, const void *data)
340 {
341 struct kvm_pit *pit = (struct kvm_pit *)this->private;
342 struct kvm_kpit_state *pit_state = &pit->pit_state;
343 struct kvm *kvm = pit->kvm;
344 int channel, access;
345 struct kvm_kpit_channel_state *s;
346 u32 val = *(u32 *) data;
347
348 val &= 0xff;
349 addr &= KVM_PIT_CHANNEL_MASK;
350
351 mutex_lock(&pit_state->lock);
352
353 if (val != 0)
354 pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
355 (unsigned int)addr, len, val);
356
357 if (addr == 3) {
358 channel = val >> 6;
359 if (channel == 3) {
360 /* Read-Back Command. */
361 for (channel = 0; channel < 3; channel++) {
362 s = &pit_state->channels[channel];
363 if (val & (2 << channel)) {
364 if (!(val & 0x20))
365 pit_latch_count(kvm, channel);
366 if (!(val & 0x10))
367 pit_latch_status(kvm, channel);
368 }
369 }
370 } else {
371 /* Select Counter <channel>. */
372 s = &pit_state->channels[channel];
373 access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
374 if (access == 0) {
375 pit_latch_count(kvm, channel);
376 } else {
377 s->rw_mode = access;
378 s->read_state = access;
379 s->write_state = access;
380 s->mode = (val >> 1) & 7;
381 if (s->mode > 5)
382 s->mode -= 4;
383 s->bcd = val & 1;
384 }
385 }
386 } else {
387 /* Write Count. */
388 s = &pit_state->channels[addr];
389 switch (s->write_state) {
390 default:
391 case RW_STATE_LSB:
392 pit_load_count(kvm, addr, val);
393 break;
394 case RW_STATE_MSB:
395 pit_load_count(kvm, addr, val << 8);
396 break;
397 case RW_STATE_WORD0:
398 s->write_latch = val;
399 s->write_state = RW_STATE_WORD1;
400 break;
401 case RW_STATE_WORD1:
402 pit_load_count(kvm, addr, s->write_latch | (val << 8));
403 s->write_state = RW_STATE_WORD0;
404 break;
405 }
406 }
407
408 mutex_unlock(&pit_state->lock);
409 }
410
411 static void pit_ioport_read(struct kvm_io_device *this,
412 gpa_t addr, int len, void *data)
413 {
414 struct kvm_pit *pit = (struct kvm_pit *)this->private;
415 struct kvm_kpit_state *pit_state = &pit->pit_state;
416 struct kvm *kvm = pit->kvm;
417 int ret, count;
418 struct kvm_kpit_channel_state *s;
419
420 addr &= KVM_PIT_CHANNEL_MASK;
421 s = &pit_state->channels[addr];
422
423 mutex_lock(&pit_state->lock);
424
425 if (s->status_latched) {
426 s->status_latched = 0;
427 ret = s->status;
428 } else if (s->count_latched) {
429 switch (s->count_latched) {
430 default:
431 case RW_STATE_LSB:
432 ret = s->latched_count & 0xff;
433 s->count_latched = 0;
434 break;
435 case RW_STATE_MSB:
436 ret = s->latched_count >> 8;
437 s->count_latched = 0;
438 break;
439 case RW_STATE_WORD0:
440 ret = s->latched_count & 0xff;
441 s->count_latched = RW_STATE_MSB;
442 break;
443 }
444 } else {
445 switch (s->read_state) {
446 default:
447 case RW_STATE_LSB:
448 count = pit_get_count(kvm, addr);
449 ret = count & 0xff;
450 break;
451 case RW_STATE_MSB:
452 count = pit_get_count(kvm, addr);
453 ret = (count >> 8) & 0xff;
454 break;
455 case RW_STATE_WORD0:
456 count = pit_get_count(kvm, addr);
457 ret = count & 0xff;
458 s->read_state = RW_STATE_WORD1;
459 break;
460 case RW_STATE_WORD1:
461 count = pit_get_count(kvm, addr);
462 ret = (count >> 8) & 0xff;
463 s->read_state = RW_STATE_WORD0;
464 break;
465 }
466 }
467
468 if (len > sizeof(ret))
469 len = sizeof(ret);
470 memcpy(data, (char *)&ret, len);
471
472 mutex_unlock(&pit_state->lock);
473 }
474
475 static int pit_in_range(struct kvm_io_device *this, gpa_t addr,
476 int len, int is_write)
477 {
478 return ((addr >= KVM_PIT_BASE_ADDRESS) &&
479 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
480 }
481
482 static void speaker_ioport_write(struct kvm_io_device *this,
483 gpa_t addr, int len, const void *data)
484 {
485 struct kvm_pit *pit = (struct kvm_pit *)this->private;
486 struct kvm_kpit_state *pit_state = &pit->pit_state;
487 struct kvm *kvm = pit->kvm;
488 u32 val = *(u32 *) data;
489
490 mutex_lock(&pit_state->lock);
491 pit_state->speaker_data_on = (val >> 1) & 1;
492 pit_set_gate(kvm, 2, val & 1);
493 mutex_unlock(&pit_state->lock);
494 }
495
496 static void speaker_ioport_read(struct kvm_io_device *this,
497 gpa_t addr, int len, void *data)
498 {
499 struct kvm_pit *pit = (struct kvm_pit *)this->private;
500 struct kvm_kpit_state *pit_state = &pit->pit_state;
501 struct kvm *kvm = pit->kvm;
502 unsigned int refresh_clock;
503 int ret;
504
505 /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
506 refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
507
508 mutex_lock(&pit_state->lock);
509 ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
510 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
511 if (len > sizeof(ret))
512 len = sizeof(ret);
513 memcpy(data, (char *)&ret, len);
514 mutex_unlock(&pit_state->lock);
515 }
516
517 static int speaker_in_range(struct kvm_io_device *this, gpa_t addr,
518 int len, int is_write)
519 {
520 return (addr == KVM_SPEAKER_BASE_ADDRESS);
521 }
522
523 void kvm_pit_reset(struct kvm_pit *pit)
524 {
525 int i;
526 struct kvm_kpit_channel_state *c;
527
528 mutex_lock(&pit->pit_state.lock);
529 for (i = 0; i < 3; i++) {
530 c = &pit->pit_state.channels[i];
531 c->mode = 0xff;
532 c->gate = (i != 2);
533 pit_load_count(pit->kvm, i, 0);
534 }
535 mutex_unlock(&pit->pit_state.lock);
536
537 atomic_set(&pit->pit_state.pit_timer.pending, 0);
538 pit->pit_state.irq_ack = 1;
539 }
540
541 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
542 {
543 struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
544
545 if (!mask) {
546 atomic_set(&pit->pit_state.pit_timer.pending, 0);
547 pit->pit_state.irq_ack = 1;
548 }
549 }
550
551 struct kvm_pit *kvm_create_pit(struct kvm *kvm)
552 {
553 struct kvm_pit *pit;
554 struct kvm_kpit_state *pit_state;
555
556 pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
557 if (!pit)
558 return NULL;
559
560 pit->irq_source_id = kvm_request_irq_source_id(kvm);
561 if (pit->irq_source_id < 0) {
562 kfree(pit);
563 return NULL;
564 }
565
566 mutex_init(&pit->pit_state.lock);
567 mutex_lock(&pit->pit_state.lock);
568 spin_lock_init(&pit->pit_state.inject_lock);
569
570 /* Initialize PIO device */
571 pit->dev.read = pit_ioport_read;
572 pit->dev.write = pit_ioport_write;
573 pit->dev.in_range = pit_in_range;
574 pit->dev.private = pit;
575 kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);
576
577 pit->speaker_dev.read = speaker_ioport_read;
578 pit->speaker_dev.write = speaker_ioport_write;
579 pit->speaker_dev.in_range = speaker_in_range;
580 pit->speaker_dev.private = pit;
581 kvm_io_bus_register_dev(&kvm->pio_bus, &pit->speaker_dev);
582
583 kvm->arch.vpit = pit;
584 pit->kvm = kvm;
585
586 pit_state = &pit->pit_state;
587 pit_state->pit = pit;
588 hrtimer_init(&pit_state->pit_timer.timer,
589 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
590 pit_state->irq_ack_notifier.gsi = 0;
591 pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
592 kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
593 pit_state->pit_timer.reinject = true;
594 mutex_unlock(&pit->pit_state.lock);
595
596 kvm_pit_reset(pit);
597
598 pit->mask_notifier.func = pit_mask_notifer;
599 kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
600
601 return pit;
602 }
603
604 void kvm_free_pit(struct kvm *kvm)
605 {
606 struct hrtimer *timer;
607
608 if (kvm->arch.vpit) {
609 kvm_unregister_irq_mask_notifier(kvm, 0,
610 &kvm->arch.vpit->mask_notifier);
611 mutex_lock(&kvm->arch.vpit->pit_state.lock);
612 timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
613 hrtimer_cancel(timer);
614 kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
615 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
616 kfree(kvm->arch.vpit);
617 }
618 }
619
620 static void __inject_pit_timer_intr(struct kvm *kvm)
621 {
622 struct kvm_vcpu *vcpu;
623 int i;
624
625 mutex_lock(&kvm->lock);
626 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
627 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
628 mutex_unlock(&kvm->lock);
629
630 /*
631 * Provides NMI watchdog support via Virtual Wire mode.
632 * The route is: PIT -> PIC -> LVT0 in NMI mode.
633 *
634 * Note: Our Virtual Wire implementation is simplified, only
635 * propagating PIT interrupts to all VCPUs when they have set
636 * LVT0 to NMI delivery. Other PIC interrupts are just sent to
637 * VCPU0, and only if its LVT0 is in EXTINT mode.
638 */
639 if (kvm->arch.vapics_in_nmi_mode > 0)
640 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
641 vcpu = kvm->vcpus[i];
642 if (vcpu)
643 kvm_apic_nmi_wd_deliver(vcpu);
644 }
645 }
646
647 void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
648 {
649 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
650 struct kvm *kvm = vcpu->kvm;
651 struct kvm_kpit_state *ps;
652
653 if (vcpu && pit) {
654 int inject = 0;
655 ps = &pit->pit_state;
656
657 /* Try to inject pending interrupts when
658 * last one has been acked.
659 */
660 spin_lock(&ps->inject_lock);
661 if (atomic_read(&ps->pit_timer.pending) && ps->irq_ack) {
662 ps->irq_ack = 0;
663 inject = 1;
664 }
665 spin_unlock(&ps->inject_lock);
666 if (inject)
667 __inject_pit_timer_intr(kvm);
668 }
669 }
This page took 0.063168 seconds and 5 git commands to generate.