Merge branch 'akpm' (second patchbomb from Andrew Morton)
[deliverable/linux.git] / arch / x86 / kvm / i8254.c
1 /*
2 * 8253/8254 interval timer emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2006 Intel Corporation
6 * Copyright (c) 2007 Keir Fraser, XenSource Inc
7 * Copyright (c) 2008 Intel Corporation
8 * Copyright 2009 Red Hat, Inc. and/or its affiliates.
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 *
28 * Authors:
29 * Sheng Yang <sheng.yang@intel.com>
30 * Based on QEMU and Xen.
31 */
32
33 #define pr_fmt(fmt) "pit: " fmt
34
35 #include <linux/kvm_host.h>
36 #include <linux/slab.h>
37
38 #include "irq.h"
39 #include "i8254.h"
40 #include "x86.h"
41
42 #ifndef CONFIG_X86_64
43 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
44 #else
45 #define mod_64(x, y) ((x) % (y))
46 #endif
47
48 #define RW_STATE_LSB 1
49 #define RW_STATE_MSB 2
50 #define RW_STATE_WORD0 3
51 #define RW_STATE_WORD1 4
52
53 /* Compute with 96 bit intermediate result: (a*b)/c */
54 static u64 muldiv64(u64 a, u32 b, u32 c)
55 {
56 union {
57 u64 ll;
58 struct {
59 u32 low, high;
60 } l;
61 } u, res;
62 u64 rl, rh;
63
64 u.ll = a;
65 rl = (u64)u.l.low * (u64)b;
66 rh = (u64)u.l.high * (u64)b;
67 rh += (rl >> 32);
68 res.l.high = div64_u64(rh, c);
69 res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
70 return res.ll;
71 }
72
73 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
74 {
75 struct kvm_kpit_channel_state *c =
76 &kvm->arch.vpit->pit_state.channels[channel];
77
78 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
79
80 switch (c->mode) {
81 default:
82 case 0:
83 case 4:
84 /* XXX: just disable/enable counting */
85 break;
86 case 1:
87 case 2:
88 case 3:
89 case 5:
90 /* Restart counting on rising edge. */
91 if (c->gate < val)
92 c->count_load_time = ktime_get();
93 break;
94 }
95
96 c->gate = val;
97 }
98
99 static int pit_get_gate(struct kvm *kvm, int channel)
100 {
101 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
102
103 return kvm->arch.vpit->pit_state.channels[channel].gate;
104 }
105
106 static s64 __kpit_elapsed(struct kvm *kvm)
107 {
108 s64 elapsed;
109 ktime_t remaining;
110 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
111
112 if (!ps->period)
113 return 0;
114
115 /*
116 * The Counter does not stop when it reaches zero. In
117 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
118 * the highest count, either FFFF hex for binary counting
119 * or 9999 for BCD counting, and continues counting.
120 * Modes 2 and 3 are periodic; the Counter reloads
121 * itself with the initial count and continues counting
122 * from there.
123 */
124 remaining = hrtimer_get_remaining(&ps->timer);
125 elapsed = ps->period - ktime_to_ns(remaining);
126
127 return elapsed;
128 }
129
130 static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
131 int channel)
132 {
133 if (channel == 0)
134 return __kpit_elapsed(kvm);
135
136 return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
137 }
138
139 static int pit_get_count(struct kvm *kvm, int channel)
140 {
141 struct kvm_kpit_channel_state *c =
142 &kvm->arch.vpit->pit_state.channels[channel];
143 s64 d, t;
144 int counter;
145
146 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
147
148 t = kpit_elapsed(kvm, c, channel);
149 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
150
151 switch (c->mode) {
152 case 0:
153 case 1:
154 case 4:
155 case 5:
156 counter = (c->count - d) & 0xffff;
157 break;
158 case 3:
159 /* XXX: may be incorrect for odd counts */
160 counter = c->count - (mod_64((2 * d), c->count));
161 break;
162 default:
163 counter = c->count - mod_64(d, c->count);
164 break;
165 }
166 return counter;
167 }
168
169 static int pit_get_out(struct kvm *kvm, int channel)
170 {
171 struct kvm_kpit_channel_state *c =
172 &kvm->arch.vpit->pit_state.channels[channel];
173 s64 d, t;
174 int out;
175
176 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
177
178 t = kpit_elapsed(kvm, c, channel);
179 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
180
181 switch (c->mode) {
182 default:
183 case 0:
184 out = (d >= c->count);
185 break;
186 case 1:
187 out = (d < c->count);
188 break;
189 case 2:
190 out = ((mod_64(d, c->count) == 0) && (d != 0));
191 break;
192 case 3:
193 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
194 break;
195 case 4:
196 case 5:
197 out = (d == c->count);
198 break;
199 }
200
201 return out;
202 }
203
204 static void pit_latch_count(struct kvm *kvm, int channel)
205 {
206 struct kvm_kpit_channel_state *c =
207 &kvm->arch.vpit->pit_state.channels[channel];
208
209 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
210
211 if (!c->count_latched) {
212 c->latched_count = pit_get_count(kvm, channel);
213 c->count_latched = c->rw_mode;
214 }
215 }
216
217 static void pit_latch_status(struct kvm *kvm, int channel)
218 {
219 struct kvm_kpit_channel_state *c =
220 &kvm->arch.vpit->pit_state.channels[channel];
221
222 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
223
224 if (!c->status_latched) {
225 /* TODO: Return NULL COUNT (bit 6). */
226 c->status = ((pit_get_out(kvm, channel) << 7) |
227 (c->rw_mode << 4) |
228 (c->mode << 1) |
229 c->bcd);
230 c->status_latched = 1;
231 }
232 }
233
234 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
235 {
236 struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
237 irq_ack_notifier);
238 int value;
239
240 spin_lock(&ps->inject_lock);
241 value = atomic_dec_return(&ps->pending);
242 if (value < 0)
243 /* spurious acks can be generated if, for example, the
244 * PIC is being reset. Handle it gracefully here
245 */
246 atomic_inc(&ps->pending);
247 else if (value > 0)
248 /* in this case, we had multiple outstanding pit interrupts
249 * that we needed to inject. Reinject
250 */
251 queue_kthread_work(&ps->pit->worker, &ps->pit->expired);
252 ps->irq_ack = 1;
253 spin_unlock(&ps->inject_lock);
254 }
255
256 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
257 {
258 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
259 struct hrtimer *timer;
260
261 if (!kvm_vcpu_is_bsp(vcpu) || !pit)
262 return;
263
264 timer = &pit->pit_state.timer;
265 if (hrtimer_cancel(timer))
266 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
267 }
268
269 static void destroy_pit_timer(struct kvm_pit *pit)
270 {
271 hrtimer_cancel(&pit->pit_state.timer);
272 flush_kthread_work(&pit->expired);
273 }
274
275 static void pit_do_work(struct kthread_work *work)
276 {
277 struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
278 struct kvm *kvm = pit->kvm;
279 struct kvm_vcpu *vcpu;
280 int i;
281 struct kvm_kpit_state *ps = &pit->pit_state;
282 int inject = 0;
283
284 /* Try to inject pending interrupts when
285 * last one has been acked.
286 */
287 spin_lock(&ps->inject_lock);
288 if (ps->irq_ack) {
289 ps->irq_ack = 0;
290 inject = 1;
291 }
292 spin_unlock(&ps->inject_lock);
293 if (inject) {
294 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1, false);
295 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0, false);
296
297 /*
298 * Provides NMI watchdog support via Virtual Wire mode.
299 * The route is: PIT -> PIC -> LVT0 in NMI mode.
300 *
301 * Note: Our Virtual Wire implementation is simplified, only
302 * propagating PIT interrupts to all VCPUs when they have set
303 * LVT0 to NMI delivery. Other PIC interrupts are just sent to
304 * VCPU0, and only if its LVT0 is in EXTINT mode.
305 */
306 if (kvm->arch.vapics_in_nmi_mode > 0)
307 kvm_for_each_vcpu(i, vcpu, kvm)
308 kvm_apic_nmi_wd_deliver(vcpu);
309 }
310 }
311
312 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
313 {
314 struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer);
315 struct kvm_pit *pt = ps->kvm->arch.vpit;
316
317 if (ps->reinject || !atomic_read(&ps->pending)) {
318 atomic_inc(&ps->pending);
319 queue_kthread_work(&pt->worker, &pt->expired);
320 }
321
322 if (ps->is_periodic) {
323 hrtimer_add_expires_ns(&ps->timer, ps->period);
324 return HRTIMER_RESTART;
325 } else
326 return HRTIMER_NORESTART;
327 }
328
329 static void create_pit_timer(struct kvm *kvm, u32 val, int is_period)
330 {
331 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
332 s64 interval;
333
334 if (!irqchip_in_kernel(kvm) || ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)
335 return;
336
337 interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
338
339 pr_debug("create pit timer, interval is %llu nsec\n", interval);
340
341 /* TODO The new value only affected after the retriggered */
342 hrtimer_cancel(&ps->timer);
343 flush_kthread_work(&ps->pit->expired);
344 ps->period = interval;
345 ps->is_periodic = is_period;
346
347 ps->timer.function = pit_timer_fn;
348 ps->kvm = ps->pit->kvm;
349
350 atomic_set(&ps->pending, 0);
351 ps->irq_ack = 1;
352
353 /*
354 * Do not allow the guest to program periodic timers with small
355 * interval, since the hrtimers are not throttled by the host
356 * scheduler.
357 */
358 if (ps->is_periodic) {
359 s64 min_period = min_timer_period_us * 1000LL;
360
361 if (ps->period < min_period) {
362 pr_info_ratelimited(
363 "kvm: requested %lld ns "
364 "i8254 timer period limited to %lld ns\n",
365 ps->period, min_period);
366 ps->period = min_period;
367 }
368 }
369
370 hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval),
371 HRTIMER_MODE_ABS);
372 }
373
374 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
375 {
376 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
377
378 WARN_ON(!mutex_is_locked(&ps->lock));
379
380 pr_debug("load_count val is %d, channel is %d\n", val, channel);
381
382 /*
383 * The largest possible initial count is 0; this is equivalent
384 * to 216 for binary counting and 104 for BCD counting.
385 */
386 if (val == 0)
387 val = 0x10000;
388
389 ps->channels[channel].count = val;
390
391 if (channel != 0) {
392 ps->channels[channel].count_load_time = ktime_get();
393 return;
394 }
395
396 /* Two types of timer
397 * mode 1 is one shot, mode 2 is period, otherwise del timer */
398 switch (ps->channels[0].mode) {
399 case 0:
400 case 1:
401 /* FIXME: enhance mode 4 precision */
402 case 4:
403 create_pit_timer(kvm, val, 0);
404 break;
405 case 2:
406 case 3:
407 create_pit_timer(kvm, val, 1);
408 break;
409 default:
410 destroy_pit_timer(kvm->arch.vpit);
411 }
412 }
413
414 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start)
415 {
416 u8 saved_mode;
417 if (hpet_legacy_start) {
418 /* save existing mode for later reenablement */
419 saved_mode = kvm->arch.vpit->pit_state.channels[0].mode;
420 kvm->arch.vpit->pit_state.channels[0].mode = 0xff; /* disable timer */
421 pit_load_count(kvm, channel, val);
422 kvm->arch.vpit->pit_state.channels[0].mode = saved_mode;
423 } else {
424 pit_load_count(kvm, channel, val);
425 }
426 }
427
428 static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
429 {
430 return container_of(dev, struct kvm_pit, dev);
431 }
432
433 static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
434 {
435 return container_of(dev, struct kvm_pit, speaker_dev);
436 }
437
438 static inline int pit_in_range(gpa_t addr)
439 {
440 return ((addr >= KVM_PIT_BASE_ADDRESS) &&
441 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
442 }
443
444 static int pit_ioport_write(struct kvm_io_device *this,
445 gpa_t addr, int len, const void *data)
446 {
447 struct kvm_pit *pit = dev_to_pit(this);
448 struct kvm_kpit_state *pit_state = &pit->pit_state;
449 struct kvm *kvm = pit->kvm;
450 int channel, access;
451 struct kvm_kpit_channel_state *s;
452 u32 val = *(u32 *) data;
453 if (!pit_in_range(addr))
454 return -EOPNOTSUPP;
455
456 val &= 0xff;
457 addr &= KVM_PIT_CHANNEL_MASK;
458
459 mutex_lock(&pit_state->lock);
460
461 if (val != 0)
462 pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
463 (unsigned int)addr, len, val);
464
465 if (addr == 3) {
466 channel = val >> 6;
467 if (channel == 3) {
468 /* Read-Back Command. */
469 for (channel = 0; channel < 3; channel++) {
470 s = &pit_state->channels[channel];
471 if (val & (2 << channel)) {
472 if (!(val & 0x20))
473 pit_latch_count(kvm, channel);
474 if (!(val & 0x10))
475 pit_latch_status(kvm, channel);
476 }
477 }
478 } else {
479 /* Select Counter <channel>. */
480 s = &pit_state->channels[channel];
481 access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
482 if (access == 0) {
483 pit_latch_count(kvm, channel);
484 } else {
485 s->rw_mode = access;
486 s->read_state = access;
487 s->write_state = access;
488 s->mode = (val >> 1) & 7;
489 if (s->mode > 5)
490 s->mode -= 4;
491 s->bcd = val & 1;
492 }
493 }
494 } else {
495 /* Write Count. */
496 s = &pit_state->channels[addr];
497 switch (s->write_state) {
498 default:
499 case RW_STATE_LSB:
500 pit_load_count(kvm, addr, val);
501 break;
502 case RW_STATE_MSB:
503 pit_load_count(kvm, addr, val << 8);
504 break;
505 case RW_STATE_WORD0:
506 s->write_latch = val;
507 s->write_state = RW_STATE_WORD1;
508 break;
509 case RW_STATE_WORD1:
510 pit_load_count(kvm, addr, s->write_latch | (val << 8));
511 s->write_state = RW_STATE_WORD0;
512 break;
513 }
514 }
515
516 mutex_unlock(&pit_state->lock);
517 return 0;
518 }
519
520 static int pit_ioport_read(struct kvm_io_device *this,
521 gpa_t addr, int len, void *data)
522 {
523 struct kvm_pit *pit = dev_to_pit(this);
524 struct kvm_kpit_state *pit_state = &pit->pit_state;
525 struct kvm *kvm = pit->kvm;
526 int ret, count;
527 struct kvm_kpit_channel_state *s;
528 if (!pit_in_range(addr))
529 return -EOPNOTSUPP;
530
531 addr &= KVM_PIT_CHANNEL_MASK;
532 if (addr == 3)
533 return 0;
534
535 s = &pit_state->channels[addr];
536
537 mutex_lock(&pit_state->lock);
538
539 if (s->status_latched) {
540 s->status_latched = 0;
541 ret = s->status;
542 } else if (s->count_latched) {
543 switch (s->count_latched) {
544 default:
545 case RW_STATE_LSB:
546 ret = s->latched_count & 0xff;
547 s->count_latched = 0;
548 break;
549 case RW_STATE_MSB:
550 ret = s->latched_count >> 8;
551 s->count_latched = 0;
552 break;
553 case RW_STATE_WORD0:
554 ret = s->latched_count & 0xff;
555 s->count_latched = RW_STATE_MSB;
556 break;
557 }
558 } else {
559 switch (s->read_state) {
560 default:
561 case RW_STATE_LSB:
562 count = pit_get_count(kvm, addr);
563 ret = count & 0xff;
564 break;
565 case RW_STATE_MSB:
566 count = pit_get_count(kvm, addr);
567 ret = (count >> 8) & 0xff;
568 break;
569 case RW_STATE_WORD0:
570 count = pit_get_count(kvm, addr);
571 ret = count & 0xff;
572 s->read_state = RW_STATE_WORD1;
573 break;
574 case RW_STATE_WORD1:
575 count = pit_get_count(kvm, addr);
576 ret = (count >> 8) & 0xff;
577 s->read_state = RW_STATE_WORD0;
578 break;
579 }
580 }
581
582 if (len > sizeof(ret))
583 len = sizeof(ret);
584 memcpy(data, (char *)&ret, len);
585
586 mutex_unlock(&pit_state->lock);
587 return 0;
588 }
589
590 static int speaker_ioport_write(struct kvm_io_device *this,
591 gpa_t addr, int len, const void *data)
592 {
593 struct kvm_pit *pit = speaker_to_pit(this);
594 struct kvm_kpit_state *pit_state = &pit->pit_state;
595 struct kvm *kvm = pit->kvm;
596 u32 val = *(u32 *) data;
597 if (addr != KVM_SPEAKER_BASE_ADDRESS)
598 return -EOPNOTSUPP;
599
600 mutex_lock(&pit_state->lock);
601 pit_state->speaker_data_on = (val >> 1) & 1;
602 pit_set_gate(kvm, 2, val & 1);
603 mutex_unlock(&pit_state->lock);
604 return 0;
605 }
606
607 static int speaker_ioport_read(struct kvm_io_device *this,
608 gpa_t addr, int len, void *data)
609 {
610 struct kvm_pit *pit = speaker_to_pit(this);
611 struct kvm_kpit_state *pit_state = &pit->pit_state;
612 struct kvm *kvm = pit->kvm;
613 unsigned int refresh_clock;
614 int ret;
615 if (addr != KVM_SPEAKER_BASE_ADDRESS)
616 return -EOPNOTSUPP;
617
618 /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
619 refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
620
621 mutex_lock(&pit_state->lock);
622 ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
623 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
624 if (len > sizeof(ret))
625 len = sizeof(ret);
626 memcpy(data, (char *)&ret, len);
627 mutex_unlock(&pit_state->lock);
628 return 0;
629 }
630
631 void kvm_pit_reset(struct kvm_pit *pit)
632 {
633 int i;
634 struct kvm_kpit_channel_state *c;
635
636 mutex_lock(&pit->pit_state.lock);
637 pit->pit_state.flags = 0;
638 for (i = 0; i < 3; i++) {
639 c = &pit->pit_state.channels[i];
640 c->mode = 0xff;
641 c->gate = (i != 2);
642 pit_load_count(pit->kvm, i, 0);
643 }
644 mutex_unlock(&pit->pit_state.lock);
645
646 atomic_set(&pit->pit_state.pending, 0);
647 pit->pit_state.irq_ack = 1;
648 }
649
650 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
651 {
652 struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
653
654 if (!mask) {
655 atomic_set(&pit->pit_state.pending, 0);
656 pit->pit_state.irq_ack = 1;
657 }
658 }
659
660 static const struct kvm_io_device_ops pit_dev_ops = {
661 .read = pit_ioport_read,
662 .write = pit_ioport_write,
663 };
664
665 static const struct kvm_io_device_ops speaker_dev_ops = {
666 .read = speaker_ioport_read,
667 .write = speaker_ioport_write,
668 };
669
670 /* Caller must hold slots_lock */
671 struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
672 {
673 struct kvm_pit *pit;
674 struct kvm_kpit_state *pit_state;
675 struct pid *pid;
676 pid_t pid_nr;
677 int ret;
678
679 pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
680 if (!pit)
681 return NULL;
682
683 pit->irq_source_id = kvm_request_irq_source_id(kvm);
684 if (pit->irq_source_id < 0) {
685 kfree(pit);
686 return NULL;
687 }
688
689 mutex_init(&pit->pit_state.lock);
690 mutex_lock(&pit->pit_state.lock);
691 spin_lock_init(&pit->pit_state.inject_lock);
692
693 pid = get_pid(task_tgid(current));
694 pid_nr = pid_vnr(pid);
695 put_pid(pid);
696
697 init_kthread_worker(&pit->worker);
698 pit->worker_task = kthread_run(kthread_worker_fn, &pit->worker,
699 "kvm-pit/%d", pid_nr);
700 if (IS_ERR(pit->worker_task)) {
701 mutex_unlock(&pit->pit_state.lock);
702 kvm_free_irq_source_id(kvm, pit->irq_source_id);
703 kfree(pit);
704 return NULL;
705 }
706 init_kthread_work(&pit->expired, pit_do_work);
707
708 kvm->arch.vpit = pit;
709 pit->kvm = kvm;
710
711 pit_state = &pit->pit_state;
712 pit_state->pit = pit;
713 hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
714 pit_state->irq_ack_notifier.gsi = 0;
715 pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
716 kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
717 pit_state->reinject = true;
718 mutex_unlock(&pit->pit_state.lock);
719
720 kvm_pit_reset(pit);
721
722 pit->mask_notifier.func = pit_mask_notifer;
723 kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
724
725 kvm_iodevice_init(&pit->dev, &pit_dev_ops);
726 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS,
727 KVM_PIT_MEM_LENGTH, &pit->dev);
728 if (ret < 0)
729 goto fail;
730
731 if (flags & KVM_PIT_SPEAKER_DUMMY) {
732 kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
733 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
734 KVM_SPEAKER_BASE_ADDRESS, 4,
735 &pit->speaker_dev);
736 if (ret < 0)
737 goto fail_unregister;
738 }
739
740 return pit;
741
742 fail_unregister:
743 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
744
745 fail:
746 kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
747 kvm_unregister_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
748 kvm_free_irq_source_id(kvm, pit->irq_source_id);
749 kthread_stop(pit->worker_task);
750 kfree(pit);
751 return NULL;
752 }
753
754 void kvm_free_pit(struct kvm *kvm)
755 {
756 struct hrtimer *timer;
757
758 if (kvm->arch.vpit) {
759 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &kvm->arch.vpit->dev);
760 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
761 &kvm->arch.vpit->speaker_dev);
762 kvm_unregister_irq_mask_notifier(kvm, 0,
763 &kvm->arch.vpit->mask_notifier);
764 kvm_unregister_irq_ack_notifier(kvm,
765 &kvm->arch.vpit->pit_state.irq_ack_notifier);
766 mutex_lock(&kvm->arch.vpit->pit_state.lock);
767 timer = &kvm->arch.vpit->pit_state.timer;
768 hrtimer_cancel(timer);
769 flush_kthread_work(&kvm->arch.vpit->expired);
770 kthread_stop(kvm->arch.vpit->worker_task);
771 kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
772 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
773 kfree(kvm->arch.vpit);
774 }
775 }
This page took 0.0466 seconds and 5 git commands to generate.