Merge git://www.linux-watchdog.org/linux-watchdog
[deliverable/linux.git] / arch / x86 / kvm / i8254.c
1 /*
2 * 8253/8254 interval timer emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2006 Intel Corporation
6 * Copyright (c) 2007 Keir Fraser, XenSource Inc
7 * Copyright (c) 2008 Intel Corporation
8 * Copyright 2009 Red Hat, Inc. and/or its affiliates.
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 *
28 * Authors:
29 * Sheng Yang <sheng.yang@intel.com>
30 * Based on QEMU and Xen.
31 */
32
33 #define pr_fmt(fmt) "pit: " fmt
34
35 #include <linux/kvm_host.h>
36 #include <linux/slab.h>
37
38 #include "ioapic.h"
39 #include "irq.h"
40 #include "i8254.h"
41 #include "x86.h"
42
43 #ifndef CONFIG_X86_64
44 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
45 #else
46 #define mod_64(x, y) ((x) % (y))
47 #endif
48
49 #define RW_STATE_LSB 1
50 #define RW_STATE_MSB 2
51 #define RW_STATE_WORD0 3
52 #define RW_STATE_WORD1 4
53
54 /* Compute with 96 bit intermediate result: (a*b)/c */
55 static u64 muldiv64(u64 a, u32 b, u32 c)
56 {
57 union {
58 u64 ll;
59 struct {
60 u32 low, high;
61 } l;
62 } u, res;
63 u64 rl, rh;
64
65 u.ll = a;
66 rl = (u64)u.l.low * (u64)b;
67 rh = (u64)u.l.high * (u64)b;
68 rh += (rl >> 32);
69 res.l.high = div64_u64(rh, c);
70 res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
71 return res.ll;
72 }
73
74 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
75 {
76 struct kvm_kpit_channel_state *c =
77 &kvm->arch.vpit->pit_state.channels[channel];
78
79 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
80
81 switch (c->mode) {
82 default:
83 case 0:
84 case 4:
85 /* XXX: just disable/enable counting */
86 break;
87 case 1:
88 case 2:
89 case 3:
90 case 5:
91 /* Restart counting on rising edge. */
92 if (c->gate < val)
93 c->count_load_time = ktime_get();
94 break;
95 }
96
97 c->gate = val;
98 }
99
100 static int pit_get_gate(struct kvm *kvm, int channel)
101 {
102 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
103
104 return kvm->arch.vpit->pit_state.channels[channel].gate;
105 }
106
107 static s64 __kpit_elapsed(struct kvm *kvm)
108 {
109 s64 elapsed;
110 ktime_t remaining;
111 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
112
113 if (!ps->period)
114 return 0;
115
116 /*
117 * The Counter does not stop when it reaches zero. In
118 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
119 * the highest count, either FFFF hex for binary counting
120 * or 9999 for BCD counting, and continues counting.
121 * Modes 2 and 3 are periodic; the Counter reloads
122 * itself with the initial count and continues counting
123 * from there.
124 */
125 remaining = hrtimer_get_remaining(&ps->timer);
126 elapsed = ps->period - ktime_to_ns(remaining);
127
128 return elapsed;
129 }
130
131 static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
132 int channel)
133 {
134 if (channel == 0)
135 return __kpit_elapsed(kvm);
136
137 return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
138 }
139
140 static int pit_get_count(struct kvm *kvm, int channel)
141 {
142 struct kvm_kpit_channel_state *c =
143 &kvm->arch.vpit->pit_state.channels[channel];
144 s64 d, t;
145 int counter;
146
147 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
148
149 t = kpit_elapsed(kvm, c, channel);
150 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
151
152 switch (c->mode) {
153 case 0:
154 case 1:
155 case 4:
156 case 5:
157 counter = (c->count - d) & 0xffff;
158 break;
159 case 3:
160 /* XXX: may be incorrect for odd counts */
161 counter = c->count - (mod_64((2 * d), c->count));
162 break;
163 default:
164 counter = c->count - mod_64(d, c->count);
165 break;
166 }
167 return counter;
168 }
169
170 static int pit_get_out(struct kvm *kvm, int channel)
171 {
172 struct kvm_kpit_channel_state *c =
173 &kvm->arch.vpit->pit_state.channels[channel];
174 s64 d, t;
175 int out;
176
177 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
178
179 t = kpit_elapsed(kvm, c, channel);
180 d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
181
182 switch (c->mode) {
183 default:
184 case 0:
185 out = (d >= c->count);
186 break;
187 case 1:
188 out = (d < c->count);
189 break;
190 case 2:
191 out = ((mod_64(d, c->count) == 0) && (d != 0));
192 break;
193 case 3:
194 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
195 break;
196 case 4:
197 case 5:
198 out = (d == c->count);
199 break;
200 }
201
202 return out;
203 }
204
205 static void pit_latch_count(struct kvm *kvm, int channel)
206 {
207 struct kvm_kpit_channel_state *c =
208 &kvm->arch.vpit->pit_state.channels[channel];
209
210 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
211
212 if (!c->count_latched) {
213 c->latched_count = pit_get_count(kvm, channel);
214 c->count_latched = c->rw_mode;
215 }
216 }
217
218 static void pit_latch_status(struct kvm *kvm, int channel)
219 {
220 struct kvm_kpit_channel_state *c =
221 &kvm->arch.vpit->pit_state.channels[channel];
222
223 WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
224
225 if (!c->status_latched) {
226 /* TODO: Return NULL COUNT (bit 6). */
227 c->status = ((pit_get_out(kvm, channel) << 7) |
228 (c->rw_mode << 4) |
229 (c->mode << 1) |
230 c->bcd);
231 c->status_latched = 1;
232 }
233 }
234
235 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
236 {
237 struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
238 irq_ack_notifier);
239 int value;
240
241 spin_lock(&ps->inject_lock);
242 value = atomic_dec_return(&ps->pending);
243 if (value < 0)
244 /* spurious acks can be generated if, for example, the
245 * PIC is being reset. Handle it gracefully here
246 */
247 atomic_inc(&ps->pending);
248 else if (value > 0)
249 /* in this case, we had multiple outstanding pit interrupts
250 * that we needed to inject. Reinject
251 */
252 queue_kthread_work(&ps->pit->worker, &ps->pit->expired);
253 ps->irq_ack = 1;
254 spin_unlock(&ps->inject_lock);
255 }
256
257 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
258 {
259 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
260 struct hrtimer *timer;
261
262 if (!kvm_vcpu_is_bsp(vcpu) || !pit)
263 return;
264
265 timer = &pit->pit_state.timer;
266 mutex_lock(&pit->pit_state.lock);
267 if (hrtimer_cancel(timer))
268 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
269 mutex_unlock(&pit->pit_state.lock);
270 }
271
272 static void destroy_pit_timer(struct kvm_pit *pit)
273 {
274 hrtimer_cancel(&pit->pit_state.timer);
275 flush_kthread_work(&pit->expired);
276 }
277
278 static void pit_do_work(struct kthread_work *work)
279 {
280 struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
281 struct kvm *kvm = pit->kvm;
282 struct kvm_vcpu *vcpu;
283 int i;
284 struct kvm_kpit_state *ps = &pit->pit_state;
285 int inject = 0;
286
287 /* Try to inject pending interrupts when
288 * last one has been acked.
289 */
290 spin_lock(&ps->inject_lock);
291 if (ps->irq_ack) {
292 ps->irq_ack = 0;
293 inject = 1;
294 }
295 spin_unlock(&ps->inject_lock);
296 if (inject) {
297 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1, false);
298 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0, false);
299
300 /*
301 * Provides NMI watchdog support via Virtual Wire mode.
302 * The route is: PIT -> PIC -> LVT0 in NMI mode.
303 *
304 * Note: Our Virtual Wire implementation is simplified, only
305 * propagating PIT interrupts to all VCPUs when they have set
306 * LVT0 to NMI delivery. Other PIC interrupts are just sent to
307 * VCPU0, and only if its LVT0 is in EXTINT mode.
308 */
309 if (atomic_read(&kvm->arch.vapics_in_nmi_mode) > 0)
310 kvm_for_each_vcpu(i, vcpu, kvm)
311 kvm_apic_nmi_wd_deliver(vcpu);
312 }
313 }
314
315 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
316 {
317 struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer);
318 struct kvm_pit *pt = ps->kvm->arch.vpit;
319
320 if (ps->reinject || !atomic_read(&ps->pending)) {
321 atomic_inc(&ps->pending);
322 queue_kthread_work(&pt->worker, &pt->expired);
323 }
324
325 if (ps->is_periodic) {
326 hrtimer_add_expires_ns(&ps->timer, ps->period);
327 return HRTIMER_RESTART;
328 } else
329 return HRTIMER_NORESTART;
330 }
331
332 static void create_pit_timer(struct kvm *kvm, u32 val, int is_period)
333 {
334 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
335 s64 interval;
336
337 if (!ioapic_in_kernel(kvm) ||
338 ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)
339 return;
340
341 interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
342
343 pr_debug("create pit timer, interval is %llu nsec\n", interval);
344
345 /* TODO The new value only affected after the retriggered */
346 hrtimer_cancel(&ps->timer);
347 flush_kthread_work(&ps->pit->expired);
348 ps->period = interval;
349 ps->is_periodic = is_period;
350
351 ps->timer.function = pit_timer_fn;
352 ps->kvm = ps->pit->kvm;
353
354 atomic_set(&ps->pending, 0);
355 ps->irq_ack = 1;
356
357 /*
358 * Do not allow the guest to program periodic timers with small
359 * interval, since the hrtimers are not throttled by the host
360 * scheduler.
361 */
362 if (ps->is_periodic) {
363 s64 min_period = min_timer_period_us * 1000LL;
364
365 if (ps->period < min_period) {
366 pr_info_ratelimited(
367 "kvm: requested %lld ns "
368 "i8254 timer period limited to %lld ns\n",
369 ps->period, min_period);
370 ps->period = min_period;
371 }
372 }
373
374 hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval),
375 HRTIMER_MODE_ABS);
376 }
377
378 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
379 {
380 struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
381
382 WARN_ON(!mutex_is_locked(&ps->lock));
383
384 pr_debug("load_count val is %d, channel is %d\n", val, channel);
385
386 /*
387 * The largest possible initial count is 0; this is equivalent
388 * to 216 for binary counting and 104 for BCD counting.
389 */
390 if (val == 0)
391 val = 0x10000;
392
393 ps->channels[channel].count = val;
394
395 if (channel != 0) {
396 ps->channels[channel].count_load_time = ktime_get();
397 return;
398 }
399
400 /* Two types of timer
401 * mode 1 is one shot, mode 2 is period, otherwise del timer */
402 switch (ps->channels[0].mode) {
403 case 0:
404 case 1:
405 /* FIXME: enhance mode 4 precision */
406 case 4:
407 create_pit_timer(kvm, val, 0);
408 break;
409 case 2:
410 case 3:
411 create_pit_timer(kvm, val, 1);
412 break;
413 default:
414 destroy_pit_timer(kvm->arch.vpit);
415 }
416 }
417
418 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start)
419 {
420 u8 saved_mode;
421 if (hpet_legacy_start) {
422 /* save existing mode for later reenablement */
423 WARN_ON(channel != 0);
424 saved_mode = kvm->arch.vpit->pit_state.channels[0].mode;
425 kvm->arch.vpit->pit_state.channels[0].mode = 0xff; /* disable timer */
426 pit_load_count(kvm, channel, val);
427 kvm->arch.vpit->pit_state.channels[0].mode = saved_mode;
428 } else {
429 pit_load_count(kvm, channel, val);
430 }
431 }
432
433 static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
434 {
435 return container_of(dev, struct kvm_pit, dev);
436 }
437
438 static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
439 {
440 return container_of(dev, struct kvm_pit, speaker_dev);
441 }
442
443 static inline int pit_in_range(gpa_t addr)
444 {
445 return ((addr >= KVM_PIT_BASE_ADDRESS) &&
446 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
447 }
448
449 static int pit_ioport_write(struct kvm_vcpu *vcpu,
450 struct kvm_io_device *this,
451 gpa_t addr, int len, const void *data)
452 {
453 struct kvm_pit *pit = dev_to_pit(this);
454 struct kvm_kpit_state *pit_state = &pit->pit_state;
455 struct kvm *kvm = pit->kvm;
456 int channel, access;
457 struct kvm_kpit_channel_state *s;
458 u32 val = *(u32 *) data;
459 if (!pit_in_range(addr))
460 return -EOPNOTSUPP;
461
462 val &= 0xff;
463 addr &= KVM_PIT_CHANNEL_MASK;
464
465 mutex_lock(&pit_state->lock);
466
467 if (val != 0)
468 pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
469 (unsigned int)addr, len, val);
470
471 if (addr == 3) {
472 channel = val >> 6;
473 if (channel == 3) {
474 /* Read-Back Command. */
475 for (channel = 0; channel < 3; channel++) {
476 s = &pit_state->channels[channel];
477 if (val & (2 << channel)) {
478 if (!(val & 0x20))
479 pit_latch_count(kvm, channel);
480 if (!(val & 0x10))
481 pit_latch_status(kvm, channel);
482 }
483 }
484 } else {
485 /* Select Counter <channel>. */
486 s = &pit_state->channels[channel];
487 access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
488 if (access == 0) {
489 pit_latch_count(kvm, channel);
490 } else {
491 s->rw_mode = access;
492 s->read_state = access;
493 s->write_state = access;
494 s->mode = (val >> 1) & 7;
495 if (s->mode > 5)
496 s->mode -= 4;
497 s->bcd = val & 1;
498 }
499 }
500 } else {
501 /* Write Count. */
502 s = &pit_state->channels[addr];
503 switch (s->write_state) {
504 default:
505 case RW_STATE_LSB:
506 pit_load_count(kvm, addr, val);
507 break;
508 case RW_STATE_MSB:
509 pit_load_count(kvm, addr, val << 8);
510 break;
511 case RW_STATE_WORD0:
512 s->write_latch = val;
513 s->write_state = RW_STATE_WORD1;
514 break;
515 case RW_STATE_WORD1:
516 pit_load_count(kvm, addr, s->write_latch | (val << 8));
517 s->write_state = RW_STATE_WORD0;
518 break;
519 }
520 }
521
522 mutex_unlock(&pit_state->lock);
523 return 0;
524 }
525
526 static int pit_ioport_read(struct kvm_vcpu *vcpu,
527 struct kvm_io_device *this,
528 gpa_t addr, int len, void *data)
529 {
530 struct kvm_pit *pit = dev_to_pit(this);
531 struct kvm_kpit_state *pit_state = &pit->pit_state;
532 struct kvm *kvm = pit->kvm;
533 int ret, count;
534 struct kvm_kpit_channel_state *s;
535 if (!pit_in_range(addr))
536 return -EOPNOTSUPP;
537
538 addr &= KVM_PIT_CHANNEL_MASK;
539 if (addr == 3)
540 return 0;
541
542 s = &pit_state->channels[addr];
543
544 mutex_lock(&pit_state->lock);
545
546 if (s->status_latched) {
547 s->status_latched = 0;
548 ret = s->status;
549 } else if (s->count_latched) {
550 switch (s->count_latched) {
551 default:
552 case RW_STATE_LSB:
553 ret = s->latched_count & 0xff;
554 s->count_latched = 0;
555 break;
556 case RW_STATE_MSB:
557 ret = s->latched_count >> 8;
558 s->count_latched = 0;
559 break;
560 case RW_STATE_WORD0:
561 ret = s->latched_count & 0xff;
562 s->count_latched = RW_STATE_MSB;
563 break;
564 }
565 } else {
566 switch (s->read_state) {
567 default:
568 case RW_STATE_LSB:
569 count = pit_get_count(kvm, addr);
570 ret = count & 0xff;
571 break;
572 case RW_STATE_MSB:
573 count = pit_get_count(kvm, addr);
574 ret = (count >> 8) & 0xff;
575 break;
576 case RW_STATE_WORD0:
577 count = pit_get_count(kvm, addr);
578 ret = count & 0xff;
579 s->read_state = RW_STATE_WORD1;
580 break;
581 case RW_STATE_WORD1:
582 count = pit_get_count(kvm, addr);
583 ret = (count >> 8) & 0xff;
584 s->read_state = RW_STATE_WORD0;
585 break;
586 }
587 }
588
589 if (len > sizeof(ret))
590 len = sizeof(ret);
591 memcpy(data, (char *)&ret, len);
592
593 mutex_unlock(&pit_state->lock);
594 return 0;
595 }
596
597 static int speaker_ioport_write(struct kvm_vcpu *vcpu,
598 struct kvm_io_device *this,
599 gpa_t addr, int len, const void *data)
600 {
601 struct kvm_pit *pit = speaker_to_pit(this);
602 struct kvm_kpit_state *pit_state = &pit->pit_state;
603 struct kvm *kvm = pit->kvm;
604 u32 val = *(u32 *) data;
605 if (addr != KVM_SPEAKER_BASE_ADDRESS)
606 return -EOPNOTSUPP;
607
608 mutex_lock(&pit_state->lock);
609 pit_state->speaker_data_on = (val >> 1) & 1;
610 pit_set_gate(kvm, 2, val & 1);
611 mutex_unlock(&pit_state->lock);
612 return 0;
613 }
614
615 static int speaker_ioport_read(struct kvm_vcpu *vcpu,
616 struct kvm_io_device *this,
617 gpa_t addr, int len, void *data)
618 {
619 struct kvm_pit *pit = speaker_to_pit(this);
620 struct kvm_kpit_state *pit_state = &pit->pit_state;
621 struct kvm *kvm = pit->kvm;
622 unsigned int refresh_clock;
623 int ret;
624 if (addr != KVM_SPEAKER_BASE_ADDRESS)
625 return -EOPNOTSUPP;
626
627 /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
628 refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
629
630 mutex_lock(&pit_state->lock);
631 ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
632 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
633 if (len > sizeof(ret))
634 len = sizeof(ret);
635 memcpy(data, (char *)&ret, len);
636 mutex_unlock(&pit_state->lock);
637 return 0;
638 }
639
640 void kvm_pit_reset(struct kvm_pit *pit)
641 {
642 int i;
643 struct kvm_kpit_channel_state *c;
644
645 mutex_lock(&pit->pit_state.lock);
646 pit->pit_state.flags = 0;
647 for (i = 0; i < 3; i++) {
648 c = &pit->pit_state.channels[i];
649 c->mode = 0xff;
650 c->gate = (i != 2);
651 pit_load_count(pit->kvm, i, 0);
652 }
653 mutex_unlock(&pit->pit_state.lock);
654
655 atomic_set(&pit->pit_state.pending, 0);
656 pit->pit_state.irq_ack = 1;
657 }
658
659 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
660 {
661 struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
662
663 if (!mask) {
664 atomic_set(&pit->pit_state.pending, 0);
665 pit->pit_state.irq_ack = 1;
666 }
667 }
668
669 static const struct kvm_io_device_ops pit_dev_ops = {
670 .read = pit_ioport_read,
671 .write = pit_ioport_write,
672 };
673
674 static const struct kvm_io_device_ops speaker_dev_ops = {
675 .read = speaker_ioport_read,
676 .write = speaker_ioport_write,
677 };
678
679 /* Caller must hold slots_lock */
680 struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
681 {
682 struct kvm_pit *pit;
683 struct kvm_kpit_state *pit_state;
684 struct pid *pid;
685 pid_t pid_nr;
686 int ret;
687
688 pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
689 if (!pit)
690 return NULL;
691
692 pit->irq_source_id = kvm_request_irq_source_id(kvm);
693 if (pit->irq_source_id < 0) {
694 kfree(pit);
695 return NULL;
696 }
697
698 mutex_init(&pit->pit_state.lock);
699 mutex_lock(&pit->pit_state.lock);
700 spin_lock_init(&pit->pit_state.inject_lock);
701
702 pid = get_pid(task_tgid(current));
703 pid_nr = pid_vnr(pid);
704 put_pid(pid);
705
706 init_kthread_worker(&pit->worker);
707 pit->worker_task = kthread_run(kthread_worker_fn, &pit->worker,
708 "kvm-pit/%d", pid_nr);
709 if (IS_ERR(pit->worker_task)) {
710 mutex_unlock(&pit->pit_state.lock);
711 kvm_free_irq_source_id(kvm, pit->irq_source_id);
712 kfree(pit);
713 return NULL;
714 }
715 init_kthread_work(&pit->expired, pit_do_work);
716
717 kvm->arch.vpit = pit;
718 pit->kvm = kvm;
719
720 pit_state = &pit->pit_state;
721 pit_state->pit = pit;
722 hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
723 pit_state->irq_ack_notifier.gsi = 0;
724 pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
725 kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
726 pit_state->reinject = true;
727 mutex_unlock(&pit->pit_state.lock);
728
729 kvm_pit_reset(pit);
730
731 pit->mask_notifier.func = pit_mask_notifer;
732 kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
733
734 kvm_iodevice_init(&pit->dev, &pit_dev_ops);
735 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS,
736 KVM_PIT_MEM_LENGTH, &pit->dev);
737 if (ret < 0)
738 goto fail;
739
740 if (flags & KVM_PIT_SPEAKER_DUMMY) {
741 kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
742 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
743 KVM_SPEAKER_BASE_ADDRESS, 4,
744 &pit->speaker_dev);
745 if (ret < 0)
746 goto fail_unregister;
747 }
748
749 return pit;
750
751 fail_unregister:
752 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
753
754 fail:
755 kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
756 kvm_unregister_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
757 kvm_free_irq_source_id(kvm, pit->irq_source_id);
758 kthread_stop(pit->worker_task);
759 kfree(pit);
760 return NULL;
761 }
762
763 void kvm_free_pit(struct kvm *kvm)
764 {
765 struct hrtimer *timer;
766
767 if (kvm->arch.vpit) {
768 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &kvm->arch.vpit->dev);
769 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
770 &kvm->arch.vpit->speaker_dev);
771 kvm_unregister_irq_mask_notifier(kvm, 0,
772 &kvm->arch.vpit->mask_notifier);
773 kvm_unregister_irq_ack_notifier(kvm,
774 &kvm->arch.vpit->pit_state.irq_ack_notifier);
775 mutex_lock(&kvm->arch.vpit->pit_state.lock);
776 timer = &kvm->arch.vpit->pit_state.timer;
777 hrtimer_cancel(timer);
778 flush_kthread_work(&kvm->arch.vpit->expired);
779 kthread_stop(kvm->arch.vpit->worker_task);
780 kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
781 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
782 kfree(kvm->arch.vpit);
783 }
784 }
This page took 0.047026 seconds and 6 git commands to generate.